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In this document, we provide more implementation details of CATs and more results on SPair-
71k [16], PF-PASCAL [4], and PF-WILLOW [3].

Appendix A. More Implementation Details

Network Architecture Details. Given resized input images Is, It ∈ R256×256×3, we conducted
experiments using different feature backbone networks, including DeiT-B [22], DINO [2] and
ResNet-101 [5]. For the ResNet-101multi in the paper, we use the best layer subset [15] of
(0,8,20,21,26,28,29,30) for SPair-71k, and (2,17,21,22,25,26,28) for PF-PASCAL and PF-WILLOW.
We resized the spatial resolution of extracted feature maps to 16× 16. The extracted features undergo
l-2 normalization and the correlation maps are constructed using dot products. Contrary to original
Transformer [23] with encoder-decoder architecture, CATs is an encoder-only architecture. Within
our Transformer aggregator, as explained in the paper, we concatenate the embedded features with
correlation maps. We feed the resized features into the projection networks to reduce the dimension
from c to 128, where c is the channel dimension of the feature. We then feed the augmented
correlation map into the transformer encoder, which we use 1 encoder layer and 6 heads in multi-head
attention layers. We then use soft-argmax function [8] with temperature τ = 0.02 to infer a dense
correspondence field.

Table 1: Data Augmentation.
Augmentation type Probability

(I) ToGray 0.2
(II) Posterize 0.2
(III) Equalize 0.2
(IV) Sharpen 0.2
(V) RandomBrightnessContrast 0.2
(VI) Solarize 0.2
(VII) ColorJitter 0.2

Training Details. For training on both SPair-
71k [16] and PF-PASCAL [4], we set the initial learning
rate for CATs as 3e-5 and backbone networks as 3e-
6. We then decrease the learning rate using multi-step
learning rate decay [18]. We use a batch size of 32. We
trained our networks using AdamW [13] with weight
decay of 0.05. For data augmentation implementation,
we implemented random cropping of image with proba-
bility set to 0.5, and used functions implemented by [1]
as shown in Table 1.

Appendix B. Reasoning of Architectural Choices

Table 2: Ablation study
of correlation map.

Method SPair-71k
αbbox = 0.1

CATs† 42.4
w/o corr. 37.3

Correlation Map. Given the results from ablation study on architecture
designs in the paper, we find that use of appearance and the self-attention
mechanism are critical to the performance. However, since transformers
have the ability to perform dot products and use of appearance is critical
for matching task, one may raise a question: Why correlation map? As
a concurrent work, COTR [6] attempts to omit correlation map and lets
transformers to make correlation among features. They show that this is
a highly effective strategy in forming correspondences.

As shown in the Table 2, we conducted an ablation study to find out if the use of cost volume is
beneficial for our setting. We conduct the experiment with the simplest setup by setting the values of
correlation map to zeros. In Table 3, for the experimental setting for COTR, we excluded zoom in
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technique, set the number of layers in transformer to 1 and changed the architecture to output a flow
map instead of pixel coordinates. We used single pair of feature maps for computing correlation map
and left all other components in the pipeline the same. More details of setting of both experiments
can be found in supplementary materials.

Table 3: Comparison to COTR.
MA.: Multi-level Aggregation

Model SPair-71k Run-time [ms]
αbbox = 0.1

COTR [6] 22.1 56.1

CATs† w/o MA. 37.4 39.1

Given Table 3 in main paper and the results for experiments
validating the use of correlation map, we could say that the sole
use of transformer (with its ability to perform dot products) or
sole use of appearance is not sufficient, but rather use of both
cost volume and appearance allow the transformer to relate
the pairwise relationships and appearance, which helps to find
more accurate correspondences. However, this is an ongoing
research topic whether explicitly using the correlation map for forming correspondences is better or
not, which we leave to community for further study.

Appendix C. Additional Results

More Qualitative Results. We provide more comparison of CATs and other state-of-the-art meth-
ods on SPair-71k [16], PF-PASCAL [4], and PF-WILLOW [4]. We also present multi-head and
multi-level attention visualization on SPair-71k in Fig 4, and multi-level aggregation in Fig 5.

Broader Impact

Our cost aggregation networks can be beneficial in a wide range of applications including semantic
segmentation [19, 21, 14], object detection [10], and image editing [20, 11, 9, 7], as well as dense
correspondence. For example, some methods for semantic segmentation tasks require cost volume
aggregation. Such adoption would enhance the performance, which could affect various applications,
e.g., autonomous driving. On the other hand, our module risks being used for malicious works, which
includes image surveillance system, but on its own, we doubt that it can be used for such works.
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(a) DHPF [17] (b) SCOT [12] (c) CATs (d) Ground-truth

Figure 1: Qualitative results on SPair-71k [16]: keypoints transfer results by (a) DHPF [17], (b)
SCOT [12], and (c) CATs, and (d) ground-truth. Note that green and red line denotes correct and
wrong prediction, respectively, with respect to the ground-truth.
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(a) DHPF [17] (b) SCOT [12] (c) CATs (d) Ground-truth

Figure 2: Qualitative results on PF-PASCAL [4]

(a) DHPF [17] (b) SCOT [12] (c) CATs (d) Ground-truth

Figure 3: Qualitative results on PF-WILLOW [3].
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Figure 4: Visualization of multi-head and multi-level self-attention. Each head at l-th level layer,
specifically among (0,8,20,21,26,28,29,30) layers of ResNet-101 [5] as in [15], attends different
regions, which CATs successfully aggregates the multi-level correlation maps to infer reliable
correspondences.
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Figure 5: Visualization of multi-level aggregation. Each correlation refers to one of the
(0,8,20,21,26,28,29,30) layers of ResNet-101, and our proposed method successfully aggregates the
multi-level correlation maps.
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