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A ADDITIONAL EXPERIMENTAL DETAILS

Datasets. We mainly use four image classification benchmarks:

• Waterbirds (Wah et al., 2011): A popular binary classification dataset to address spurious
correlations. This dataset integrates Caltech-UCSD Birds-200-2011 (CUB) (Wah et al.,
2011) with backgrounds derived from Places dataset (Zhou et al., 2017). The objective is to
classify images as landbirds or waterbirds, potentially influenced by spurious background
attributes of land or water. Our data partitioning is consistent with (Idrissi et al., 2022).

• CelebA (Liu et al., 2015): A comprehensive dataset encompassing over 200,000 celebrity
portraits. A central task, pivotal in exploring spurious correlations, aims to identify hair color,
particularly differentiating blond from non-blond. Notably, gender becomes an unintended
influential attribute. Our dataset splits align with (Idrissi et al., 2022). The dataset adheres
to the Creative Commons Attribution 4.0 International license.

• CheXpert (Irvin et al., 2019): A collection of over 200,000 chest X-ray images sourced
from Stanford University Medical Center. The primary classification, “No Finding”, denotes
a healthy assessment. Taking cues from (Seyyed-Kalantari et al., 2021), we incorporate
both race and gender as influential variables. We follow the partitioning set by (Yang et al.,
2023b).

• MetaShift (Liang & Zou, 2022) is a versatile approach to generating high-quality image
datasets, making use of the Visual Genome project (Krishna et al., 2017). In our study, we
follow (Yang et al., 2023b) to utilize the pre-processed Cat vs. Dog dataset, with the goal of
distinguishing between the two animal. It is crucial to acknowledge the dataset’s inherent
challenge: a spurious attribute associated with the image background, often placing cats
indoors and dogs outdoors. We have selected the “unmixed” version of the dataset, directly
sourced from the original authors’ codebase.
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Figure 6: The overview of the proposed SFR framework. In Stage 1, we utilize standard Empirical
Risk Minimization (ERM) with a cross-entropy loss to train a CLIP model. Following this, Stage 2
involves fine-tuning a new CLIP model of the same architecture, but with an emphasis on learning
representations invariant to spurious attributes. This is achieved using disagreement-based importance
weighting (See Sec. 4.1), which are calculated based on entropy disagreement between the ERM
and our target model, and dropout (See Sec. 4.3). Additionally, we focus solely on fine-tuning the
CLIP vision branch’s last-layer projection head using a contrastive loss (See Sec. 4.2) on the classifier
output and the truth class labels. Dimensions specified pertain to CLIP using the ResNet-50 backbone
and Waterbirds.
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Table 2: Overview of Experimental Settings. We provide a comprehensive overview of the
experimental settings, including the model architecture, training processes, evaluated methods, and
data preprocessing.

Condition Parameter Value

Model Architecture:

CLIP-RN50 (Radford et al., 2021) Input size 256⇥256

CLIP-ViT (Radford et al., 2021) Input size 336⇥336

Training:

Optimizer

Type SGD
Learning rate 1e-5
Momentum 0.9

L2 weight decay 1e-4
Metric to pick best model WGA

Algorithm-specific:

� SFR (ours)

Weight computing start epoch 10
Weight computing start epoch 5

Dropout on feature 0.1
Coefficient of weight 0.25

CnC (Zhang et al., 2022b) Number of positive points 16
Number of negative points 16

JTT (Liu et al., 2021) �up 10

GroupDRO (Sagawa et al., 2020) ⌘ 0.01

Dataset-specific:

Waterbirds (Wah et al., 2011) Raw input size 224⇥ 224
Reweight range (0.8, 2.0)

CelebA (Liu et al., 2015) Raw input size 178⇥ 218
Reweight range (0.5, 5.0)

CheXpert (Irvin et al., 2019) Raw input size 390⇥ 320
Reweight range (0.2, 2.0)

MetaShift (Liang & Zou, 2022) Raw input size 256⇥ 256
Reweight range (0.8, 2.0)

Figure 7: Training-validation curves using SFR with CLIP-ResNet50 backbone. The result
is reported for each of the four groups of Waterbirds dataset. Accuracy is evaluated on a hold-out
validation dataset at 25-epoch intervals during the entire training process. SFR utilizes the LSCS loss,
as detailed in Sec. 4.2. Results are averaged over three different random seeds.

B IMPLEMENTATION DETAILS

In this section, we provide the full implementation details for all evaluated methods. We use the
hyperparameter details that are given in Table 2.

Model Architectures. Within CLIP, we adopt two major visual backbones: ResNets (RN) and
Visual Transformers (ViT). Their performance intricacies are thoroughly explored in (Radford et al.,
2021). In our study, ResNet-50 (RN50) and ViT-L/14@336px, tailored for 336x336 pixel images,
stand as the primary representatives, aligning with the setting in (Yang et al., 2023a). Meanwhile, for
the language branch, we adopt the pre-trained mask language model, BERT (Kenton & Toutanova,
2019), due to its SoTA performance.
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Our methods, together with the baseline methods, consistently retain the language and visual encoders,
with an emphasis on fine-tuning the projection layers. This closely aligns with the established
protocols from prior work (Yang et al., 2023a) and ensures a fair comparison. Furthermore, it is
deliberately aimed at developing methods that are efficacious as well as computationally efficient.

Metrics. Worst-Group Accuracy (WGA) stands as a widely adopted metric in the spurious
correlation literature (Liu et al., 2021; Kirichenko et al., 2023; Zhang et al., 2022b; Zhang & Ré,
2022; Yang et al., 2023a; Qiu et al., 2023) due to its straightforward connection with the model’s
robustness across different groups in the data. Specifically, WGA denotes the lowest classification
accuracy observed across all groups within the test dataset, with groups defined as the Cartesian
product of all target classes and all spurious attributes. A high WGA indicates that the model performs
well even on minority groups, showcasing robustness against spurious correlations across different
subsets. Therefore, we adopt WGA as our primary performance indicator.

In parallel, Average Accuracy represents the classification accuracy averaged over all groups within
the test set. To be specific, the Average Accuracy reported in this paper, i.e., ‘Avg’ in Table 1 (Main
Context) and Appendix Table 5, is suggested by (Sagawa et al., 2020), which is a weighted average
of the test accuracy of the groups. The weight for each group is proportional to their sizes in the
training set. This metric provides an integrated perspective on the model’s overall performance across
all class categories. It is worth noting from Table 1 (Main Context) that despite the significant WGA
improvement over ERM, the Average Accuracy drops by a little bit. We point out that this issue of
mediocre Average Accuracy is a common limitation in most existing methods across supervised and
semi-supervised settings, which is evident in others (Sagawa et al., 2020; Zhang & Ré, 2022; Yang
et al., 2023a; Kirichenko et al., 2023). As seen from these influential works, no method uniformly
outperforms others in Average Accuracy across every benchmark dataset.

Experimental Setup. In each of our experimental trials, we maintained a uniform experimental
configuration, employing a single NVIDIA GeForce RTX 3090 GPU and the fixed random seeds for
consistency. The experiments were conducted utilizing PyTorch version 1.10.2+cu113 and Python
3.8.11, to guarantee reproducibility across our investigations.

Reweight Computation. Here, we elucidate the methodology employed for generating the weights
associated with each dataset—a pivotal aspect of our research. The computation of reweights
necessitates the utilization of an ERM-tuned CLIP model. For every data point within the training
set, we leverage the ERM-tuned CLIP model to derive an initial prediction. Throughout the training
epochs, the current model weights are adopted to obtain a contemporaneous prediction. The specific
starting epoch and update frequency are outlined in Table 2. Employing these two predictions, we
input them into Eqn. 1 (Main Context) and Eqn. 2 (Main Context) to calculate an initial weight for
each data point. To prevent excessively high weight values and ensure their validity, we apply a
coefficient, upper-bound, and lower-bound to confine the computed weights within a specified range.
Comprehensive information regarding the hyperparameters is available in Table 2.

Training Details. For all methods assessed in our experiments, encompassing both baseline models
and our proposed approach, we employ an SGD optimizer with a weight decay set to 10�4 and a
momentum set to 0.9. The learning rate is held constant at 10�5 throughout training, which spans
100 epochs. The model selection process remains consistent across all methods. At the end of each
epoch, we assess the model’s performance on the validation set, opting for the one that exhibits the
best worst-group accuracy for final testing. All accuracy metrics presented in this paper are derived
from evaluations on the test set.

Dataset Preprocessing. The dataset preprocessing steps remain consistent across all four datasets
and the various methods under evaluation. Initially, we resize the raw images while preserving a fixed
height-to-width ratio. This ensures that the shorter edge of the image attains dimensions of 256 for
ResNet-50 and 336 for ViT-L/14@336px. Subsequently, the resized image undergoes cropping to
dimensions of 256⇥256 for ResNet-50 and 336⇥336 for ViT-L/14@336px. Following this resizing
and cropping, the image is normalized through the subtraction of the average pixel value and division
by the standard deviation, a process consistent with CLIP (Radford et al., 2021). No additional
data augmentation is applied beyond these steps, as our methods primarily emphasize lightweight
fine-tuning, involving updates to the projection layer of the vision branch in CLIP. Introducing data
augmentation in this context could potentially result in underfitting due to the modest parameter size
of the projection layer.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: Values of disagreement score � (left) and sample weight w (right) as a function of

PERM and P✓. Since the raw weight w = 1/� can be very large when � is small, we truncate it by
w min{w, 5} in the plot.

Table 3: Ablation on dropout variants and appropriate locations to insert dropout on Waterbirds.

We adopt the CLIP-ResNet50 as backbone with LSCS. For our SFR, we apply dropout strategy to
features after the final projection head of CLIP’s visual branch. Please refer to the main text for
detailed discussions.

Options WGA Avg

� SFR (ours) 79.42 84.36

Dropout variants
Concrete Dropout (Gal et al., 2017) 75.65 85.93

DropBlock (Ghiasi et al., 2018) 70.38 84.36
w/o Dropout 77.83 83.67

Dropout location Before Projection Head 62.13 82.31

C ADDITIONAL RESULTS

Training curve. From Figure 7 (in Appendix), we provide the training-validation curve of SFR
for all four groups within the Waterbirds dataset. It is observed that SFR quickly adapts to the two
majority groups (i.e., “landbird on land” and “waterbird on water”). Although its convergence is
somewhat slower on the two minority groups, it ultimately yields high accuracy in these groups,
demonstrating its effectiveness in handling diverse group categories.

Disagreement score and sample weight. In Figure 8 (in Appendix), we depict the values of
the disagreement score � and the corresponding sample weight w as functions of PERM and P✓, as
introduced in Section 4.1, Eqn. 1 and 2. It is noteworthy that the score � tends to be large when two
models exhibit significant disagreement in their certainty. For instance, when PERM approaches 0
or 1 while P✓ is close to 0.5, � reaches its maximum, and vice versa. Consequently, the weight w
attains higher values when both models possess a similar level of certainty at the sample, even if their
certainties are in opposite directions.

Additionally, in the right plot of Figure 8 (in Appendix), we display the truncated weight w  
min{w, 5} since the raw weight w = 1/� can be substantial for small �. We apply this type of
truncation in all our experiments on SFR, with w min{w,W}, where W > 0 is a dataset-specific
hyperparameter as introduced in Table 2.

D ABLATION STUDY

D.1 ABLATION ON DROPOUT RATIO.

We test the choice of the dropout ratio in Table 4. We find that p=0.1 is optimal.

D.2 ABLATION ON DIFFERENT LOSS FUNCTIONS.

We conduct a further study of loss functions (i.e., LSCL and LSCS) by examining CLIP using ResNet50
and ViT as backbone on all four benchmarks (i.e., Waterbirds, CelebA, CheXpert, and MetaShift).
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Figure 9: Comparison of results across method and benchmarks using the CLIP-ViT archi-

tecture. We report the Worst Group Accuracy as the performance metric. As shown, we observe
that SFR outperforms all baselines across almost all benchmarks (i.e., Waterbirds, CelebA, and
MetaShift). On CheXpert, GroupDRO slightly outperforms SFR.

Table 4: Ablation on dropout ratio p. We adopt the CLIP-ResNet50 as backbone with LSCS.
Dropout ratio p WGA Avg

0.05 78.23 84.74
� 0.1 (ours) 79.42 84.36
0.2 77.69 84.22
0.5 75.65 82.27

The comparison results of {SaC with LSCL and LSCS} and our {SFR with LSCL and LSCS} are
reported in Table 5 (in Appendix). We observe that using LSCS consistently performs better than
LSCL. Specifically, using CLIP-ResNet50, we see that SFR with LSCS obtains {1.38, 0.71, 1.54}
gain in WGA compared to LSCL across Waterbirds, CelebA and MetaShift, respectively, but slightly
underperforms on CheXpert. Meanwhile, we find that SFR consistently outperforms SaC across all
four benchmarks, suggesting an enhanced group robustness.

Table 5: Ablation on different spurious loss terms. We evaluate two spurious-aware loss terms,
LSCS and LSCL, on SFR (ours) and SaC (Yang et al., 2023a). Please see Sec. 4.2 for detailed
discussion of the loss terms, and refer to the main text for the discussion of the results.

ResNet-50 ViT

Waterbirds CelebA CheXpert MetaShift Waterbirds CelebA CheXpert MetaShift
Method WGA Avg WGA Avg WGA Avg WGA Avg WGA Avg WGA Avg WGA Avg WGA Avg

SaC(with LSCS) (Yang et al., 2023a) 77.48 84.28 81.11 91.10 65.36 72.34 80.00 89.02 88.63 96.92 86.11 90.05 64.88 73.85 92.31 96.91
SaC(with LSCL) (Yang et al., 2023a) 75.21 86.62 82.38 90.65 62.77 74.11 81.09 87.87 88.94 96.02 85.15 89.52 63.22 73.02 92.85 97.03

� SFR (with LSCS) 79.42 84.36 87.78 89.53 66.21 70.44 83.08 89.59 90.50 96.59 88.89 90.80 65.01 74.42 93.85 97.03
� SFR (with LSCL) 78.04 85.33 87.07 89.20 66.92 75.18 81.54 88.56 90.65 96.74 87.78 90.99 65.81 73.83 92.31 96.97

D.3 ADDITIONAL ABLATIONS ON DIFFERENT ARCHITECTURES.

In Figure 9 (in Appendix), we compare the performance of all evaluated methods on all benchmarks,
using the CLIP-ViT architecture. The results of using CLIP-ViT are provided in Table 1 (Main
Context). All experiment details are the same as in Appendix Table 2 (in Appendix). On most
benchmarks, our SFR performs better than the other supervised and semi-supervised models when
trained with CLIP-ViT. These results further demonstrate the robustness of SFR against spurious
correlations.

E ADDITIONAL THEORETICAL ANALYSIS

In this section, we present a comprehensive theoretical analysis of our disagreement-based reweighting
score. Let L : Y⇥Y ! [0, 1] be a loss function and f : X ! Y be the target labeling function.
We also denote by H the hypothesis set used by the learning algorithm and by Pdim(U) the
pseudo-dimension of a real-valued function class U (Pollard, 2012). For any hypothesis h 2 H,
the generalization error on target distribution, R(h), and the weighted empirical loss on source
distribution, R̂w(h), are defined as follows:

R(h) = Ex⇠P [L(h(x), f(x))] R̂w(h) =
1

m

mX

i=1

w(xi)L(h(xi), f(xi)), xi ⇠ Q. (6)
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where m stands for sampling size, and the samples weights w(x) along with Rényi divergences
d2(P||Q) are defined as follows(Cortes et al., 2010):

w(x) =
P(x)

Q(x)
d2(P||Q) =

X

x2X

P(x)

✓
P(x)

Q(x)

◆
=
X

x2X

w(x)P(x). (7)

As established by Theorem 3 in (Cortes et al., 2010), the upper bound of R(h), and R̂w(h), is
expressed as follows. This bound provides a theoretical guarantee for our model, elucidating the
relationship between hypothesis performance on source and target distributions, and underscoring the
impact of distribution shifts and the efficacy of the reweighting strategy.

Theorem 3 ((Cortes et al., 2010)) Let H be a hypothesis set such that

Pdim(Lh(x) : h 2 H = p < +1). Assume that d2(P||Q) < +1 and w(x) 6= 0 for all x.

Then for 0 < � < 1. With probability at least 1� � ,it holds that:

���R(h)� R̂w(h)
���  25/4

p
d2(P||Q)

 
p log 2me

p + log 4
�

m

!3/8

. (8)

E.1 A DEEP LOOK INTO THEOREM 3

According to the right side of Theorem 3, the upper bound is influenced by the sampling size m
and the Rényi divergence d2(P||Q). For a fixed m, the Rényi divergence is pivotal in determining
the bound, significantly affecting the performance of importance weighting. This highlights the
importance of properly estimating distributional differences to ensure robust model performance;
otherwise, the model may suffer from increased generalization error and reduced effectiveness in
real-world applications. Particularly, in the deep learning era, where high-dimensional and complex
data distributions prevail, explicitly measuring the distance between two distributions often leads to
infinite w(x) (Byrd & Lipton, 2019), thereby violating the assumptions of Theorem 3.

E.2 ANALYSIS OF DISAGREEMENT-BASED REWEIGHTING SCORE

Leveraging importance sampling in practice, on the one hand, offers straightforward yet effective
benefits; on the other hand, several studies have identified potential challenges,(e.g. unbounded
reweighting score w(x)), particularly within the framework of modern deep learning. Robert et
al.(Robert, 1999) discussed a phenomenon called weight degeneracy, which occurs during the iterative
approximation of the target distribution, as certain weights significantly diminish due to the inadequate
selection of bridging density functions. Bugallo et al.(Bugallo et al., 2017) highlighted that existing
methods employing a Bayesian approach to model target distributions are hindered by significant
computational overhead and increased time complexity. Byrd et al.(Byrd & Lipton, 2019) indicates
that importance weighting becomes ineffective with complex data structures due to high-variance
estimates in high-dimensional contexts.

Our proposed method tackles these challenges in different ways. i) Eqn. 1 shows that our designed
disagreement-based reweighting score is data-agnostic, requiring no task-specific experience. This
allows for easy implementation across different scenarios without concerns of weight degeneracy. ii)
Our proposed approach eliminates the need for an iterative process to measure the target distribution,
resulting in a time-efficient approach, which is especially beneficial for handling large-scale datasets.
iii) Our method circumvents the high-variance issues typically encountered with high-dimensional
data by implicitly measuring the divergence between two distributions through an entropy function.
By focusing on modeling entropy rather than the distribution itself, we achieve a more stable and
robust approach, effectively managing complexity without directly modeling the intricate details of
the data. Extensive experimental results in Table 1 demonstrate that our method is both effective
and suitable within the deep learning framework. To sum up, our design of disagreement-based
reweighting score is an effective mimic of the true w(x) = P(x)/Q(x), making it more suitable for
lightweight, efficient, plug-and-play applications in modern deep learning era.
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