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ABSTRACT

Supervised fine-tuning (SFT) has become the de facto post-training strategy for
large vision-language-action (VLA) models, but its reliance on costly human
demonstrations limits scalability and generalization. We propose Probe, Learn,
Distill ( ), a plug-and-play framework that improves VLAs through residual
reinforcement learning and distribution-aware data collection. In Stage 1 (spe-
cialist acquisition), we freeze the VLA backbone and train lightweight residual
actors via off-policy RL. These specialists take over in states where the base pol-
icy fails, thereby probing failure regions of the generalist. In Stage 2 (data collec-
tion), we employ a hybrid rollout scheme that biases residual interventions toward
states frequently visited by the base policy, aligning collected trajectories with
the generalist’s deployment distribution while capturing recovery behaviors. In
Stage 3 (fine-tuning), these curated trajectories are distilled back into the general-
ist with standard SFT, applicable to both flow-matching and autoregressive heads.
We evaluate across diverse settings: it achieves a near-saturated 99% task
success rate on the LIBERO benchmark, delivers over 50% performance gains in
SimplerEnv, and demonstrates practicality on real-world Franka arm manipula-
tion tasks. We further provide ablations showing that residual policy probing and
distribution-aware replay are key to collecting deployment-aligned data that im-
proves VLASs’ capabilities on both seen and unseen tasks. Our results demonstrate
that RL-generated, policy-aligned data can surpass teleoperation-only demonstra-
tions, offering a scalable path toward self-improving VLA models.

1 INTRODUCTION

Supervised fine-tuning (SFT) has become the standard post-training paradigm for large language
models (LLMs): after broad pre- training, models are adapted to downstream applications by training
on curated instruction-response pairs, yleldlng many improvements in language following, safety,
and generahzatlon ( ). Inspired by these successes, the same
recipe is now being applied to robot foundatlon models particularly vision-language-action (VLA)
policies, where large, heterogeneous robotics and vision-language datasets provide the base 1n1t1a1—
ization, and SFT specializes models to specific tasks and embodiments ( ,

; s s ). However, transfer-
ring th1s paradlgm from language to robotics is a unlque challenge. Collecting high-quality robot
demonstrations is both costly and labor-intensive, making large-scale datasets far harder to obtain
than in language. Even when such data are available, they are often collected through teleoperation
pipelines that are decoupled from the deployed VLA policy, leaving critical coverage gaps: human
operators must manually anticipate and correct failure modes, but their demonstrations rarely reflect
the actual distribution of states the policy will encounter at deployment. As a result, while SFT
reliably improves performance on the tasks it is trained on, much less is understood about whether
these gains transfer to new tasks and environments.

These challenges raise the following question: We study whether VLA models can improve them-
selves using RL-curated data with minimal human effort. Specifically, can this self-curated training
match or surpass fine-tuning on human-expert (oracle) teleoperation data, both in-distribution and
out-of-distribution? Our central observation is that data collection should not be agnostic to the base
policy: the data-collecting policy and the generalist must interact, so that exploration leverages the
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Figure 1: Synergetic effect of PLD data. We fine-tune my on randomly selected subsets from
LIBERO-90 (we randomly sample 4 subsets for 10-80% tasks coverage rate) using different data
formulation; We evaluate the performance on all tasks and rearrange them according to success rate.
PLD data yields the highest in-distribution performance while retaining the property of cross-task
generalization of high-quality human data. It enables modest-level zero-shot transfer even when
only tuned on 10% tasks ( (number) SR on unseen tasks); While VLA, tuned by base policy rollout
data (0 — 1 REINFORCE), underperforms and fails to generalize. (The success rate number is
reported in Table .)

generalist’s prior and collected data remain aligned with its trajectory distribution. A natural way
to instantiate this idea is to employ reinforcement learning (RL) to acquire task-specific specialists
that guide data collection. However, applying RL in this setting is hindered by two key challenges.
Sparse reward signals in language-conditioned manipulation tasks render RL unstable and sample-
inefficient. Moreover, training task-specific experts independently from the generalist introduces
distributional mismatch; and once these experts converge, their behavior often lacks the diversity
needed to provide robust coverage for SFT.

Motivated by these challenges, we introduce PLD, a three-stage post-training pipeline. Stage 1:
Online specialist acquisition. We freeze the VLA backbone and train several lightweight residual
actors for multiple tasks via sample-efficient off-policy RL, enabling them to “take over” the base
policy at arbitrary states and achieve above 99% task success. Stage 2: Automatic data collection.
We propose a hybrid rollout scheme that biases residual takeovers toward states frequently visited
by the base model, mitigating distribution shift while capturing recovery behaviors. Stage 3: Su-
pervised fine-tuning. The collected data for multiple tasks are distilled back into the base model
through SFT, a process agnostic to VLA archltectures supportlng both flow-matching and autore-
gressive action heads ( , ). With PLD, we
can efficiently acquire task- spec1ﬁc RL experts through VLA guided exploration. Consequently,
the VLA further improves using the PLD data, achieving performance above 99% on the LIBERO
benchmark.

This paper makes the following contributions: 1) Autonomous post-training recipe. We propose a
post-training pipeline that enables VLA models to improve autonomously without relying on addi-
tional oracle demonstrations. Our method achieves near-saturated 99% success rates on the LIBERO
benchmark, and delivers over 50% performance gains in SimplerEnv, underscoring both its effective-
ness on seen tasks and its ability to generalize to unseen ones. 2) Systematic study of RL-generated
data. We analyze the key components of automatic data collection most beneficial for SFT, and con-
duct extensive experiments in simulation and on real robot hardware to examine how RL-generated
data influences generalization to unseen tasks. 3) Comprehensive empirical validation. We pro-
vide large-scale ablations of our design choices and demonstrate the method on a real Franka arm,
offering practical guidance for data-efficient post-training of robot foundation models.
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2 PRELIMINARIES

2.1 TASK FORMULATION

We study language-conditioned manipulation with sparse binary rewards using Vision—Language—
Action (VLA) models as the base policy class. We assume a partially observed control process
with horizon T', where an episode terminates and resets on task success with a restricted time limit.
After each episode, a reward r € {0, 1} is assigned. Let g denote the language prompt of goal
specification and let o; denote partial observations comprising robot proprioception (e.g. joint angle)
and RGB images input. The policy consumes (o0;, g) and outputs a 7-DoF action (6-Dof delta pose
and 1-DoF continuous gripper command), which we express as a; = D¢(h9(0t, g)) where hy
is a vision-language backbone and Dy is an action head. Consistent with recent VLA models,
Dy is instantiated by one of three common families: (i) a diffusion or flow-based action head for
continuous control ( s ; , ), or (ii) a discrete action tokenizer for
autoregressive decoding ( s ; s ). We aim to maximize success rate
37 by tuning ¢ and 6.

2.2 SUPERVISED FINE-TUNING

Given a VLA policy and a demonstration dataset D = {(o¢, g, a¢) } of observations o;, goal specifi-
cations g, and expert actions a;, SFT adapts the policy by maximizing the conditional action likeli-
hood. Letting x; = (o¢, g¢), the canonical objective is behavior cloning (BC) loss. In contemporary
VLA systems, the loss instantiation depends on the action head architecture. Auto-regressive/token
heads ( s ; s ) train with sequence NLL over action tokens u1.x:

Lar(0) = — Epoix [log po(ur | ek, z)]

With recent work improving efficiency via action chunking and parallel decoding, and a continuous
action parameterization trained by an ¢; regression objective ( , ). Diffusion heads
model a conditional denoising process for actions and train via score-matching MSE:

Lar(0) = Br e [ colaf™, 2 0]

enabling iterative sampling at inference ( , ; , ). Flow-matching heads
learn a continuous velocity field to transport a prior to the action distribution, trained with an Lo
flow-matching loss, and are often paired with VLM backbones for semantically grounded con-
trol ( s R ). Across these heads, SFT remains the standard
mechanism to spemahze a generalist policies to new embodiments and tasks using modest labeled
robot data ( , ;

2.3 GOAL-CONDITIONED RL

‘We model continuous control as an MDP ( , YM = (S, A, p,po,r,7y) with state space
S, action space A, transition dynamics p(s’ | s, a), initial-state distribution pg, reward function
r, and discount v € (0,1]. In goal-conditioned settings, each task is specified by a goal variable
g € G drawn from p(g); the reward becomes goal-dependent r : S x A X G — R, and the policy is
m:8 X G — A(A), written 7(a | s,g). It is convenient to view GCRL as an augmented MDP on
S x G with stationary goals:

ﬁ((slag) | (Sag)aa) = ,0(5/ | s,a) . l{g/ = g}
Under the infinite-horizon setting, the RL objective is

o0

J(m) = Egp(g) Esonpo, ag~m(-]st,g), Sz+1~p('\8t7at)[zt:0 7t r(st, at, g)]. (D

In this paper, we consider sparse reward, i.e., (s, a,9) = 1[d(¢(s), g) < €| defined via a success
predicate over a goal-relevant representation ¢(s), a metric d, and tolerance ¢ > 0.
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3 METHODS

Method Overview We study the synergy between data produced by our method when a modest
generalist VLA serves as the policy prior. The premise is that, if we exploit the base policy’s prior
correctly, it can both solve hard tasks quickly and explore efficiently. While recent work explores

direct RL fine-tuning of large VLAs ( ), such formulas can
be resource-intensive even for single-task tuning: e. g OpenVLA OFT requires per-GPU memory
recommendations up to ~62.5 GB for LIBERO training at batch size 8 ( , ). Mean-

while, it remains unclear whether these approaches scale gracefully to multi-task fine-tuning under
heterogeneous setups. We therefore opt for a decoupled pipeline. We freeze the base policy 7, and
learn a lightweight residual action policy 7s with sample-efficient off-policy RL (Gaussian policy
parameterization). We then collect expert data by letting the residual “take over” after specified
steps of “base policy probing”. Finally, we distill these skills back into the base model via SFT.

3.1 DATA EFFICIENT RL VIA POLICY PRIOR WARM-START

Building upon the previous success of sample-efficient RL with prior data ( , ), we con-
sider an off-policy actor-critic framework and maintain two separate buffers for offline and online
experience replay. We first fill the offline buffer with successful rollouts B¢ fiine = {71, 72,...}
from the base policy 7. This process serves as an importance sampling to preserve only the success-
ful attempts. During training, the offline and online experiences will be replayed symmetrically; for
example, mini-batches consist of equal samples from both buffers, ensuring that the value function
is constantly trained on high-value state-action pairs.

In practice, we train a task-specific residual action module 75(+|s, a;) conditioned on a; ~ 7. We
use 74 to explore near the base policy behavior, actively searching for more optimal solutions guided
by the Q-function. To modulate exploration and avoid deviating drastically from 7, during the initial
phase, the delta action’s magnitude is scaled down to [—¢, &], where £ € [0, 1] is tuned by a scheduler.
This design choice is two-fold: First, although unable to generalize fully to an unseen manipulation
task or scenario, the base policy can make reasonable attempts to solve the task, serving as a useful
initialization for exploration. Moreover, directly training the expressive foundation policy (e.g., flow
action heads) to maximize the Q-value can be extremely difficult ( , ). In contrast, a
residual Gaussian policy can be easily trained through any off-the-shelf off-policy RL algorithm.

Alongside 7, action value function Q™ acquired through policy iteration and TD-learning
( ) as in Eq. equation ', where 7(-|s) = mp(-|s)ms(-|s, ap) is the combined policy.

Q7 (st,at) < 7(s,0) + VBs,,, mp(-lsp.a0) [Qtarger (St+1, A1), @ = ap + as (2)

To stabilize off-policy learning and mitigate forgetting, we introduce a warm-up stage using solely
7, for data collection akin to ( , ). Meanwhile, the Q-function is initialized by a
conservative objective such as Cal-QL ( , ). Importantly, we do not explicitly
enforce behavior constraints to policy loss, such that the resulting expert 7 is less influenced by
either data quality or base policy performance.

3.2 BOOTSTRAPPING RL SPECIALIST FOR SCALABLE DATA GENERATION

We then turn to the question of how to collect demonstration data using RL specialists. Data col-
lected through RL experts is of highly optimal, with consistent behavior and nearly no hesitation,
demonstrating smooth solutions that finished tasks with shorter horizon. However, such a narrow
distribution of unimodal expert behavior may leave out-of-distribution and failure states underrepre-
sented. Thus, scaling purely expert data may not result in a performance gain, but instead risks the
generalist overfitting on these data and harming both robustness and generalization (As discussed in
the following section).

To mitigate this issue, we propose a hybrid data collection scheme that incorporates base-policy
initialization: We first rollout the base policy for random steps, then let the learned residual RL
policy to take over, resulting in demonstration trajectories Tyemo = {(s1,ap.1), - - -, (St—1, apt—1) }U
{(st, ap,t + ay), ...} that contain the behavior of the expert recovering from a potential suboptimal
region. We refer to this procedure as base policy probing. Accordingly, we boost the robustness of
the RL expert by training the RL expert on an initial state distribution sy ~ p{® given by random
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Figure 2: Visualization of Data diversity. We visualize PLD data with different base policy ini-
tialization probing horizon. Increasing probing horizon yields longer episodes and greater diversity
among successful trials. This broader data support leads to improved fine-tuning performance, which

eventually saturates. (As the saturation curve shown in Figure

steps of base policy probing. The probing step only serves as state initialization and will not be
added to the replay buffer. The details of PLD are summarized in Algorithm

4 EXPERIMENTS

In this section, we systematically evaluate the effectiveness of PLD. We first demonstrate the effi-
ciency of PLD-RL in solving sparse-reward manipulation tasks, which serves as the cornerstone of
our pipeline. Then we focus on study 1) How does the probing mechanism of PLD benefits VLA
SFT; 2) How does PLD data compare other source of demonstrations (e.g. human data, RL expert
rollout, VLA base policy rollout). Finally, we investigate the key factors of our pipeline and how
they contribute to improve the performance of VLA.

We consider simulation as a proxy to realworld performance, and evaluate methods across two
widely adoped simulation benchmarks including LIBERO ( , ), SimplerEnv ( ,

). LIBERO is a lifelong learning benchmark focused on language-guided manipulation tasks.
It comprises 130 language-conditioned manipulation tasks grouped into four suites that stress object
distribution, spatial arrangement, task goals, and their mixture. SimplerEnv is a robotics manipula-
tion benchmark that aims for high sim-to-real correlation.

In the following sections, we will be mainly analyzing different data sources: PLD data DF'P,
Human data DH'man | RL expert data (RL expert rollout w/o base policy probing) DRL, and base-
policy rollout data (Selective successful rollouts, also referred to as “self-bootstrap data’) DBase Policy
Unless stated otherwise, all methods use identical data volume, training budgets, augmentation, and
hyper-parameters across architectures; the default base policy we used is 7 ( , ).

4.1 EFFECTIVENESS AND EFFICIENCY OF LEARNING RL SPECIALIST

In this section, we seek answers to the following questions: Does PLD benefit from both policy
guidance and hybrid online learning? We compare state-of-the-art methods that leverage policy
priors and data priors: WSRL ( , ) (offline initialization only); RLPD ( ,

) (No base policy guidance). For the pre-training stage, we collect a dataset of 50 trajectories per
task, containing only the successful trials of the same base policy (), and using Cal-QL (

, ) as the default pre-training algorithm. Subsequently, we retain these data for methods
with online hybrid data replay. We plot the training curve of 250k steps of online interaction,
showing mean rollout performance and 95% Cls (confidence level) across 3 seeds in Figure

PLD outperforms baseline methods by a large margin across 8 tasks on LIBERO-90, indicating that
PLD effectively exploits the VLA policy prior and yields pronounced sample efficiency at low in-
teraction budgets. In terms of asymptotic performance, PLD can achieve over 95% performance on
every task that we report to fine-tune performance (over 120 manipulation tasks). Notably, we ob-
serve an initial performance drop for PLD. This phenomenon implies the initial phase of exploration,
where the residual policy starts to diverge from the base policy and visits potentially suboptimal
states.
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Figure 3: Benchmarking Sample-Efficient RL Performance. We compare with RL baseline

algorithms that either leverage policy prior or data prior. We report mean rollout performance (Av-
erage return calculated within a sliding window of 100 episodes) and 95% CIs for 3 seeds across 8
manipulation tasks selected from LIBERO-90.

In addition, we conduct an ablation study on each of the design choices of . A key takeaway
is that residual-action scale £ is critical to performance. Due to limited volume, we postpone the
detailed results and extended discussion in the Section

Table 1: Performance on LIBERO benchmark of VLA models fine-tuned on data.

0 ‘ OpenVLA
Model Spatial  Object Goal Avg ‘ Spatial  Object  Goal Avg
Baseline (SFT/OFT) 95.2 97.6 874 934 92.9 99.1 8325 918
w/ PLD 97.7 98.5 953 972 99.5 99.1 98.9 99.2
A

4.2 IN-DISTRIBUTION PERFORMANCE

In this section, we investigate the extent to which the proposed pipeline can enhance the VLA’s per-
formance. We evaluate in-distribution fine-tuning on the LIBERO benchmark using three subsets,
each consisting of 10 language-condition tasks: LIBERO-Object, LIBERO-Spatial, and LIBERO-
Goal. We additionally report results on a 4-task SimplerEnv suite . To demonstrate architecture-
agnosticism, we instantiate the base VLA with (i) OpenVLA (autoregressive action tokens) (

, ) and (ii) my (flow-matching action head) ( , ). Since VLA models are
mainly trained on real-world datasets that can not work out-of-the-box on simulation benchmarks,
we leverage their official checkpoints for model fine-tuning on each benchmark as the baseline. At
test time, each policy is evaluated on 50 episodes per task, and we report the mean success rate
per suite and average over the benchmark. Table ' and Table ° list the performance gain achieved
through further applying our method. Across all suites and both architectures, data yields con-
sistent absolute gains over human-only SFT while requiring no additional human demonstrations.
We observe that larger datasets monotonically improve in-distribution success and that the dis-
tilled generalist notably surpasses the average specialist, indicating effective transfer of task-specific
competence into the base VLA.

4.3 GENERALIZATION

Generalization to Unseen tasks To study the synergetic effect of data, we examine whether
data improves zero-shot performance on unseen tasks in the LIBERO benchmark ( ,

"Detailed results of SimplerEnv are reported in Table * in the Appendix.
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Figure 4: Few-shot generalization. Scaling in-distribution (LIBERO-goal) PLD yields better few-
show performance on new tasks (LIBERO-90).

). Concretely, we fine-tune my via SFT using data drawn from the disjoint coverage subsets
of LIBERO-90 in proportions {0.1, 0.3, 0.6, 0.8, 1.0}; for each coverage level, we randomly sample
tasks to form a new subset in distribution and then evaluate all tasks in the suite. We sampled 4
subsets for each coverage level to provide a more unified result. We consider three different data
sources: (i) Ours DPLP, (ii) human expert data DHU™a" and (iii) self-bootstrapping data D™o rollowt
(SFT on this variant corresponds to 0-1 REINFORCE ( , )). We visualize the
result in Figure . Across coverage levels, 7y fine-tuned on DFP attains the strongest in-distribution
performance and maintains robust zero-shot transfer to unseen tasks; human data-only SFT achieves
approximately a similar level of zero-shot generalization at the same training budget but lags on
in-distribution tasks; 7y self-bootstrapping rollout data underperforms in-distribution and fails to
generalize to out-of-distribution tasks.

Generalization to Out-of-domain We study few-shot generalization for tasks with different
goals, layouts, and backgrounds. We first collect PLD data of varying scales set on source tasks
(LIBERO-Goal) and evaluate the fine-tuning performance on farget tasks (LIBERO-90). Specifi-
cally, the VLA is fine-tuned on PLD data of source tasks plus a small number of oracle demos of
target tasks. To analyze transfer by skill family, we select tasks from LIBERO-goal and LIBERO-90
that have high semantic correlation to form a set of source/target tasks. We scaled the size of | DP'P|
from 50 to 500 trajectories and compared against D'*% and DZ° under the same data and training
budget. As shown in Figure ', we observe monotonic improvements in SFT performance as the data
scales from 50 to 500 trajectories.

4.4 REAL-WORLD PERFORMANCE

We evaluate our approach on a 7-DoF Franka Emika Panda arm in the real-world, considering two
sets of canonical manipulation tasks pick-and-place and peg insertion, illustrated in Figure
Unlike prior works ( , ), we do not restrict task randomization,
makmg real-world reinforcement learmng partlcularly challenging. A more detailed experimental
setup is provided in Section

Data collection and policy training. We first collected 200 teleoperated trajectories to perform
supervised fine-tuning (SFT) of the base policy my. Using this initialization, we trained my-PLD
and mo-RLPD without human interventions. Both policies reached 100% success on the two tasks
within 2 hours of training. We then leveraged the learned expert policies to autonomously collect
200 successful demonstrations each, forming datasets DPP and DRIPP, which were subsequently
used to further SFT 7, yielding +DFLP, - pHuman "and L DRLPD
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Figure 5: Visualization of failure mode and recover behavior in the real-world.

Performance and failure modes. Across 30 randomized trials per task, all methods achieved
perfect success on peg insertion (30/30), demonstrating robust reactive skills. In cube pick-up,
however, +DRIPP and 4+-DHUman gucceeded in only 16/30 and 10/30 trials, respectively, while +DFLP
maintained 30/30. Figure  illustrates a typical failure: policies trained on DRLFPP or DHuman often
pushed the cube into the upper-left corner where the gripper became stuck. By contrast, +DP-P
reliably recovered by repositioning the cube before grasping. Distribution analysis confirms that
neither human demonstrations nor RL rollouts visited such corner states, whereas PLD explicitly
probed the base policy and generated diverse trajectories that captured these cases. This explains its
robustness and highlights its potential as a self-improving data flywheel.

4.5 HOW DOES PLD WORK?

We take a deeper look at the underlying reason for PLD data’s bonus in generalization. As shown
in Figure ', we plot 50 trajectories for each method (task description: “open middle drawer of
the middle cabinet”). RL expert provides optimal and concentrated solutions to the task, but lacks
diversity and diverges far from the behavior of the base policy, while PLD data are clustered near the
trails of the base policy and contain various recovery behaviors. Based on empirical observation, we
hypothesize that due to the base policy probing, PLD data provides a solution that is biased towards
the base policy, thus fine-tuning forgets less of the base model’s generalizability.

5 RELATED WORKS

5.1 RoOBOTICS FOUNDATION MODELS

Following the success of large language models and vision language models (

s ), recent works on robotics foundation models turned to a
similar transformer—based architecture with aggressive data scaling. This inspired earher works in
VLAs such as RT-1, RT-2, and OpenVLA, etc. ( ;a;

). Meanwhile, dlfqulOIl based action generation, explored in ( ), takes motlvatlon
from generative modeling techniques ( , ), demonstrating smooth and accurate action
generation. This has led to more recent VLA architectures to-date, such as Octo (

), OpenVLA- OFT ( , ), GROOT ( , ), and the m-series of models
( , ). The VLA training procedure is
typically analogous to VLM tramlng Flrst model weights are initialized from the respective VLM
backbones ( , ). Then, the model is supervised with next-token-
prediction tasks on dlverse pretramlng datasets, spanning across multi-modal web data (

s ) such as COCO ( s ) and VQAV2 ( R ), and robotics-
specific, cross-embodiment data ( s ; s ). Finally, supervised

2Generalization results are reported in Section
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fine-tuning is conducted on a small set of high-quality teleoperation data collected from the target
robot deployment platform performing the target tasks.

5.2 SAMPLE-EFFICIENT RL WITH DATA AND POLICY PRIORS

Sample and exploration efficiency have been a long-standing problem in RL, especially in sparse-
reward settings. Recent works have explored leveraging offline data to improve sample efficiency.
Offline-to- onhne transfer ( R ;

, : s ) cons1ders a two stage pipeline that ﬁrst initializes
pohcy or cr1t1c using pessimism or constrained objective in offline RL ( ) and
follows with an online fine- tumng phase to have new data collected and alleviate distributional shift;
Hybrid RL ( s ; ; s ) considers online RL with access to an offline
dataset. Given expert demonstration, one can either continuously replay this data to ensure high-
value state visitation ( ) or to guide exploratlon ( ). Data prior can
also guide reset-free real-world learmng ( s , ). Another line of
work assumes access to policy prior, such as a pre-trained generahst ( );

( ); ( ) leverage foundation policy to guide RL through an auxiliary behavior
regularization objective. Action editing is another efficient way to improve upon the policy prior.
ResiP ( , ) considers learning a residual policy through PPO (

while EXPO ( , ) considers an off-policy solution and co-trains the base pohcy
during the process. Our work leverages a suboptimal base policy to achieve a non-zero success rate
for warm-starting exploration, but does not require access to oracle demos or a human expert for
further intervention.

5.3 VLA POST-TRAINING

The prevailing large-scale recipe for VLA post-training is to pretrain on diverse, heterogeneous
robot data and then fine-tune on task-specific demonstrations (

). For example, ( ) performs supervised post- tralnlng on a carefully curated
task-targeted corpus, with per-task coverage ranging from a few to over 100 hours of teleoperation.
Because such post-training data are expensive to acquire, the authors note that most diversity must
come from the pretraining mixture—underscoring a key limitation of pure SFT: data scarcity and
limited coverage at adaptation time. To enable self-improvement, prior work has explored scaling
high-quality data via online RL specialists ( , ). However, these pipelines often require
substantial human-in-the-loop effort and collect data largely agnostic to the generalist’s behavior,
which constrains scalability. Other lines investigate on-policy RL for post-training ( , ;

, ; , ), or optimize single-task fine-tuning at the expense of general-
ization ( R ). While ( ) demonstrates multitask scaling with parallel
simulation, low sample efficiency limits real-world applicability. Our work jointly targets these lim-
itations by seeking a post-training pipeline that reduces human effort, aligns data collection with the
generalist’s state distribution, and remains sufficiently sample efficient for real-world systems.

6 CONCLUSIONS

We presented —a three-stage post-training pipeline that enables VLA models to improve au-
tonomously without relying on additional oracle human demonstrations. couples a frozen VLA
generalist with lightweight residual RL specialists to warm-start exploration and distills curated suc-
cesses back into the base model with standard SFT. Across large-scale simulation experiments and
real-world deployment, improves without additional human demonstration, achieving near-
saturated ~99% success on LIBERO, >50% gains in SimplerEnv, and robust real-world perfor-
mance. Ablations identify residual policy probing and distribution-aware replay as key to stability,
sample efficiency, and generalization. We consider as a practical step toward autonomous,
scalable post-training and a foundation for future work on multi-embodiment transfer, continual
on-robot learning, and safety-constrained data collection.
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A LARGE LANGUAGE MODEL USAGE STATEMENT

We used the large language model ChatGPT only for writing assistance, including grammar correc-
tion, wording improvements, and minor stylistic edits on draft text. The model was not used for
research ideation, data collection, dataset labeling, code generation, experiment design, or analysis.
All technical content was authored and verified by the human authors. We accept full responsibility
for all content in this paper.

B ALGORITHM

Algorithm 1 PLD with base-policy initialization

ReqUire: Ths TS Qd)a Q(ﬁ” a, 7, Bofﬂines Bonline
# Initialization
Collect n successful trails of my: Doffrine = {71, 72, ... Tn}
Initialize online buffer D,,jine = @
Initialize the critic network @, Q4 with Cal-QL on D¢ fiine
Randomly initialize delta policy network 7
# RL training
Freeze my, denote 7(+|s) = mp(+|$)7s(+|s, ap)
for each RL step do
if collect data then
if Warm up step then
base model rollout a ~ Tpgse(-|$)
else
sample action @ ~ 7(+|s)
end if
Environment step: r, s, done = env.step(a)
Add (s, a, p, 1, ") to buffer Dyniine.
end if
Equally sample data from online and offline buffer: b ~ Dniine U Doy fiine
Calculate TD target by bootstrapping 7
Update Q4 by equation
Update 75 by maximizing the SAC target
Polyak update ¢’ = p¢’ + (1 — p)o
end for
#Base policy SFT
For each task, we collect hybrid behavior dataset Dgpr:

7T(8 ) _ {abase; t< Tbase
t) =
Gpase + as, t > Tbase

for each SFT step do

update 7, by BC objective.
end for
Return

C MORE RESULTS

C.1 OcTto SFT FOR SIMPLERENV TASKS
In addition to the in-distribution results on LIBERO, we provide results on SimplerEnv in Table

Similar to the training and evaluation protocol on LIBERO, we first train task-specific residual RL
specialists and fine-tune VLA on data for all four tasks.
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Table 2: LIBERO-90 Success rate for 7y SFT with different dataset.

PLD Data Base Policy Rollout Data Human Data
Ratio Overall SR Seen/Unseen SR Ratio Overall Seen/Unseen Ratio  Overall  Seen/Unseen
0.1 0314 o 01 0103 o o1 o2 o7
03 0470 8:222 03 0068 8:(1)?2 03 0419 8'24213
06 0.637 o8 06 038 oo 06 0611 0ot
08 0745 oboe 08 0344 ooB 08 o064 030
10 0871 o L0 0488 Ol;ﬁig 10 0815 NA

Table 3: Evaluate PLD on SimplerEnv
Model WidowX Pick Eggplant WidowX Pick Carrot Google Open Drawer Google Coke Can  Avg

Octo-SFT 65.5 433 925 85.7 71.8
w/ ours 97.8 93.9 99.3 95.5 96.6
A +32.3 +50.6 +6.8 +9.8 +24.9

C.2 GENERALIZE TO LONG-HORIZON TASK

We assess skill composition on LIBERO-100 by fine-tuning the base VLA on LIBERO-90 (source)
and evaluating zero-shot on the held-out LIBERO-10 long-horizon tasks (target). To construct PL.D
data, we first train residual RL specialists independently on each LIBERO-90 task, then aggregate
their successful rollouts. As shown in Figure *, the fine-tuning of the data PLD exceeds the tuning of
the data from the baseline policy roll-out (self-bootstrapped), but still falls short of the performance
achieved with demonstrations by human experts.

D IMPLEMENTATION

D.1 RL BASELINES

To ensure an apple-to-apple comparison in Section ' |, we implement these baselines based on the
SERL ( ) framework and adapt them to fit in the settings of our study. We provide a
detailed explanation of baseline formulation and our implementation. As for the hyperparameter

RLPD RLPD ( , ) proposed a hybrid RL pipeline that leverages offline data to foster

learning in challenging sparse reward settings. During training, it equally draws samples from both
the online and offline buffer. It also uses LayerNorm to deal with the Q-value blow-ups common

LIBERO-Long

© ® N O U B W N H O

Success Rate
0.0 0.5 1.0
== Human data (oracle)
Bootstrapping data == PiRL rollout

Figure 6: Short-to-long generalization. Zero-shot evaluation on LIBERO-10 long horizon tasks.
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Figure 7: Visualization of different data sources. We plot 50 trajectories for each method (task
prompt: “open middle drawer of the middle cabinet”). RL expert data is of high quality but lacks
diversity and diverges far from base policy behavior, while PLD data aligns better with the base
policy and contains diverse recovery behavior.

when querying OOD actions under a high up-to-date (UTD) ratio. We refer to the implementation
in the SERL software for both simulation and real deployment.

WSRL In the original paper ( , ), WSRL uses Cal-QL ( , )
to pre-train both the action and critic during the offline phase. For the online phase, it discards
offline data and warms up the replay buffer with 50k steps of pre-trained policy rollouts. We did not
provide a large dataset that contains diverse behavior as on the D4RL ( , ) benchmark.
Rather, we use the same procedure as PLD to collect successful trajectories from the base model.
We implement WSRL under the SERL framework, as the UTD is no longer fixed to 4. This baseline
can be considered as an ablation of the residual policy and offline data replay. We use the WSRL
baseline as an ablation study of the warm-up online exploration using the base policy, and offline
data retention through hybrid data replay.

JSRL Jump-start RL ( , ) is a meta-algorithm using an existing guide policy
to “rolling-in”. The key mechanism is to shape the initial-state distribution for the learner: JSRL
repeatedly resets episodes from states that the guide visits (a curriculum from easy/near-goal states to
harder/far-from-goal states), making difficult tasks learnable with fewer trials. It leverages the guide
policy for data collection, without directly imitating its actions. JSRL is agnostic to the underlying
RL backbone. In practice, we choose SAC to learn the exploration policy. Since JSRL only leverages
the policy prior (VLA policy in practice) to warm-up exploration during online interaction, we use
it as an ablation of the hybrid experience replay mechanism.

Cal-QL Calibrated Q-learning ( , ) addresses the underestimation issue of
CQL ( , ), thereby significantly improving fine-tuning performance in the offline-to-
online setting. It learns a conservative value function that underestimates the value of OOD actions,
while ensuring the values are within a reasonable scale. In practice, it under-bounds the conservative
Q function by the value of the behavior policy u (policy corresponds to the offline dataset D). The
modified Q-learning objective is the following:

1

mOina (ESND,GNTF[ma‘X(QG(S’ a’)7 VM(S))]) - 2

s a~D [(Q@(S a) BWQ(S, a’))2]

Where ( is the target Q-value function and the second term corresponds to minimizing TD-error

(Z015).

Implicit Q-Learning (IQL). IQL is an in- sample offline RL method that avoids querying () on
out-of-distribution actions while still improving over the behavior policy ( ).
The key step is to fit a state value V., by expectile regression over dataset actions and then bootstrap
Qo toward this value. Let §(s,a) = Qg(s,a) — Viy(s) and define the expectile loss £, () =

)
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Figure 8: Ablation of Probing Horizon. With o measuring the percentage of base policy probing
during data collection, we see fine-tune performance plateau at « = 0.6. Performance drops mono-
tonically as « increases further.

In — 1{8§ < 0}| §2 with ny € (0.5,1). IQL alternates
V) mwin E(s.a)~D [Lo(Qo(5,a) = Vy(5))], 3)
Q  min By~ | (Qls.a) = (r+Vu(s)))?], )

(policy) m(fx E(&Q)ND[QXP(W) log 7y (a | s)], 5)

which realizes policy improvement without out-of-distribution action queries (the policy step re-
duces to advantage-weighted regression) ( , ). In our comparison to Cal-
OL ( , ) as a critic-initialization baseline, we consider a simplified version of
IQL that directly regresses (g toward an n-step return R, = Zfi?_l ¥t + 4™V (St4n) using
expectile regression:

min By, 0,0 [Lo(Qo(st,ar) = Re)] -

Unless otherwise noted, we set 7 = 0.7, a value shown to propagate high-value signals effectively
in the IQL paper.

D.2 DESIGN CHOICES OF

In this section, we provide a detailed study of design choices that make data efficient and
achieve high convergence performance. We evaluate all algorithm on the selected 8§ LIBERO-90
tasks.

Sensitivity to the initialization horizon We choose task 0 — 9 from LIBERO-90, change the steps

we used to initialize the random sample, initiating steps Thye ~ [0, @T] to rollout the base policy.
€ 10.0,0.2,0.4,0.6,0.8]. As « increases, the average episode length of successful trajectories

increases, indicating a detour required to correct the suboptimal behavior of the base policy.

Reward shaping We empirically analyze the impact of naive reward shaping. Specifically, we
consider a step-wise survival cost as reward bias as in prior works ( ). As shown
in Section ', adding a slight reward bias has little impact, but it could increase convergence speed
in 2 out of 8 tasks; However, A large bias could significantly hinder performance. For the major
results reported in the main paper, we do not apply reward shaping.

Action scale One core component of residential policies is the scale of exploration. To avoid un-
learning results from diverging too far from the base pohcy, delta actions are usually scaled down
and bounded within a range of [—&, ] ( , , ). Section com-
pares different residual action scales. Setting & too large at the start can degrade early performance:
updates deviate excessively from the base policy, inducing unstable exploration, while a small £ will
lead to insufficient exploration and lower asymptotic performance. We argue that £ needs to be care-
fully tuned to enable exploration while minimizing performance drop. For single-arm manipulation,
we suggest £ = 0.5 a good choice for LIBERO and £ = 0.1 for SimplerEnv.
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Figure 9: Reward bias ablation. Mean and 95% CIs of rollout performance across 3 seeds.
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Figure 10: Action scale ablation Mean and 95% Cls of rollout performance across 3 seeds.
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Figure 11: Offline pre-training ablation. Mean and 95% ClIs of rollout performance across 3
seeds.

Critic pre-training While warm-start through pre-training the critic is beneficial to asymptotic
performance and prevents initial performance drop, the careful selection of the pre-training method
could be important as well. We compare using CQL, Cal-QL, and IQL to the pre-training method.
We consider using only 50 trajectories of successful trials of the base policy, while the standard
offline RL benchmark tends to have far larger data volume ( , ). In Figure ' ', online
performance using the Cal-QL pre-trained critic is consistently better and is robust to the conserva-
tive coefficients . CQL demonstrates the worst performance with a severe forgetting issue, which
aligns with the previous study ( , ).

Update frequency In the SERL pipeline, data collection and policy learning run asynchronously
and periodically exchange network parameters and online data. We ablate the update frequency—the
number of gradient steps performed by the learner between parameter synchronizations with the
data-collection actor—sweeping from 1 to 500. As shown in Figure ' ', overall performance is
largely insensitive to this hyperparameter, indicating robustness across a wide range of synchroniza-
tion cadences.

On-the-Fly Policy On-the-fly (OTF) policy is introduced in ( , ) to more effec-
tively maximize the value function. It samples multiple actions and backs up the maximum Q value
during TD learning. We adopt OTF to PLD while only sampling multiple actions from the residual
policy 75 and conditioned on a fixed base action. We compare different sample sizes in Figure
We found that OTF can improve sample efficiency, and a larger sample size (20) shows significant
performance gain. But empirically, the asymptotic performance will eventually be similar. We use
OTF= 1 by default.

JSRL  We further provide results, including JSRL ( ) in Figure ' . We modify
the original implementation by opting for a linear scheduler. JSRL demonstrates high data efficiency

24



Under review as a conference paper at ICLR 2026

—— Update Freq =1 —— Update Freq =10 —— Update Freq = 50 —— Update Freq = 500
—— Update Freq =5 —— Update Freq =20 —— Update Freq = 100

Task 1 Task 2 Task 17
1.0 1.0 1.0
(0]
e
©
o
705 0.5 0.5
(0]
(O]
)
=}
(V]
0.0 0.0 0.0
0 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k
Task 21 Task 33 Task 46
1.0 1.0 1.0
[0
=)
©
o
7 0.5 0.5 0.5
()
9]
@)
3
wn
0.0 0.0 0.0
0 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k
Actor Steps Actor Steps Actor Steps

Figure 12: Update frequency ablation. Mean and 95% ClIs of rollout performance across 3 seeds.
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Figure 13: On-the-fly Policy Ablation. Mean and 95% Cls of rollout performance across 3 seeds.

25



Under review as a conference paper at ICLR 2026

—— TMo-PLD (Ours) —— mo-JSRL
Task 1 Task 2 Task 17 Task 21

1.0 1.0 1.0 1.0
[
3
©
4
s . :>§ / O'SOf\\v}’: 0-5/\/\
[}
o
o
=)
g /\/\/

0.0! 0.0! 0.0 0.0!

0 100k 200k 0 100k 200k 0 100k 200k 0 100k 200k
Task 33 Task 34 Task 46 Task 47

1.0 1.0 1.0 1.0
[0
=t
©
-4
s ﬁ ) > ﬁ‘ ) @f&’\ )
[0}
o
1%
=3
wn

0.0 0.0 0.0 0.0

0 100k 200k 0 100k 200k 0 100k 200k 0 100k 200k
Actor Steps Actor Steps Actor Steps Actor Steps

Figure 14: Compared with JSRL. Mean and 95% CIs of rollout performance across 3 seeds.

in general, but could fail to converge on some tasks. While PLD can reliably provide solutions for
all tasks.

E IMPLEMENTATION DETAILS

E.1 RL ALGORITHM

To ensure apples-to-apples comparisons, all baselines in Section and Section use the same
network architecture—an 3-layer MLP Gaussian policy and Clipped Double Q-networks (CDQ)

( ) with LayerNorm ( , ). Both actor and critic use a pre-trained
ResNetV1-10 encoder to extract visual information. We present a detailed hyperparameter setting
in Table

E.2 SFT

For fine-tuning either OpenVLA or 7y, we employ 8 x NVIDIA L40 GPU for LoRA ( ,
) fine-tuning with rank 32. For both 7y, and OpenVLA-OFT, we use the default hyperparame-
ters for their open-source codebase.

F REAL-WORLD EXPERIMENTS

F.1 EXPERIMENT SETUP

We deploy PLD on a 7-DoF Franka Emika Pand with end-effector delta pose control at 20 Hz.
The robot is equipped with one wrist-mounted camera, one side-view camera, and proprioceptive
sensing as inputs. For each task, we pretrain a independent binary reward classifier by collecting
a small-scale dataset of success and failure states. The model structure follows the setup in (

, ), which use a pretrained ResNet-10 and a 3-layer MLP model. We ensure the trained
classifier using augmented false positive samples until it achieves 99% success rate for each task.
Due to the 3D printed desk, we don’t need to reset the environment for the pick-cube task. PLD
performs auto-reset, residual RL training, and SFT automatically without human supervision. For
peg-insertion task (depicted in Figure '), human need to randomly move the position of hole to
increase diversity.
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Table 4: RL hyperparameter settings. We share the same setting across all tasks.

Hyperparameter Value
Training

Batch size 256
Buffer capacity 250000
Discount factor () 0.99
Gradient clipping norm 1.0
Learning rate 3x107*
Optimizer AdamW
Reward bias 0.0
Residual Policy

Target entropy — actdim
Initial temperature (1) 1.0
Action scale (§) 0.5
Critic

Q functions esemble 2
Target update rate 0.005

Architecture

Visual Encoder

Hidden layer dimension
Latent space dimension
Q function drop out
Activation

Normalization

ResNetvl-10
256
256
0.0
Tanh

LayerNorm

F.2 GENERALIZATION PERFORMANCE

We perform SFT of 7y on Pick Up Blue Cube (Clean Env) and Peg Insertion data, and evaluate the
fine-tuned policy on Pick Up Blue Cube (Cluttered Env) and Pick Up Red Cube (Cluttered Env) tasks.

The results in Table ~ show that VLA SFT on
compared to human teleoperation data.

data achieves better generalization performance

Table 5: Comparison of PLD vs Human Data on real-world unseen tasks (success rate).

SR Dataset PLD Data Human Data
Pick Up Blue cube (cluttered Env)  28/30 (93.3%) 12/30 (40.0%)
Pick Up Red cube (cluttered Env) 20/30 (66.7%) 10/30 (33.3%)
Peg Insertion 30/30 (100.0%) 30/30 (100.0%)
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Figure 15: Franka Panda real-world setup for manipulation tasks.

Onemo-SFT Model to perform the following tasks

Pick Up the Red Cube

Figure 16: Real-world Generalization Performance. We evaluate one model’s multi-task perfor-
mance on three language-conditioned manipulation tasks including pick-and-place and peg inser-
tion.
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