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A APPENDIX

A.1 SOCIAL IMPACT

Diffusion models have experienced rapid advancements and have shown the merits of generating
high-quality data. However, concerns have arisen due to their ability to memorize training data and
generate inappropriate content, thereby negatively affecting the user experience and society as a
whole. Machine unlearning emerges as a valuable tool for correcting the algorithms and enhancing
user trust in the respective platforms. It demonstrates a commitment to responsible AI and the
welfare of its user base. However, while unlearning protects privacy, it may also hinder the ability
of relevant systems and potentially lead to biased outcomes.

A.2 IMPLEMENTATION DETAILS

Four and five feature map resolutions are adopted for CIFAR10 where image resolution is 32⇥ 32,
UTKFace and CelebA where image resolution is scaled to 64⇥64, respectively. Our 32⇥32 model,
and 64⇥64 model have around 36 million, and 79 million parameters, respectively. The well-trained
unconditional DDPM models on CIFAR103 and CelebA-HQ4 are downloaded from Hugging Face.
We used A40 and A100 for all experiments. All models apply the linear schedule for the diffusion
process. We set the batch size B = 512, B = 128, B = 64, B = 16 for CIFAR10, UTKFace
and CelebA, CelebA-HQ respectively. The linear schedule is set from �1 = 10�4 to �T = 0.02,
the inference time step for DDIM is set to be 100, the guidance scale w = 0.1, and the probability
puncond = 0.1 for all models. For the Unscrubbed and Retrain models, the learning rate is 3⇥ 10�4

for CIFAR10 and 2 ⇥ 10�4 for other datasets. We train the CIFAR10 model for 2000 epochs, the
UTKFace and CelebA models for 500 epochs. For Finetune models, the learning rate is 3⇥10�4 for
CIFAR10 and 2⇥ 10�4 for other datasets, all the models are finetuned on the remaining data Dr for
100 epochs. For NegGrad models, the learning rate is 1⇥10�6 and all the models are trained on the
forgetting data Df for 5 epochs. For BlindSpot models, the learning rate is 2⇥ 10�4. The partially-
trained model is trained for 100 epochs on the remaining data Dr and then the scrubbed model is
trained for 100 epochs on the data D. For our scrubbed models, Nrs = |Drs| ⇡ 8K, the learning
rate is 1⇥ 10�6 CelebA-HQ and 2⇥ 10�4 for other datasets. Note that the components (Dhariwal
& Nichol, 2021; Nichol & Dhariwal, 2021) for improving the model performance are not applied in
this work.

Algorithm 2 EraseDiff .
Input: Well-trained model ✏✓0 , forgetting data Df and subset of remaining data Drs ⇢ Dr, outer

iteration number S and inner iteration number K, learning rate ⇣ and hyparameter �.
Output: Parameters ✓⇤ for the scrubbed model.

1: for iteration s in S do

2: �0
s = ✓s.

3: Get �K
s by K steps of gradient descent on f(�s,Df ) start from �0

s using Eq. (8):
Sample {x0, c} ⇢ Df , t ⇠ Uniform(1, · · · , T ), ✏ ⇠ N (0, Id),
Compute r�k

s
k✏̂� ✏�k

s
(
p
↵̄tx0 +

p
1� ↵̄t✏, t, c)k.

Get the constant loss Lcs = k✏̂� ✏�K
s
(
p
↵̄tx0 +

p
1� ↵̄t✏, t, c)k if k = K.

4: Set the approximation:
Sample {x0, c} ⇢ Df , t ⇠ Uniform(1, · · · , T ), ✏ ⇠ N (0, Id),
Compute the loss Lf = k✏̂� ✏✓s(

p
↵̄tx0 +

p
1� ↵̄t✏, t, c)k � Lcs.

5: Update the model:
Sample {x0, c} ⇢ Drs, t ⇠ Uniform(1, · · · , T ), ✏ ⇠ N (0, Id),
Compute the loss Ls = k✏� ✏✓s(

p
↵̄tx0 +

p
1� ↵̄t✏, t, c)k+ �Lf ,

Update ✓s+1 = ✓s � ⇣r✓sLs.
6: end for

3https://huggingface.co/google/ddpm-cifar10-32
4https://huggingface.co/google/ddpm-ema-celebahq-256
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Algorithm 3 BlindSpot Unlearning (Tarun et al., 2023b).
Input: A well-trained model ✏ with parameters ✓0, a randomly initialized blind model ✏ (·), for-

getting data Df , remaining data Dr and all training data D = Df [Dr. The learning rate ⇣, the
number of epochs Er and Eu, hyper-parameter �.

Output: Parameters ✓⇤ for the scrubbed model.
1: Initialization ✓ = ✓0.
2: for 1, 2, . . . , Er do

3: train the blind model ✏ (·) with the remaining data Dr.
4: end for

5: for 1, 2, . . . , Eu do

6: for (xi, ci) 2 D do

7: lif = 1 if (xi, ci) 2 Df else lif = 0.
8: ✏t = ✏✓(xi, t, ci), where t is the timestep and t 2 [1, T ].
9: Lr = L(✏t, ✏) and Lf = L(✏t, ✏ (xi, t, ci)).

10: La = �
Pk

j=1 kact✓j � act j k, where actj is the output of each block in the UNet.
11: L = (1� lif )Lr + lif (Lf + La).
12: ✓ = ✓ � ⇣ @L

@✓ .
13: end for

14: end for

A.3 MORE RESULTS

In the following, we present the results of Ablation studies, results when replacing ✏ ⇠ N (0, Id)
with ✏̂t ⇠ N (0.5, Id) for Eq. (4), results when sampling from the uniform distribution ✏̂t ⇠ U(0,1),
and results when trying to erase different classes/races/attributes under the conditional and uncondi-
tional scenarios. We include new comparisons (e.g., without access to Dr, subjected to adversarial
attacks, two alternative formulations to perform unlearning) in Tabs. 4 to 8 and Figs. 17 to 24. In
general, with more remaining data during the unlearning process, the generated image quality over
the remaining classes Cr would be better while those over the forgetting classes Cf would be worse.
With generated images for unlearning, the image quality after scrubbing the model would be worse,
but still surpasses other methods. When subjected to adversarial attacks, the quality of generated im-
ages of all models would decrease along with the step size of the attack increases, but the scrubbed
model still would not contain information about Cf . Simultaneously updating the model parameters
can destroy the information about Cf , but would also result in a significant drop in image quality Cr.
Disjoint optimization does not work as the second phase could bring back information about Cf .

Figure 6: Ablation results with conditional DDIM on CIFAR10.
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(a)

(b)

(c)

Figure 7: Conditional DDIM on CIFAR-10. (a) Generated images by the unscrubbed model. (b)
and (c) are generated images by our scrubbed model when forgetting classes are Cf = {c2, c8},
and Cf = {c5, c6}, respectively. Images in the red solid box are generated by conditioning on the
forgetting classes Cf , others are generated by conditioning on the remaining classes Cr.

differmean_distri (mean=0.5)

Figure 8: Images generated by our scrubbed conditional DDIM on CIFAR10 when we choose nor-
mal distribution ✏̂t ⇠ N (0.5, Id). Images in the red solid box are generated by conditioning on the
forgetting classes Cf , others are generated by conditioning on the remaining classes Cr.

Sample with noise from uniform distribution

Figure 9: Images generated by our scrubbed conditional DDIM on CIFAR10. Sampling with noise
from the uniform distribution x̂T ⇠ U(0,1).
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P_uncond=1e-12

Figure 10: Images generated by our scrubbed conditional DDIM on CIFAR10 when puncond ⇡ 0.

Unscrubbed

Ours (E=1)

Ours (E=4)

Figure 11: Images generated by conditional DDIM on UTKFace with different hyper-parameter E.
Images in the red solid box are generated by conditioning on Cf , others are generated by conditioning
on Cr. The larger the number E, the better the quality of generated images over Cr.

Figure 12: Images generated by our scrubbed conditional DDIM when unlearning different races
(Top to Bottom: unlearning Asian, Black, and White, respectively). Images in the red solid box are
generated by conditioning on Cf , others are generated by conditioning on Cr.
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Figure 13: Examples from the remaining data Dr and forgetting data (Blond hair attribute) Df on
CelebA-HQ. Note that some examples in Dr (e.g., images in the purple solid box) have hair with a
color that looks similar to the Blond hair attribute.

CelebA_uncond_DDIM

Unscrubbed Retrain Ours

Figure 14: Images generated by unconditional DDIM on CelebA. We aim to unlearn the attribute
of blond hair. Our unlearning algorithm obtains the results quite similar to those from the retrained
model which is trained with the remaining data. Note that some images from the remaining data
have hair attribute that looks like blond hair attribute as shown in Fig. 13.

Unscrubbed

uncond_pretrained_ddpm

Ours (E=2)

Figure 15: Images generated by the well-trained unconditional DDPM models from Hugging Face
and our corresponding scrubbed models on CelebA-HQ. We aim to unlearn the Eyeglasses attribute.
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Unscrubbed

uncond_pretrained_ddpm

Ours (E=2)

Ours (E=4)

Figure 16: Images generated by the well-trained unconditional DDPM models from Hugging Face
and our corresponding scrubbed models on CelebA-HQ. We aim to unlearn the Blond hair attribute.
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Table 4: Results on CIFAR-10 with conditional DDIM, compared with simultaneously optimizing
L(✓;Dr) � ↵L(✓;Df ) (denoted as SO). Generated examples are shown in Fig. 17. SO cannot
achieve a good trade-off between erasing the influence of Df and preserving model utility over Dr.

Method FID over forgetting classes FID over remaining classes

c = 2 " c = 8 " c = 0 # c = 1 # c = 3 # c = 4 # c = 5 # c = 6 # c = 7 # c = 9 #
Unscrubbed 19.62 12.05 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44
Retrain 152.39 139.62 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85
SO (↵=0.1) 20.85 11.72 18.74 12.14 22.53 16.44 24.17 17.56 13.59 15.55
SO (↵=0.3) 33.33 22.87 20.22 12.05 24.12 21.00 26.18 21.57 14.24 15.00
SO (↵=0.5) 175.17 77.46 90.30 25.43 64.28 57.89 55.07 51.68 40.77 37.94
EraseDiff (Ours) 256.27 294.08 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85

Ours

Unscrubbed

DDIM cond

Retrain

SO (" = 0.1)

SO (" = 0.3)

SO (" = 0.5)

Figure 17: Images generated by conditional DDIM from Tab. 4. Images in the green dashed box are
generated by conditioning on the remaining labels Cr and those in the red solid box are generated
by conditioning on the forgetting classes Cf .

Table 5: Results on CIFAR-10 trained with conditional DDIM, compared with separate optimization
(Two-steps, denoted as TS). TS will perform E1 epochs for the first step (ie., NegGrad), then perform
E3 epochs for the second step (ie., relearn using Dr). Generated examples are shown in Fig. 18. TS
cannot completely erase the influence of Df on the model.

Method FID over forgetting classes FID over remaining classes

c = 2 " c = 8 " c = 0 # c = 1 # c = 3 # c = 4 # c = 5 # c = 6 # c = 7 # c = 9 #
Unscrubbed 19.62 12.05 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44
Retrain 152.39 139.62 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85
TS (step 1, E1 = 10) 292.35 297.94 276.75 296.48 313.51 317.70 310.61 326.49 311.01 296.05
TS (step 2, E2 = 50) 73.29 100.72 73.78 78.23 67.21 70.79 72.85 56.41 74.13 82.86
TS (step 2, E2 = 100) 30.88 26.56 21.64 13.96 24.19 19.14 26.32 19.44 15.49 17.38
EraseDiff (Ours) 256.27 294.08 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85

Ours

Unscrubbed

DDIM cond

Retrain

TS ("#$% 1, (! = 10)

TS ("#$% 2, (" = 50)

TS ("#$% 2, (" = 100)

Figure 18: Images generated by conditional DDIM from Tab. 5. Images in the green dashed box are
generated by conditioning on the remaining labels Cr and those in the red solid box are generated
by conditioning on the forgetting classes Cf .
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Table 6: Results on CIFAR-10 trained with conditional DDIM. D
0

r: EraseDiff apply generated
images to be the remaining data for the unlearning process.

Method FID over forgetting classes FID over remaining classes

c = 2 " c = 8 " c = 0 # c = 1 # c = 3 # c = 4 # c = 5 # c = 6 # c = 7 # c = 9 #
Unscrubbed 19.62 12.05 17.04 9.67 19.88 14.78 20.56 17.16 11.53 11.44
Retrain 152.39 139.62 17.39 9.57 20.05 14.65 20.19 17.85 11.63 10.85
Finetune 31.64 21.22 20.49 12.38 23.47 17.80 25.51 18.23 14.43 16.09
NegGrad 322.67 229.08 285.25 290.57 338.49 290.23 312.44 339.43 320.63 278.03
BlindSpot 349.60 335.69 228.92 181.88 288.88 252.42 242.16 278.62 192.67 195.27
EraseDiff (D

0
r) 298.60 311.59 33.01 24.09 34.23 34.79 45.51 38.05 24.59 28.10

EraseDiff (Ours) 256.27 294.08 29.61 22.10 28.65 27.68 35.59 23.93 21.24 24.85

Ours

Unscrubbed

DDIM cond

Retrain

Ours ("!" )

Unscrubbed

Retrain

Finetune

NegGrad

Ours

BlindSpot

Figure 19: Images generated by conditional DDIM from Tab. 6. Images in the green dashed box are
generated by conditioning on the remaining labels Cr and those in the red solid box are generated
by conditioning on the forgetting classes Cf .

SA code: DDPM

Ours (205 steps)Unscrubbed Ours (210 steps)Ours (200 steps)

Figure 20: Conditional DDPM on CIFAR-10 when forgetting samples belonging to label ‘0’. Fol-
lowing Heng & Soh (2023) and using the well-trained model from Heng & Soh (2023), our method
achieves a FID score of 8.93 at 210 steps, 8.83 at 205 steps, and 8.90 at 200 steps.

Table 7: Results of EraseDiff on CIFAR-10 with conditional DDIM. For each class, the FID score
is computed over 5K generated images. Each row’s forgetting classes are highlighted in orange.

Cf c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

c = 2 26.60 17.04 295.48 27.07 32.32 30.45 28.58 19.77 17.60 20.67
c = 2, 8 29.61 22.10 256.27 28.65 27.68 35.59 23.93 21.24 294.08 24.85
c = 5, 6 30.03 16.51 29.37 33.50 22.12 321.09 302.01 20.06 21.94 21.10
c = 2, 5, 8 24.02 15.59 288.01 26.06 19.31 296.79 21.25 15.87 206.61 21.56
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Ours (10.99)Unscrubbed (10.85)

Uncond DDPM-pretrained, sample-unlearn

Figure 21: Unconditional DDPM on CIFAR-10 when forgetting randomly selected samples. 50K
generated images by our scrubbed model have an FID score of 10.99, and the unscrubbed model has
an FID score of 10.85.

Ours

Unscrubbed

DDIM cond

Retrain

! = 0 ! = 0.001 ! = 0.01

Ours

Unscrubbed

Retrain

Figure 22: Generated examples when objected to FGSM Goodfellow et al. (2014) attack. Images in
the green dashed box are generated by conditioning on the remaining labels Cr and those in the red
solid box are generated by conditioning on the forgetting classes Cf . With the step size ✏ increases,
the quality of the generated images would decrease for all models. Note that our scrubbed model
still doesn’t contain information about the forgetting classes Cf in this setting.
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Table 8: Results on UTKFace with conditional DDIM. SO: simultaneously optimizing L(✓;Dr) �
↵L(✓;Df ). Generated examples are shown in Fig. 23. EraseDiff achieves a better trade-off between
erasing the influence of Df and preserving model utility over Dr than SO.

Method FID over forgetting classes FID over remaining classes

c = 3 " c = 0 # c = 1 # c = 2 #
Unscrubbed 8.87 7.37 11.28 9.72
SO (↵=0.05) 216.35 14.09 15.73 15.62
SO (↵=0.10) 417.90 22.00 24.34 22.60
EraseDiff (Ours) 330.33 8.08 13.52 12.37

Unscrubbed

SO (" = 0.05)

SO (" = 0.1)

Ours

Figure 23: Images generated with conditional DDIM when unlearning the Indian celebrities from
Tab. 8 (Top to Bottom: generated examples of the unscrubbed model, those of the model scrubbed
by SO (↵ = 0.05), those of the model scrubbed by SO (↵ = 0.10), and those by our scrubbed
model, respectively). Images in the red solid box are generated by conditioning on Cf , others are
generated by conditioning on Cr. SO (↵ = 0.05) cannot completely erase information about Cf and
SO (↵ = 0.10) has a significant drop in the quality of generated images.

CelebA_uncond_DDIM

Unscrubbed

Ours

SO (" = 0.2)

SO (" = 0.25)

Figure 24: Images generated by unconditional DDIM on CelebA, focusing on the removal of the
blond hair attribute. Images in the red solid box present the attribute of blond hair and those in the
yellow dashed box display distortions. The FID score of the unscrubbed model, that of ours, that of
SO (↵ = 0.2), and that of SO (↵ = 0.25) are 8.95, 10.70, 12.35, and 17.21 respectively.
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B DETAILED FORMULATION

Our formulation is

✓⇤ := argmin
✓

F(✓), where F(✓) = L(Alg(✓,Df ),Dr) := F(✓,Dr) + �f̂(✓,Df ), (10)

We consider

h(✓,�) := F (✓,Dr) + �f̂(✓,�), (11)

where f̂(✓,�) = f (�,Df )� f (✓,Df ), then

Alg (✓, Df ) = �⇤(✓) = argmin� h(✓,�) = argmin
�

f̂(✓,�) = argmin
�|✓

f (�,Df ) , (12)

where � | ✓ means � is started from ✓ for its updates. Finally, we reach

min
✓

min
�2�⇤(✓)

h(✓,�) = min
✓

min
�2Alg(✓,Df )

h(✓,�). (13)

We can characterize the solution of our algorithm as follows:
Theorem 1 (Pareto optimality). The stationary point obtained by our algorithm is Pareto optimal.

Proof. Let ✓⇤ be the solution to our problem. Because given the current ✓s, in the inner loop, we
find �K

s to minimize f̂(�,Df ) = f(✓s,Df ) � f(�,Df ). Assume that we can update in sufficient
number of steps K so that �K

s = �⇤(✓s) = argmin�|✓s f̂(�,Df ) = argmin�|✓s f(�,Df ). Here
� | ✓s means � is started from ✓s for its updates.

The outer loop aims to minimize F(✓,Df )+�f̂(�⇤(✓),Dr) whose optimal solution is ✓⇤. Note that
f̂(�⇤(✓),Dr) � 0 and it decreases to 0 for minimizing the above sum. Therefore, f̂(�⇤(✓⇤),Dr) =
0. This further means that f̂(✓⇤,Df ) = f̂(�(✓⇤),Df ), meaning that ✓⇤ is the current optimal
solution of f̂(�,Df ) because we cannot update further the optimal solution. Moreover, we have ✓⇤

as the local minima of F (✓,Df ) because f̂ (�⇤ (✓⇤) ,Df ) = 0 and we consider a sufficiently small
vicinity around ✓⇤.
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