
A Domain Specification and Simulation

In this section, we define the training and test distributions p(D) and p̃(D) concretely in terms of the
parameters and notation introduced in the main text. Based on these definitions, Table 3 summarizes
all parameters of the data-generating processes for LINEAR and RFF and specifies how they are
sampled for a random task instance. Table 4 lists the same specifications for the GRN domain. The
notation and parameters are defined in the following subsections.

Table 3: Specification of the training and out-of-distribution data-generating processes p(D) and
p̃(D) for the LINEAR and RFF domain. All specifications except the mechanism function type are the
same for the two domains. For each random task instance, the parameter configurations are sampled
uniformly randomly from all possible combinations of the sets of options. The graph model classes
are sampled in equal proportions out-of-distribution. Empty fields indicate that the component is
not part of the distribution.

IN-DISTRIBUTION p(D) OUT-OF-DISTRIBUTION p̃(D)

Graph
Erdős-Rényi expected edges/node ∈ {1, 2, 3}
Scale-free (in-degree) edges/node ∈ {1, 2, 3}

attach. power α ∈ {1.0}
Scale-free (out-degree) edges/node ∈ {1, 2, 3} edges/node ∈ {2}

attach. power α ∈ {1.0} attach. power α ∈ {0.5, 1.5}
Watts-Strogatz lattice dim. k ∈ {2, 3}

rewire prob. ∈ {0.3}
Stochastic Block Model expected edges/node ∈ {2}

blocks ∈ {5, 10}
damp. inter-block prob. ∈ {0.1}

Geometric Random Graphs radius ∈ {0.1}

Mechanism

Linear function(a) weights w ∼ Unif±(1, 3) weights w ∼ Unif±(0.5, 2)
∼ Unif±(2, 4)

bias b ∼ Unif(−3, 3) bias b ∼ Unif(−3, 3)
Random Fourier function(b) SE length scale ℓ ∼ Unif(7, 10) SE length scale ℓ ∼ Unif(5, 8)

∼ Unif(8, 12)
SE output scale c ∼ Unif(10, 20) SE output scale c ∼ Unif(8, 12)

∼ Unif(18, 22)
bias b ∼ Unif(−3, 3) bias b ∼ Unif(−3, 3)

Noise (indiv. per variable)

N (0, σ2) σ ∼ Unif(0.2, 2)
Laplace(0, σ2) σ2(xpaj) (heterosced.) ∼ p(hrff)

Cauchy(0, σ2) σ2(xpaj) (heterosced.) ∼ p(hrff)

Interventions
Target nodes random 50% of nodes random 50% of nodes
Intervention values xj ∼ Unif±(1, 3) xj ∼ Unif±(1, 5)

(a) Only LINEAR domain
(b) Only RFF domain

Aliases:
• Unif±(a, b): uniform mixture of Unif(a, b) and Unif(−b,−a)

• p(hrff): distribution over heteroscedastic noise scale functions, induced by the squash function hrff(x) = log(1 + exp(grff(x))
and random Fourier feature functions grff(x) with SE length scale ℓ = 10 and output scale c = 2 (cf. RFF domain)

16

Table 4: Specification of the training and out-of-distribution data-generating processes p(D) and
p̃(D) for the GENE domain. For each random task instance, the parameter configurations are sampled
uniformly randomly from all possible combinations of the sets of options. The graph model classes
are sampled in equal proportions out-of-distribution. Empty fields indicate that the component is
not part of the distribution.

IN-DISTRIBUTION p(D) OUT-OF-DISTRIBUTION p̃(D)

Graph
Erdős-Rényi expected edges/node ∈ {1, 2, 3}
Scale-free (out-degree) edges/node ∈ {1, 2, 3}

attach. power α ∈ {0.5, 0.8, 1.0, 1.2, 1.5}
E. coli subgraph top-p perc. modular ∈ {0.2}
(Marbach et al., 2009)
S. cerevisiae subgraph top-p perc. modular ∈ {0.2}
(Marbach et al., 2009)

Mechanism
GRN simulator no. cell types ∈ {5} no. cell types ∈ {10}
(Dibaeinia and Sinha, 2020) decay rates λ ∈ {0.7, 0.8, 0.9} decay rates λ ∈ {0.5, 1.5}

system noise scale ξ ∈ {0.9, 1.0, 1.1} system noise scale ξ ∈ {0.5, 1.5}
Hill function coeff. γ ∈ {1.9, 2.0, 2.1} Hill function coeff. γ ∈ {1.5, 2.5}
MR prod. rate b ∼ Unif(1, 3) MR prod. rate b ∼ Unif(0.5, 2)

∼ Unif(2, 4)
interactions k ∼ Unif(1, 5) interactions k ∼ Unif(1, 3)

∼ Unif(3, 7)
signs(k) per node ∼ Bern(p) where p signs(k) per node from E. coli

∼ Beta(1, 1) or ∼ Bern(p)
∼ Beta(0.5, 0.5) (cf. Sec. A.1.2)

Measurement Noise

Platform† 10X chromium poutlier ∈ {0.01}
µoutlier ∈ {3.0, 5.0}
σoutlier ∈ {1.0}
µlib ∈ {4.5, 6.0}
σlib ∈ {0.3, 0.4, 0.7}
δ ∈ {45, 74, 82}
τ ∈ {8.0}

Illumina HiSeq2000 poutlier ∈ {0.01}
µoutlier ∈ {0.8}
σoutlier ∈ {1.0}
µlib ∈ {7.0}
σlib ∈ {0.4}
δ ∈ {80}
τ ∈ {8.0}

Drop-seq poutlier ∈ {0.01}
µoutlier ∈ {3.0}
σoutlier ∈ {1.0}
µlib ∈ {4.4}
σlib ∈ {0.8}
δ ∈ {85}
τ ∈ {8.0}

Smart-seq poutlier ∈ {0.01}
µoutlier ∈ {4.5}
σoutlier ∈ {1.0}
µlib ∈ {10.8}
σlib ∈ {0.55}
δ ∈ {92}
τ ∈ {2.0}

Interventions
Target nodes all nodes all nodes
Intervention type gene knockout gene knockout

† Noise specifications were collected from calibrations performed by Dibaeinia and Sinha (2020) on real datasets generated by the different
scRNA-seq platforms.

17

A.1 Causal Structures

A.1.1 Random graph models

In Erdős-Rényi graphs, each edge is sampled independently with a fixed probability (Erdős and
Rényi, 1959). We scale this probability to obtain O(d) edges in expectation. Scale-free graphs are
generated by a sequential preferential attachment process, where in- or outgoing edges of node i
to the previous i − 1 nodes are sampled with probability ∝ deg(j)α (Barabási and Albert, 1999).
Watts-Strogatz graphs are k-dimensional lattices, whose edges get rewired globally to random nodes
with a specified probability (Watts and Strogatz, 1998). The stochastic block model generalizes
Erdős-Rényi to capture community structure. Splitting the nodes into a random partition of so-called
blocks, the inter-block edge probability is dampened by a multiplying factor compared to the intra-
block probability, also tuned to result in O(d) edges in expectation (Holland et al., 1983). Lastly,
geometric random graphs model connectivity based on two-dimensional Euclidian distance within
some radius, where nodes are randomly placed inside the unit square (Gilbert, 1961).

For undirected random graph models, we orient edges by selecting the upper-triangular half of
the adjacency matrix. The classes of random graph models are sampled in equal proportion when
generating a set of evaluation datasets (Tables 3 and 4).

A.1.2 Subgraph Extraction from Real-World Networks

For the evaluation in the GRN domain, we sample realistic causal graphs by extracting subgraphs
from the known E. coli and S. cerevisiae regulatory networks. For this, we rely on the procedure by
Marbach et al. (2009), which is also used by Schaffter et al. (2011) and Dibaeinia and Sinha (2020).
Their graph extraction method is carefully designed to capture the structural properties of biological
networks by preserving the functional and structural properties of the source network.

Algorithm The procedure extracts a random subgraph of the source network by selecting a subset
of nodes V , and then returning the graph containing all edges from the source network covered by
V . Starting from a random seed node, the algorithm proceeds by iteratively adding new nodes to
V . In each step, this new node is selected from the set of neighbors of the current set V . The neighbor
to be added is selected greedily such that the resulting subgraph has maximum modularity (Marbach
et al., 2009).

To introduce additional randomness, Marbach et al. (2009) propose to randomly draw the new node
from the set of neighbors inducing the top-p percent of the most modular graphs. In our experiments,
we adopt the latter with p = 20 percent, similar to Schaffter et al. (2011). The original method of
Marbach et al. (2009) is intended for undirected graphs. Thus, we use the undirected skeleton of the
source network for the required modularity and neighborhood computation.

Real GRNs We take the E. coli and S. cerevisiae regulatory networks as provided by the
GeneNetWeaver repository,1 which have 1565 and 4441 nodes (genes), respectively. For E. coli, we
also know the true signs of a large proportion of causal effects. When extracting a random subgraph
from E. coli, we take the true signs of the effects and map them onto the randomly sampled interaction
terms k ∈ Rd×d used by SERGIO; cf. Section A.2.2. When the interaction signs are unknown or
uncertain in E. coli, we impute a random sign in the interaction terms k of SERGIO based on the
frequency of known positive and negative signs in the E. coli graph.

Empirically, individual genes in E. coli tend to predominantly have either up- or down-regulating
effects on their causal children. To capture this aspect in S. cerevisiae also, we fit the probability
of an up-regulating effect caused by a given gene in E. coli to a Beta distribution. For each node j
in an extracted subgraph of S. cerevisiae, we draw a probability pj from this Beta distribution and
then sample the effect signs for the outgoing edges of node j using pj . As a result, the genes in the
subgraphs of S. cerevisiae individually also have mostly up- or down-regulating effects. Maximum
likelihood estimation for this Beta distribution yielded α = 0.2588 and β = 0.2499.

The E. coli and S. cerevisiae graphs and effect signs used in the experiments are taken from the
GeneNetWeaver repository (Schaffter et al., 2011) (MIT License).

1https://github.com/tschaffter/genenetweaver

18

https://github.com/tschaffter/genenetweaver

A.2 Data-Generating Processes

A.2.1 Structural Causal Models

In the LINEAR and RFF domains, the data-generating processes are modeled by structural causal
models (SCMs). In this work, we consider SCMs with causal mechanisms that model each causal
variable xj given its parents xpa(j) as

xj ← fj(xpa(j), ϵj) = fj(xpa(j)) + hj(xpa(j))ϵj (10)

where the noise ϵj is additive and may be heteroscedastic through an input-dependent noise scale
hj(xpa(j)). Even in the homogeneous noise setting, the scale of each noise distribution p(ϵj) is
random and thus different for each variable xj . We write xpa(j) when indexing x at the parents of
node j. In the heteroscedastic setting, we parameterize the noise scales as hj(x) = log(1+exp(gj(x))
for a set of nonlinear functions gj .

Prior to performing inference with AVICI or any baseline, each set of SCM observations D is
standardized variable-wise by subtracting its mean and dividing by its standard deviation, so that
each xj has mean 0 and variance 1, avoiding potential varsortability bias (Reisach et al., 2021).

In the LINEAR domain, the functions fj are given by affine transforms

fj(xpa(j)) = w⊤
j xpa(j) + bj (11)

whose weights wj and bias bj are sampled independently for each fj . In the RFF domain, the
functions fj modeling each causal variable xj given its parents xpa(j) are drawn from a Gaussian
Process

fj ∼ GP(bj , kj) (12)

with bias bj and squared exponential (SE) kernel kj(x,x′) = c2j exp
(
−∥x− x′∥22/2ℓ2j

)
with length

scale ℓj and output scale cj . The parameters bj , cj , and ℓj are sampled independently for each
variable j. To obtain explicit function draws fj from the GP, we approximate fj with random Fourier
features (Rahimi and Recht, 2007). Specifically, we can obtain fj ∼ GP(bj , k(x,x′)) for a SE kernel
k with length scale ℓj and output scale cj by sampling

fj(xpa(j)) = bj + cj

√
2
M

M∑
m=1

α(m) cos
(

1
ℓj
ω(m) · xpa(j) + δ(m)

)
(13)

with α(m) ∼ N (0, 1), ω(m) ∼ N (0, I), and δ(m) ∼ Unif(0, 2π). Throughout this work, we use
M = 100. The function draws become faithful GP samples as M →∞ (Rahimi and Recht, 2007).
When xj is a root node and thus has no parents, fj is a constant.

A.2.2 Single-Cell Gene Expression Data

In the GRN domain, our goal is to evaluate causal discovery from realistic gene expression data. There
exist several models to simulate the mechanisms, intervention types, and technical measurement noise
underlying single-cell expression data of gene regulatory networks (Schaffter et al., 2011; Huynh-Thu
and Sanguinetti, 2019; Dibaeinia and Sinha, 2020). We use the simulator by Dibaeinia and Sinha
(2020) (SERGIO) because it resembles the data collected by modern high-throughput single-cell RNA
sequencing (scRNA-seq) technologies. Related genomics simulators, for example, GeneNetWeaver
(Schaffter et al., 2011), were developed for the simulation of microarray gene expression platforms.
In the following, we give an overview of how to simulate scRNA-seq data with SERGIO. Dibaeinia
and Sinha (2020) provide all the details and additional background from the related literature.

Simulation Given a causal graph over d genes and a specification of the simulation parameters,
SERGIO generates a synthetic scRNA-seq dataset D in two stages. The n observations in D
correspond to n cell samples, that is, the expressions of the d genes recorded in a single cell
corresponds to one row in D.

In the first stage, SERGIO simulates clean gene expressions by sampling randomly-timed snapshots
from the steady state of a dynamical system. In this regulatory process, the genes are expressed at rates
influenced by other genes using the chemical Langevin equation, similar to Schaffter et al. (2011) and

19

(Dibaeinia and Sinha, 2020). The source nodes in the causal graph G are denoted master regulators
(MRs), whose expressions evolve at constant production and decay rates. The expressions of all
downstream genes evolve nonlinearly under production rates caused by the expression of their causal
parents in G. Cell types are defined by specifications of the MR production rates, which significantly
influence the evolution of the system. Thus, the dataset contains variation due to biological system
noise within collections of cells of the same type and due to different cell types. Ultimately, we
generate single-cell samples collected from five to ten cell types (Dibaeinia and Sinha, 2020).

In the second stage, the clean gene expressions sampled previously are corrupted with technical
measurement error that resembles the noise phenomena found in real scRNA-seq data:

• outlier genes: a small set of genes have unusually high expression across measurements
• library size: different cells have different total UMI counts, following a log-normal distribution
• dropouts: a high percentage of genes are recorded with zero expression in a given measurement
• unique molecule identifier (UMI) counts: we observe Poisson-distributed count data rather than

the clean expression values

To configure these noise modules, we use the parameters calibrated by Dibaeinia and Sinha (2020)
for datasets from different scRNA-seq technologies. We extend SERGIO to allow for the generation
of knockout intervention experiments. For this, we force the production rate of knocked-out genes to
zero during simulation. Our implementation uses the public source code by (Dibaeinia and Sinha,
2020), which is available under a GNU General Public License v3.0.2

Parameters Given a causal graph G, the parameters SERGIO requires to simulate c cell types of d
genes are:

• k ∈ Rd×d: interaction strengths (only used if edge i→ j exists in G)

• b ∈ Rd×c
+ : MR production rates (only used if gene j is a source node in G)

• γ ∈ Rd×d
+ : Hill function coefficients controlling nonlinearity of interactions

• λ ∈ Rd: decay rates per gene
• ζ ∈ Rd

+: scales of stochastic process noise per gene for chemical Langevin equations

The technical noise components are configured by:

• poutlier ∈ [0, 1]: probability that a gene is an outlier gene
• µoutlier ∈ R+, σoutlier ∈ R+: parameters of the log-normal distribution for the outlier multipliers
• µlib ∈ R+, σlib ∈ R+: parameters of the log-normal distribution for the library size multipliers
• δ ∈ [0, 100], ξ ∈ R+: dropout percentile and temperature of the logistic function parameterizing

the dropout probability of a recorded expression

In our experiments, the simulator parameters are selected in the ranges suggested by Dibaeinia and
Sinha (2020).

Standardization There are several ways to preprocess and normalize single-cell transcriptomic
data for downstream use (Robinson et al., 2010). For simplicity, we employ log2 counts-per-million
(CPM) normalization, which normalizes the total UMI counts per sample and then log2-transforms
the relative count values. Specifically, the CPM value for gene j in sample i is defined as

xcpm,i
j :=

xi
j · 106

li
with library size li =

d∑
j=1

xi
j . (14)

For zero expressions xi
j , the log2-CPM values are imputed with zero. The remaining log2-CPM

values range between 10 and 19, so we shift and scale the values before performing causal discovery.
To replicate the sparsity pattern and the relative ordering of values within samples in the original
dataset D, we standardize the nonzero log2-CPM values by subtracting the minimum (instead of the
mean) and dividing by the overall standard deviation. All methods considered in Section 6, including
AVICI, work with GRN data in this standardized log2-CPM format.

2https://github.com/PayamDiba/SERGIO

20

https://github.com/PayamDiba/SERGIO

B Evaluation Metrics

We report several metrics to assess how well the predicted causal structures reflect the ground-truth
graph. We measure the overall accuracy of the predictions and how well-calibrated the estimated
uncertainties in the edge predictions are, since AVICI predicts marginal probabilities q(gi,j ; θi,j) for
every edge. Unless evaluating these edge probabilities, we use a decision threshold of 0.5 to convert
the AVICI prediction to a single graph G.

Structural and edge accuracy The structural hamming distance (SHD) (Tsamardinos et al., 2006)
reflects the graph edit distance between two graphs, i.e., the edge changes required to transform
G into G′. By contrast, the structural intervention distance (SID) (Peters and Bühlmann, 2015)
quantifies the closeness of two DAGs in terms of their valid adjustment sets, which more closely
resembles our intentions of using the inferred graph for downstream causal inference tasks.

SHD and SID capture global and structural similarity to the ground truth, but notions like precision
and recall at the edge level are not captured well. SID is zero if and only if the true DAG is a subgraph
of the predicted graph, which can reward dense predictions (Prop. 8 by Peters and Bühlmann (2015):
SID(G,G′) = 0 when G is empty and G′ is fully connected). Conversely, the trivial prediction of an
empty graph achieves highly competitive SHD scores for sparse graphs.

For this reason, we report additional metrics that quantify both the trade-off between precision and
recall of edges as well as the calibration of their uncertainty estimates. Specifically, given the binary
predictions for all d2 possible edges in the graph G, we compute the edge precision, edge recall, and
their harmonic mean (F1-score) for each test case and estimate their means and standard errors across
the test cases. Since the F1-score is high only when precision and recall are high, both empty and
dense predictions are penalized and no trivial prediction scores well, making it a reliable metric for
structure learning.

Edge confidence To evaluate the edge probabilities predicted by AVICI and the baselines, we
compute the areas under the precision-recall curve (AUPRC) and receiver operating characteristic
(AUROC) when converting the probabilities into binary predictions using varying decision thresholds
(Friedman and Koller, 2003). Both statistics capture different aspects of the confidence estimates.
The AUROC is insensitive to changes in class imbalance (edge vs. no-edge) for a given d. However,
when the number of variables d in sparse graphs of O(d) edges increases, AUROC increasingly
discounts the accuracy on the shrinking proportion of edges present in the ground truth, which makes
AUPRC more suitable for comparisons ranging over different d. The AUROC is equivalent to the
probability that the method ranks a randomly chosen positive instance (i.e., an edge i→ j present in
the ground truth) higher than a randomly chosen negative instance (i.e., an edge i . . . j absent in the
ground truth) (Fawcett, 2004).

Calibration To assess the true correctness likelihood implied by the predicted edge probabilities,
we use the concept of calibration (DeGroot and Fienberg, 1983; Guo et al., 2017). A classifier is said
to be calibrated if a predicted edge probability of p̂i,j empirically results in the observation of an
edge in (p̂i,j × 100)% of the cases, i.e.,

P
(
gi,j = 1 | p̂i,j = p

)
= p . (15)

Following Guo et al. (2017), we can estimate the degree to which this property is satisfied for the
predicted probabilities by defining M intervals Im = (m−1

M , m
M) and binning all instances i, j where

p̂i,j ∈ Im into a set Sm. The empirical confidence and accuracy per bin Sm are then defined as

predicted p̂(Sm) =
1

|Sm|
∑

i,j∈Sm

p̂i,j empirical p(Sm) =
1

|Sm|
∑

i,j∈Sm

gi,j (16)

where a calibrated classifier has predicted p̂(Sm) = empirical p(Sm), analogous to (15). Thus, a
calibrated edge classifier induces a diagonal line when plotting the empirical p(Sm) against the
predicted p̂(Sm). The expected calibration error (ECE) is a scalar summary of this calibration plot
and amounts to the weighted average of the vertical deviation from the perfect calibration line, i.e.,

ECE =

M∑
m=1

|Sm|
n
|empirical p(Sm)− predicted p̂(Sm)| (17)

21

where n is the total number of evaluated samples (i.e., edges). The ECE does not capture accuracy in
the sense of being able to predict all classes with high certainty, for which the other metrics are more
suitable, but rather whether predicted probabilities are reflective empirical likelihood (Guo et al.,
2017). In this work, we use M = 10 bins to compute the calibration plot lines and the ECE. The
plotted calibration lines compute the calibration statistics in aggregate over all test cases to reduce the
variance of the empirical counts within the bins, thus not showing standard errors.

C Inference Model Details

C.1 Optimization

Batch sizes Each AVICI model is trained as described in Algorithm 1. The objective L(ϕ) relies on
samples from the domain distribution p(G,D) to perform Monte Carlo estimation of the expectations.
During training, the number of variables d in the simulated systems are chosen randomly from

d ∈ {2, 5, 10, 20, 30, 40, 50} (18)
The datasets D in the training distributions always have n = 200 samples, where with probability
0.5, the observations in a given dataset contain 50 interventional samples. The dimensionality of
these training instances G,D varies significantly with the number of variables d and, therefore, so do
the memory requirements of the forward passes of the inference model fϕ.

Given these differences in problem size, we make efficient use of the GPU resources during training by
performing individual primal updates in Algorithm 1 using only training instances (G,D) with exactly
d variables, where d is randomly sampled in each update step. Fixing the number of observations to
n = 200, this allows us to increase the batch size for each considered d to the maximum possible
given the available GPU memory (in our case ranging from batch sizes of 27 for d = 2 down to 6 for
d = 50, per 24 GiB GPU device).

During training, we tune the sampling probability of a given d to ensure that fϕ sees roughly the same
number of training data sets for each d, i.e., we oversample higher d, for which the effective batch
size per update step is smaller. We also scale L(ϕ) by dividing by d2 to ensure an approximately
equal loss and hence gradient scale across the different d seen at training time.

The penalty F(ϕ) for the acyclicity constraint is estimated using the same minibatch as for L(ϕ).

Buffer Since we have access to the complete data-generating process rather than only a fixed dataset,
we approximate L(ϕ) with minibatches that are sampled uniformly randomly from a buffer, which is
continually updated with fresh data from p(G,D). Specifically, we initialize a first-in-first-out buffer
that holds 200 pairs (G,D) for each unique number of variables d considered during training. A pool
of asynchronous single-CPU workers then constantly generates novel training data and replaces the
oldest instances in the buffer using a producer-consumer workflow. We implement this buffer using
an Apache PyArrow Plasma object store (Apache Licence 2.0). During training, we used 128 CPU
workers (Appendix E).

The workers balance the data generation for different buffers to ensure an equal sample-to-insert
ratio across d, accounting for the oversampling of higher d as well as the longer computation time
needed for generating data D of larger d, for instance, in the GRN domain. In addition, the dataset
D of each element (G,D) in the buffer contains four times more observations than n = 200 used
during training. These observations are subsampled to obtain n = 200 each time a given buffer
element (G,D) is drawn to introduce additional diversity in the training data in case buffer elements
are sampled more than once.

Parameter updates The primal updates of the inference model parameters ϕ are performed using
the LAMB optimizer with a constant base learning rate 3 · 10−5 and adaptive square-root scaling by
the maximum effective batch size3(You et al., 2019). Gradients with respect to ϕ are clipped at a
global ℓ2 norm of one (Pascanu et al., 2013). In all three domains, we optimize ϕ for a total number
of 300,000 primal steps, reducing the learning rate by a factor of ten after 200,000 steps.

When adding the acyclicity contraint in LINEAR and RFF, we use a dual learning rate of η = 10−4

and perform a dual update every 500 primal steps. The dual learning rate η is warmed up with a linear
3With 8 GPU devices, this corresponds to a learning rate of 3 · 10−5 ·

√
8 · 27 ≈ 4.4 · 10−4 (You et al., 2019)

22

schedule from zero over the first 50,000 primal steps. To reduce the variance in the dual update, we
use an exponential moving average of F(ϕ) with step size 10−4 maintained during the updates of the
primal objective. To approximate the spectral radius in Eq. (8), we perform t = 10 power iterations
initialized at u,v ∼ N (0, Id).

C.2 Architecture

As described in Section 4.2, the core of our model consists of L = 8 layers, each containing four
residual sublayers. Different from the vanilla Transformer encoder, we employ layer normalization
before each multi-head attention and feedforward module and after the last of the L layers (Radford
et al., 2019). The multi-head attention modules have a model size of 128, key size of 32, and 8
attention heads. The feedforward modules have a hidden size of 512 and use ReLU activations. In
held-out tasks of RFF and GRN, we found that dropout in the Transformer encoder does not hurt
performance in-distribution, so we increased the dropout rates from 0.0 to 0.1 and 0.3, respectively,
to help generalization o.o.d. Dropout, when performed, is done before the residual layers are added,
as in the vanilla Transformer (Vaswani et al., 2017).

The position-wise linear layers that map the two-dimensional representation (z1, . . . , zd) ∈ Rd×k to
ui and vi, respectively, apply layer normalization prior to their transformations. We use Kaiming
uniform initialization for the weights (He et al., 2015a). The bias term inside the logistic function of
Eq. (6) is initialized at−3 and learned alongside all other parameters ϕ. Likewise, the scale parameter
τ is learned but optimized in log space to ensure positivity, i.e., τ = exp(τlog) where τlog is updated
as part of ϕ and initialized at 2. When optimizing models under the acyclicity constraint, we ignore
the diagonal predictions θii and mask the corresponding loss terms.

We implement AVICI with Haiku in JAX (Hennigan et al., 2020; Bradbury et al., 2018). We
converged to the above optimization and architecture specifications through experimentation on
held-out instances from the training distributions p(D), i.e., in-distribution.

D Baselines

Algorithms and hyperparameter tuning We calibrate important hyperparameters for all methods
on held-out problem instances from the test data distributions p̃(D) of LINEAR, RFF and GRN,
individually in each domain. For the following algorithms, we search over the parameters relevant for
controlling sparsity and the complexity of variable interactions:

• DCDI (Brouillard et al., 2020): sparsity regularizer λ ∈ {10−2, 10−1, 1}, size of hidden layer
in MLPs modeling the conditional distributions ∈ {8, 32}

• DAG-GNN (Yu et al., 2019): graph thresholding parameter ∈ {0.1, 0.2, 0.3}, size of hidden
layer in MLP encoder and decoder ∈ {16, 64}

• DiBS (Lorch et al., 2021): latent kernel length scale ℓz ∈ {3, 10, 30},
. . . with BGe marginal likelihood (LINEAR): effective sample size (sparsity) αBGe

µ ∈ {0.1, 1.0}
. . . with nonlinear Gaussian likelihood (RFF, GRN): parameter length scale ℓθ ∈ {30, 300, 3000}

• GraN-DAG (Lachapelle et al., 2020): preliminary neighborhood selection threshold ∈ {0.5, 2},
size of hidden layer ∈ {8, 32}, pruning cutoff ∈ {10−3, 10−5}

• IGSP (Wang et al., 2017): significance α ∈ {10−2, 10−3, 10−4}, CI test ∈ {Gaussian, HSIC-γ}
• PC (Spirtes et al., 2000): significance α ∈ {10−2, 10−3, 10−4}, CI test ∈ {Gaussian, HSIC-γ}

DAG-GNN, DCDI, DiBS, and GraN-DAG use 80% of the available data to perform inference
and compute held-out log likelihood or ELBO scores on the other 20% of the data. The best
hyperparameters are then selected by averaging the metric over five held-out instances of d = 30
variables. DiBS draws 10 samples from p(G |D) using the interventional BGe score for LINEAR and
a nonlinear Gaussian interventional likelihood with MLP means for RFF and GRN. DiBS assumes an
observation noise of 1, uses a scale-free graph prior, and anneals acyclicty and relaxation parameters
with rate 1. All remaining parameters are kept at the settings suggested by the authors.

For the PC algorithm and IGSP, there is no held-out score, so we compute the SID and F1 scores
using the ground-truth causal graphs to select their optimal parameters. This would not be possible

23

in practice and thus favors these methods. The HSIC-γ CI test did not scale to d = 100 variables,
so in these cases PC and IGSP always use the Gaussian CI test. For GRN d = 30, IGSP also uses
the Gaussian CI test because it OOMs at 100GB when using HSIC-γ. GES and GIES use the linear
Gaussian BIC score function and thus do not require calibrating a sparsity parameter (Chickering,
2003; Hauser and Bühlmann, 2012). LiNGAM is based on independent component analysis and
requires no regularization tuning either (Shimizu et al., 2006).

DAG bootstrap To estimate edge probabilities for the non-Bayesian methods in Section 6.2, we
use the nonparametric DAG bootstrap (Friedman et al., 1999). We bootstrap ten datasets D′ from D
by sampling with replacement and then run each baseline individually on each bootstrapped dataset
D′. The nonparametric probability estimate for an edge then amounts to the proportion of predicted
graphs G′ that contain the edge.

Implementation For GES, GIES, PC, and LiNGAM, we run the original R implementations of
the authors using an extended version of the software by Kalainathan et al. (2020) (MIT Licence).
For DCDI, DAG-GNN, GraN-DAG, and DiBS, we use the Python implementations provided by the
authors (Brouillard et al., 2020; Yu et al., 2019; Lachapelle et al., 2020; Lorch et al., 2021) (MIT
License, Apache License 2.0, MIT License, MIT Licence). For IGSP, we use the implementation
provided as part of the CausalDAG package (Squires et al., 2018) (3-Clause BSD license).

LiNGAM relies on the inversion of a covariance matrix, which frequently fails in the GRN domain
due to the high sparsity in D. Thus, to benchmark LiNGAM in GRN, we add small Gaussian noise to
the standardized count matrix D. For the IGSP and PC algorithms, the same numerical adjustment
is needed to avoid crashes in the CI tests on GRN. Single IGSP runs that still failed for d = 100
were ignored when computing the metrics. In the GRN results, we ignored a small number of single
runs of DCDI for d = 100 and PC for d = 30 that failed to terminate after 24 hours walltime (on a
GPU machine for the former). Lastly, the CAM pruning post-processing procedure of the author’s
implementation of GraN-DAG (Lachapelle et al., 2020) crashes in a few instances. We skip the
post-processing step in these cases.

E Extended Results

Compute Resources To carry out the experiments in this work, we trained three main AVICI
models and several ablations. Each model was optimized for approximately four days using 8 Quadro
RTX 6000 or NVIDIA GeForce RTX 3090 GPUs (24 GiB memory each) and 128 CPUs. To perform
the benchmarking experiments, all baselines were run on four to eight CPUs each for up to 24 hours,
depending on the method. DCDI required one GPU to ensure a computation time of less than one
day per task instance. In all experiments, test-time inference with AVICI is done on eight CPUs and
no GPU.

E.1 AVICI generalization between LINEAR and RFF

In this section, we provide additional out-of-distribution generalization results for AVICI. Specifically,
we test the AVICI model trained on the LINEAR domain on inference from RFF data, and vice versa.
This means that the AVICI models not only operate under distributional shifts on the parameters of
their respective data-generating processes, but also on the function classes of causal mechanisms
themselves. The models infer causal structure from data generated from function classes never
seen during training. As in all empirical analyses of Section 6, the graph and noise parameters are
additionally o.o.d., that is, the LINEAR AVICI model is tested on the o.o.d. RFF data, and vice versa.

Table 5 summarizes the results. Even under this distributional shift, the performance of both AVICI
models decreases reasonably and remains on par with most baselines (Table 1). On LINEAR data,
the baselines achieve F1 scores of 0.15 - 0.54 with observational and 0.33 - 0.74 with interventional
data, similar to the RFF AVICI model with 0.19 and 0.45, respectively. Conversely, on RFF data, the
baselines achieve F1 scores of 0.22 - 0.42 with observational and 0.34 - 0.41 with interventional data,
which is also matched by the LINEAR AVICI model here with 0.27 and 0.42, respectively. Overall,
the LINEAR AVICI model generalizes marginally better to RFF data as vice versa. We do not report
the SID here because the R code of Peters and Bühlmann (2015) runs out of memory.

24

Table 5: Generalizing from LINEAR to RFF and vice versa (d= 30 variables). Mean SHD (↓), F1
score (↑), AUROC (↑), and AUPRC (↑) with standard error on 30 random task instances. The domain
in parentheses indicates the training domain, and the header indicates the test domain. We highlight
the rows in which models were evaluated on the same function class as during training, though as
in all benchmarking experiments, all test datasets D are sampled from the o.o.d. data-generating
distributions. The metrics of the baselines corresponding to these experiments are given in Table 1.

LINEAR

SHD F1 AUROC AUPRC

AVICI (trained on LINEAR) † 18.9 (2.1) 0.672 (0.04) 0.978 (0.00) 0.790 (0.03)

AVICI (trained on RFF) † 93.4 (20.1) 0.191 (0.03) 0.686 (0.03) 0.179 (0.02)

AVICI (trained on LINEAR) 13.2 (1.8) 0.819 (0.02) 0.988 (0.00) 0.892 (0.02)

AVICI (trained on RFF) 63.6 (14.5) 0.452 (0.05) 0.802 (0.03) 0.469 (0.06)

RFF

SHD F1 AUROC AUPRC

AVICI (trained on LINEAR) † 36.4 (3.2) 0.273 (0.04) 0.784 (0.03) 0.385 (0.04)

AVICI (trained on RFF) † 21.6 (3.5) 0.618 (0.06) 0.854 (0.03) 0.659 (0.06)

AVICI (trained on LINEAR) 34.3 (3.6) 0.420 (0.05) 0.811 (0.03) 0.495 (0.05)

AVICI (trained on RFF) 18.0 (3.6) 0.707 (0.06) 0.888 (0.03) 0.739 (0.06)

† Only using observational data.

Table 6: In-distribution benchmarking results (d = 30 variables). Mean SID (↓) and F1 score
(↑) with standard error of all methods on 30 random task instances. Methods in the top section
use only observational data, in the bottom section both observational and interventional data. The
best results of each section are highlighted together with those inside its 95% confidence interval
according to an unequal variances t-test.

LINEAR RFF GRN

Algorithm SID F1 SID F1 SID F1

GES 217.5 (38.3) 0.643 (0.04) 296.9 (42.6) 0.428 (0.03) 535.3 (44.8) 0.147 (0.01)

LiNGAM 500.8 (43.5) 0.161 (0.03) 406.0 (42.3) 0.237 (0.02) 590.7 (41.8) 0.110 (0.01)

PC 383.5 (57.3) 0.386 (0.04) 386.7 (55.8) 0.431 (0.03) 579.7 (41.9) 0.128 (0.01)

DAG-GNN 533.2 (47.1) 0.127 (0.02) 386.1 (38.7) 0.252 (0.02) 576.3 (43.2) 0.159 (0.02)

GraN-DAG 417.2 (54.1) 0.249 (0.02) 312.0 (38.9) 0.477 (0.02) 572.6 (44.9) 0.079 (0.01)

AVICI (ours) 178.2 (36.9) 0.828 (0.03) 137.8 (29.1) 0.838 (0.02) 607.4 (46.2) 0.064 (0.02)

GIES 16.5 (10.0) 0.942 (0.01) 290.4 (40.8) 0.389 (0.02) 520.4 (45.9) 0.162 (0.02)

IGSP 277.6 (36.9) 0.512 (0.04) 386.5 (44.7) 0.391 (0.03) 591.9 (46.1) 0.113 (0.01)

DCDI 242.7 (36.7) 0.559 (0.03) 152.4 (21.6) 0.555 (0.02) 624.4 (38.7) 0.080 (0.01)

AVICI (ours) 72.4 (20.7) 0.948 (0.01) 67.4 (16.8) 0.927 (0.01) 466.5 (49.7) 0.316 (0.05)

E.2 In-Distribution Benchmarking Results for d = 30

Table 6 gives the benchmarking results for in-distribution data of d = 30 variables given the
otherwise unchanged setup of Section 6.2. Contrary to the o.o.d. setting, the data is generated under
homogeneous, additive noise and the parameters of their generative processes are sampled from the
training domains of AVICI (cf. Table 3). However, as throughout all experiments, the datasets and its
data-generating parameters themselves are unique and have not been used by AVICI during training.

Compared to the o.o.d. setting, most baselines perform roughly the same. Since the data-generating
processes are sampled from its training distribution, AVICI significantly improves by moving to the
easier in-distribution setting, in particular in the SCM domains, which are less noisy. In the GRN

25

Table 7: Benchmarking results (d = 100 variables). Mean SID (↓) and F1 score (↑) with standard
error of all methods on 30 random task instances. Methods in the top section use only observational
data, in the bottom section both observational and interventional data. We highlight the best result
of each section and those within its 95% confidence interval according to an unequal variances t-test.

LINEAR RFF GRN

Algorithm SID F1 SID F1 SID F1

GES 2724.6 (362.2) 0.471 (0.02) 4703.3 (520.9) 0.240 (0.02) 6787.4 (351.8) 0.031 (0.00)

LiNGAM 6051.7 (585.1) 0.150 (0.01) 5489.9 (595.7) 0.177 (0.02) 6726.5 (444.2) 0.011 (0.00)

PC 5114.1 (621.1) 0.287 (0.02) 5294.8 (599.0) 0.248 (0.03) 6894.4 (426.5) 0.029 (0.00)

DAG-GNN 6215.6 (598.9) 0.101 (0.01) 5445.5 (588.8) 0.198 (0.02) 6574.3 (463.8) 0.036 (0.01)

GraN-DAG 5307.5 (661.1) 0.161 (0.02) 4522.0 (581.6) 0.421 (0.04) 6774.8 (419.3) 0.026 (0.01)

AVICI (ours) 3213.8 (380.0) 0.474 (0.04) 3531.0 (498.0) 0.506 (0.05) 6661.2 (464.3) 0.000 (0.00)

GIES 1720.7 (306.1) 0.639 (0.02) 4528.3 (521.1) 0.257 (0.03) 6691.2 (376.9) 0.034 (0.00)

IGSP 4181.7 (478.3) 0.316 (0.02) 5544.7 (572.4) 0.182 (0.02) 6662.3 (401.4) 0.027 (0.00)

DCDI 5116.9 (525.4) 0.105 (0.01) 3835.1 (413.3) 0.048 (0.00) 4410.8 (285.0) 0.027 (0.00)

AVICI (ours) 2825.3 (379.0) 0.601 (0.03) 3231.2 (500.2) 0.550 (0.05) 5237.5 (469.0) 0.172 (0.05)

domain, some baselines achieve slightly better F1 scores compared to the o.o.d. setting, which is most
likely explained by a change in the graph rather than the simulator parameter distribution, since there
is no reason to believe that different generative parameters are more challenging to the baselines.

E.3 Benchmarking Results for d = 100

Table 7 shows the benchmarking results for d = 100 variables given n = 1000 observations and the
experimental setup of Section 6.2. We highlight that in this evaluation regime, AVICI operates under
distribution shift in terms of the causal structures, mechanisms or simulator parameters, and noise
distributions, as well as the number of variables and the number of observations seen during training.

Overall, the qualitative ranking of the methods is very similar as for d = 30. AVICI outperforms all
baselines in the nonlinear RFF domain, with and without access to interventional data. Likewise,
AVICI is the only method to achieve nontrivial edge accuracy in terms of F1 score on the challenging
GRN domain. On the simpler LINEAR domain, there is no statistically significant difference between
GES/GIES and AVICI, which perform overall most favorably.

E.4 Benchmarking Results on Real-World Proteomics Data

We additionaly evaluate all of the methods on the real-world dataset by Sachs et al. (2005), which
contains continuous measurements of d = 11 proteins involved in human immune system cells.
Structure learning algorithms are commonly compared on this dataset, and for completeness, we
report the performance of AVICI and the baselines here. However, the ground-truth network of 17
edges put forward by Sachs et al. (2005) has been challenged by some experts (Mooij et al., 2020)
and the assumptions of causal sufficiency and acyclicity may not be justified even though assumed by
most methods, which should be kept in mind when interpreting the results. A large part of the data
are interventional, in which the measured proteins were activated or inhibited using specific reagents.
Most interventions are likely not perfect and the intervention targets may not be completely accurate
(Mooij et al., 2020).

For this experiment, we follow Wang et al. (2017) and Brouillard et al. (2020) and discard data in
which interventions were not targeted directly at one of d = 11 measured proteins. Given this setup,
we have n= 5846 data points that contain 1755 observational and 4091 interventional measurements,
which consist of five single-protein perturbations. In our results, methods that only use observational
data take the concatenation of all of the data without the intervention target information as input. All
baselines use the hyperparameters tuned for the nonlinear RFF domain. The data is standardized to
have mean 0 and variance 1.

Table 8 summarizes the results of all methods with respect to the reference causal graph. Figure 5
visualizes the prediction of each method. Overall, the results are not very conclusive. GES and GIES

26

Table 8: Benchmarking results on the proteomics data by Sachs et al. (2005). We report the
SHD (↓), SID (↓), and F1 score (↑), and the number of edges predicted for all methods. Methods
in the bottom section use the observational and interventional data, while the top row uses the
concatenation of both, without the intervention targets. We highlight the best result of each section.

SHD SID F1 no. edges

GES 35 44 0.281 40
LiNGAM 18 58 0.083 7
PC 21 47 0.244 24
DAG-GNN 26 49 0.273 27
GraN-DAG 16 38 0.473 21
AVICI (ours, trained on LINEAR)∥ 20 56 0.143 12
AVICI (ours, trained on RFF)∥ 17 56 0.276 13

GIES 40 30 0.286 46
IGSP 19 49 0.286 18
DCDI 15 42 0.308 9
AVICI (ours, trained on LINEAR)∥ 20 50 0.250 11
AVICI (ours, trained on RFF)∥ 16 49 0.267 15
∥ Point estimate using decision threshold 0.5

Gsachs

GES LiNGAM PC DAG-GNN GraN-DAG AVICI
(LINEAR)

AVICI
(RFF)

GIES IGSP DCDI AVICI
(LINEAR)

AVICI
(RFF)

Figure 5: Prediction of each method on the proteomics dataset by Sachs et al. (2005). All base-
lines predict a point estimate of G, where edges are painted yellow. The posterior edge probabilities
predicted by AVICI, which were thresholded for Table 8, are visualized as color gradients. The bottom
row of methods use observational and interventional data, while the top row only uses the concate-
nation of both, without the intervention targets. The believed ground truth graph is shown on the left.

perform best in terms of SID, GraN-DAG is most favorable in terms of F1, and together with DCDI
and AVICI also in terms of SHD. More generally, the number of predicted edges varies greatly across
methods. Almost all F1 scores fall between 0.25 and 0.30.

E.5 Uncertainty quantification for d = 30

Calibration Figure 6 gives the calibration plots for all methods considered in the uncertainty
analysis of Section 6.2 of the main text. In the SCM domains, AVICI closely traces the diagonal
calibration line, both when given access to observational and mixed data. Here, the nonparametric
bootstraps of the PC, GIES, and IGSP algorithms as well as DiBS are similarly well-calibrated.
These baselines achieve worse expected calibration error (ECE) than AVICI because a significantly
larger total proportion of AVICI’s predictions are well-calibrated (cf. Equation 17). DCDI, LiNGAM,
and DAG-GNN are highly overconfident, that is, they predict edges with high probability when
empirically only few edges exist.

27

0.0 0.2 0.4 0.6 0.8 1.0
predicted p(gi, j = 1 | D)

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
(g

i,j
=

1|
D

)

GES *
LiNGAM *
PC *

DAG-GNN *
GraN-DAG *
AVICI (obs)

0.0 0.2 0.4 0.6 0.8 1.0
predicted p(gi, j = 1 | D)

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
(g

i,j
=

1|
D

)

GIES *
IGSP *
DCDI *

DiBS
AVICI

(a) LINEAR

0.0 0.2 0.4 0.6 0.8 1.0
predicted p(gi, j = 1 | D)

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
(g

i,j
=

1|
D

)

GES *
LiNGAM *
PC *

DAG-GNN *
GraN-DAG *
AVICI (obs)

0.0 0.2 0.4 0.6 0.8 1.0
predicted p(gi, j = 1 | D)

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
(g

i,j
=

1|
D

)

GIES *
IGSP *
DCDI *

DiBS
AVICI

(b) RFF

0.0 0.2 0.4 0.6 0.8 1.0
predicted p(gi, j = 1 | D)

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
(g

i,j
=

1|
D

)

GES *
LiNGAM *
PC *

DAG-GNN *
GraN-DAG *
AVICI (obs)

0.0 0.2 0.4 0.6 0.8 1.0
predicted p(gi, j = 1 | D)

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ric
al

 p
(g

i,j
=

1|
D

)

GIES *
IGSP *
DCDI *

DiBS
AVICI

(c) GRN

Figure 6: Calibration plots (d = 30) for all methods in the experiments of Section 6.2 and Table
4b. The top and bottom rows of plots show the methods that use observational data and a mix of
observational and interventional data, respectively. Methods with an asterix use the nonparametric
DAG bootstrap to estimate edge probabilities (Friedman et al., 1999) (cf. Section 6.2).

Probabilistic metrics Table 9 summarizes the probabilistic AUROC and AUPRC metrics for all
methods in the experiment of Figure 4. Explanations and interpretations for both metrics are given
in Section B. The relative performance of the bootstrap baselines and AVICI is similar to the point
estimate benchmark. Overall, AVICI performs favorably across the three domains, with GES and
GIES on par in LINEAR. However, since AUROC and AUPRC metrics evaluate the full spectrum
of decision thresholds, we additionally see that AVICI achieves nontrivial accuracy in GRN even
without access to gene knockout data, indicating that AVICI may provide useful information even in
settings where only passive observations are available. This aspect is not apparent when converting
the posterior probability estimates of AVICI based on a single threshold and then comparing SID and
F1 scores as in Table 1.

28

Table 9: Probabilistic metrics for the benchmark (d = 30 variables). Mean AUROC (↑) and
AUPRC (↑) with standard error of all methods on ten random task instances. Methods in the top
section use only observational data, in the bottom section both observational and interventional data.
We highlight the best result of each section and those within its 95% confidence interval according
to an unequal variances t-test.

LINEAR RFF GRN

Algorithm AUROC AUPRC AUROC AUPRC AUROC AUPRC

GES∗ 0.930 (0.01) 0.643 (0.05) 0.759 (0.04) 0.289 (0.06) 0.496 (0.02) 0.045 (0.00)

LiNGAM∗ 0.752 (0.06) 0.365 (0.10) 0.701 (0.04) 0.229 (0.03) 0.537 (0.03) 0.057 (0.01)

PC∗ 0.771 (0.04) 0.469 (0.06) 0.825 (0.04) 0.507 (0.07) 0.510 (0.02) 0.052 (0.01)

DAG-GNN∗ 0.621 (0.03) 0.097 (0.02) 0.693 (0.03) 0.174 (0.01) 0.547 (0.05) 0.082 (0.03)

GraN-DAG∗ 0.685 (0.04) 0.222 (0.03) 0.781 (0.04) 0.419 (0.09) 0.534 (0.08) 0.113 (0.05)

AVICI (ours) 0.979 (0.01) 0.767 (0.06) 0.801 (0.07) 0.571 (0.12) 0.678 (0.10) 0.185 (0.04)

GIES∗ 0.981 (0.01) 0.879 (0.04) 0.769 (0.06) 0.389 (0.08) 0.517 (0.03) 0.070 (0.01)

IGSP∗ 0.942 (0.01) 0.660 (0.05) 0.822 (0.04) 0.374 (0.07) 0.471 (0.02) 0.049 (0.01)

DCDI∗ 0.771 (0.03) 0.306 (0.03) 0.740 (0.05) 0.283 (0.06) 0.557 (0.07) 0.113 (0.05)

DiBS 0.837 (0.03) 0.524 (0.05) 0.740 (0.05) 0.340 (0.05) 0.517 (0.03) 0.048 (0.01)

AVICI (ours) 0.987 (0.01) 0.902 (0.04) 0.862 (0.05) 0.669 (0.10) 0.901 (0.04) 0.656 (0.10)

∗ Nonparametric DAG bootstrap (Friedman et al., 1999)

29

	Domain Specification and Simulation
	Causal Structures
	Random graph models
	Subgraph Extraction from Real-World Networks

	Data-Generating Processes
	Structural Causal Models
	Single-Cell Gene Expression Data

	Evaluation Metrics
	Inference Model Details
	Optimization
	Architecture

	Baselines
	Extended Results
	AVICI generalization between Linear and Rff
	In-Distribution Benchmarking Results for d=30
	Benchmarking Results for d=100
	Benchmarking Results on Real-World Proteomics Data
	Uncertainty quantification for d=30

