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ABSTRACT

Post-training quantization (PTQ) has played a pivotal role in compressing large
language models (LLMs) at ultra-low costs. Although current PTQ methods have
achieved promising results by addressing outliers and employing layer- or block-
wise loss optimization techniques, they still suffer from significant performance
degradation at ultra-low bits precision. To dissect this issue, we conducted an in-
depth analysis of quantization errors specific to LLMs and surprisingly discovered
that, unlike traditional sources of quantization errors, the growing number of model
parameters, combined with the reduction in quantization bits, intensifies inter-layer
and intra-layer dependencies, which severely impact quantization accuracy. This
finding highlights a critical challenge in quantizing LLMs. To address this, we
propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ
leverages a cross-block dependency to establish long-range dependencies across
multiple blocks and integrates an adaptive LoRA-Rounding technique to manage
intra-layer dependencies. To further enhance performance, CBQ incorporates a
coarse-to-fine pre-processing mechanism for processing weights and activations.
Extensive experiments show that CBQ achieves superior low-bit quantization
(W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across
various LLMs and datasets. Notably, CBQ only takes 4.3 hours to quantize a weight-
only quantization of a 4-bit LLAMA1-65B model, achieving a commendable trade
off between performance and efficiency.

1 INTRODUCTION

Large language models (LLMs) (Wei et al. (2022a); Radford et al.; Zhang et al.; Brown et al.
(2020b); Dettmers et al. (2022)), have sparked immense academic and industrial interest owing
to their remarkable performance in handling complex natural languages tasks (Hendrycks et al.
(2020b); Bisk et al. (2020b); He et al. (2017); Ainslie et al. (2023); Liu et al. (2024b)). During to
significant computational resources for inference and deployment, the post-training quantization
(PTQ) technique (Choi et al. (2018); Frantar et al. (2022a); Nagel et al. (2019); Wei et al. (2023); Li
et al. (2025)) operating with limited calibration data and computational resources is more in demand
for compressing LLMs.

Existing PTQ methods typically optimize models on a layer or block basis, addressing outliers (Wei
et al. (2022b; 2023); Chee et al. (2024); Liu et al. (2024a)) and employing first- or second-order
optimization techniques (predominantly optimizing models on a layer-by-layer or block-by-block
basis) (Shao et al. (2023); Frantar et al. (2022b); Liu et al. (2023a)). However, these approaches often
suffer from significant performance degradation, particularly in low-bit settings such as W2A16 and
W4A4, as illustrated in Table 1, due to inherent limitations. Previous work, like AdaRound (Nagel
et al. (2020)), analyzed rounding errors and showed that simple rounding is not always the optimal
quantization strategy, greatly improving quantization for CNNs. This inspired us to analyze quantiza-
tion loss for LLMs, comparing high-bit and low-bit scenarios. We found that in low-bit quantization,
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intra-layer and inter-layer dependencies within models become more pronounced, especially as model
size increases. This indicates that previous methods, whether focused on optimizing quantization
parameters within a layer or block through first- or second-order techniques, or on refining rounding
errors, fall short of achieving optimal outcomes. Instead, it is essential to fully account for the
inter-layer and intra-layer relationships.

To address this, we propose CBQ, a cross-block reconstruction-based PTQ method tailored for LLMs,
surpassing traditional layer-wise and block-wise reconstruction techniques. CBQ introduces a cross-
block dependency (CBD) into block-wise reconstruction, maintaining the integrity of the model’s
internal dependencies during quantization. Our approach optimizes multiple transformer blocks
within a sliding window with overlapping, allowing for more effective and non-local optimization of
quantization parameters. Using the CBD method, CBQ incorporates a LoRA-Rounding technique,
employing two low-rank matrices to learn adaptive compensation values for quantized weights.
Notably, we jointly optimize the compensation matrices and the step sizes of weights and activations
within the overlapping window, which helps manage intra-layer dependencies to rectify weight
quantization errors while preserving training efficiency. Furthermore, CBQ introduces a novel unified
coarse-to-fine pre-processing (CFP) strategy from a statistical perspective to evaluate outliers in
weights and activations, precisely handling outliers while minimizing damage to normal channels.
CFP employs a quartile criterion to initially estimate the range of outliers and then assesses the
intra-class and inter-class distances between outliers and normal values to precisely identify their
locations. This approach facilitates the truncation of weight outliers and the application of equivalent
scaling to activation outliers.

The contributions of this paper are summarized as follows:

• We performed a comprehensive analysis of the error sources in low-bit quantization scenarios
for LLMs, and theoretically demonstrated the significant impact of intra-layer and inter-layer
dependencies on the effectiveness of model quantization.

• We propose CBQ, a unified PTQ method designed for LLMs, incorporating a cross-block
reconstruction strategy that introduces a Cross-Block Dependency (CBD) mechanism to
preserve the model’s internal dependencies during quantization, and LoRA-Rounding to
utilize intra-layer dependencies for optimizing adaptive compensation matrices.

• We design a coarse-to-fine pre-processing strategy (CFP) that can simultaneously detect and
manage outliers in both weights and activations, effectively preventing disruption to normal
activation channels and weights.

• Extensive experiments demonstrate the effectiveness of our method in ultra-low bit quanti-
zation settings such as W4A4, W4A8, and W2A16. Notably, it outperforms state-of-the-art
methods across diverse models and benchmark datasets.

2 MOTIVATION

To analyze the sources of quantization errors in large models when quantizing weights or activations,
we assume a matrix M representing a set of weights or activations as the current quantization target,
and L denotes the quantization loss of the model under this matrix. Let ε denote a small perturbation
introduced by quantization and L(M) represent the task loss that we aim to minimize. Then,we can
derive the following equation within the Taylor expansion:

E[L(M + ε)−L(M)] ≈ E[εT · ∂L
∂M

+
1

2
εT

∂2L
∂M2

ε+O(||ε||3)] ≈ εT · g(M) +
1

2
εT ·H(M) · ε (1)

As discussed in previous work (Frantar et al. (2022b)), The error ε introduced by quantization is
sufficiently small, the higher-order terms in the Taylor expansion can be neglected. Therefore, we
analyze the first- and second-order terms, g(M) and H(M), which can be defined as follows.

g(M) = E[∇ML(M)] =

K∑
i

∂L
∂Mi

(2)

H(M) = E[∇2
ML(M)] =

K∑
i

K∑
j

∂2L
∂Mi∂Mj

(3)

2



Published as a conference paper at ICLR 2025

(a)

(c)(b)

4 bit

2

4

6

8

10

Weight

W
ei

gh
t

2 bit

2

4

6

8

10

Weight

W
ei

gh
t

4 bit

Layer1 Scale

L
ay

er
2 

S
ca

le

0.01

0.
05

0.05

2 bit

Layer1 Scale

L
ay

er
2 

S
ca

le

0.01

0.
05

0.05

4 bit

2

4

6

8

10

Layer

L
ay

er

2 bit

2

4

6

8

10

Layer

L
ay

er

12

High

LOW

Figure 1: (a) Visualization of the absolute values of the Hessian matrix for weights within a single
layer of LLAMA-7B, (b) Hessian matrix visualization of the loss with respect to the scale across 32
layers of LLAMA-7B, and (c) the relationship between the average scale of the first two transformer
blocks in LLAMA-7B and the corresponding loss.

Let K denote the number of elements in the LLM involved in the quantization. Using Equation 2
and 3, the influence of any two elements i and j on the final quantization loss can be calculated.
From equations 1, 2, 3, it can be observed that when the quantization perturbation ε is small, ||ε||2 is
also small, allowing us to disregard the implications of the equation 3. In this case, the quantization
error is primarily related to the current quantization target M , analogous to high-bit quantization.
However, when performing low-bit quantization, ||ε||2 increases, necessitating consideration of the
impact described by Equation 3. This indicates that when i ̸= j, relationships between different
M are introduced. This relationship manifests in two aspects: when quantizing a single layer, it
reflects intra-layer dependencies among parameters, and when quantizing the entire model, inter-layer
dependencies must also be considered. Furthermore, given that the complexity of the Hessian matrix
H is proportional to O(n2), where n represents the number of parameters, the growth in model size,
both in terms of parameters and layers, leads to a marked intensification of intra-layer and inter-layer
dependencies.

To better illustrate intra-layer and inter-layer dependencies, we visualize Equation 3 for both indi-
vidual layers and the entire model using LLAMA-7B. Additionally, we present visualizations of the
dependencies between adjacent blocks, as referenced in Figure 1.

By analyzing Figure 1, we observe a notable increase in the values of off-diagonal elements during
lower-bit quantization. This increase indicates a strengthening of both inter-layer and intra-layer
dependencies, with closer elements exhibiting stronger correlations. Furthermore, comparisons of
the scales between adjacent layers provide a clearer understanding of the substantial impact that
inter-layer dependencies have on final quantization outcomes in low-bit scenarios.

Therefore, taking into account both intra-layer and inter-layer dependencies, we present the quan-
tization framework for LLMs under low-bit settings, which can be expressed by the following
equation:

arg min
h⊆H+

∑
k∈h

E(Tk(W
k, Xk), QTk(Q(W k) + ∆k

W , Q(Xk)), (4)

where T and QT represent the floating-point and quantized transformer blocks, respectively. Q·(·)
represents the quantization process. E(·) represents the metric to evaluate the reconstruction errors be-
tween outputs of quantized block and full-precision block. We jointly optimize all transformer blocks
with inter-layer dependencies while compensating for intra-layer relationships using

{
∆k

W |k ⊆ H+

}
.
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Figure 2: Workflow of the proposed CBQ. CBQ firstly utilizes a coarse-to-fine preprocessing to
handle the outliers of weights and activations, and then employs a cross-block optimization strategy
to learn quantization step sizes and weight adaptive rounding matrices with supervision from the
corresponding full-precision model. This sequential block-wise method minimizes aggregate error
propagation through cross-block dependency modeling.

3 METHOD

In this section, we introduce the proposed cross-block quantization framework tailored to LLMs.
As illustrated in Fig. 2, CBQ firstly handles the outliers of weights and activations, and then jointly
learns step sizes of weights and activations and weight-compensation matrices in a cross-block
manner. CBQ reconstructs the output feature of the last block in each sliding window based on the
corresponding supervision of the full-precision model.

3.1 CROSS-BLOCK RECONSTRUCTION

To maintain inter-layer dependencies, it is necessary to optimize the layers with significant depen-
dencies together. As shown in Figure 1, the strongest dependencies are typically observed between
adjacent layers. Therefore, we introduce a cross-block dependency (CBD) scheme using a sliding
window approach. This scheme enables the simultaneous optimization of multiple blocks within the
window. Furthermore, the two adjacent sliding windows have overlapping blocks, ensuring that the
blocks between the windows are also interconnected. The CBD scheme enhances the connectivity
and cooperation between blocks, enabling them to jointly contribute to the quantization process. This
holistic optimization strategy leads to better overall performance and addresses the limitations of
block-wise reconstruction in capturing cross-block dependencies. We formulate the optimization
with the CBD scheme as

argmin
Si,k
X ,Si,k

W ,∆i,k
W

E(Ti,k(W
i,k, Xi,k), Ti,k(Q(W i,k), Q(Xi,k)), (5)

where 1 ≤ i ≤ k ≤ K, Ti,k represents the blocks from block i to block k within one sliding window,
and the same applies to the symbols Si,k

X , Si,k
W and ∆i,k

W . The optimization object Lrec is as follow:

Lrec = E(Ti,k(W
i,k, Xi,k), Ti,k(Q(W i,k), Q(Xi,k)) (6)

For the distance metric, we incorporate L2 and Kullback-Leibler divergence (KLD) loss (Kullback &
Leibler (1951)) to measure reconstruction error. KLD computes the likelihood distribution between
output features that undergo the softmax function. It tends to suppress outliers in the feature space
and enhance the robustness of the optimization process. By incorporating both terms, our method
captures both the spatial distance and the distribution discrepancy, leading to a more comprehensive
and robust optimization process. Then the distance metric is formulated as:

E(h1, h2) = ||h1 − h2| |2 +DKL(σ(h1), σ(h2)), (7)

where h1 and h2 are hidden states from the outputs of full-precision blocks and quantized blocks,
respectively. σ is the softmax function. ||·| |2 represents the L2 distance and DKL(·) represents the
KLD distance. We provide the ablation study on the loss functions in Appendix B.Table 5.
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3.2 LORA-ROUNDING FOR WEIGHT QUANTIZATION

AdaRound (Nagel et al. (2020)) introduces to learn a better weight-rounding matrix for post-training
quantization that adapts to the data and the task loss. As shown in Eq. 8, we can obtain the weight-
rounding matrix ∆W ∈ Rd×k with a learnable matrix V ∈ Rd×k with a rectified sigmoid function:

∆W = Clip(Sigmoid(V )(ζ − γ) + γ, 0, 1), (8)

where ζ and γ are stretch parameters and are fixed to 1.1 and -0.1, and Clip(·) clamps the inputs into
a given range. The size of the weight-rounding matrix ∆W is the same as the original weights.

When the transformer blocks are within the overlap of the CBD sliding window mechanism, the
rounding matrix can serve as an effective representation of intra-layer dependencies. We utilize it
as a compensation matrix and jointly optimize it with the quantization step sizes for weights and
activations, which can be expressed as follows:

argmin
Si,k
X ,Si,k

W ,∆j,k
W

E(Ti,k(W
i,k, Xi,k), Ti,k(Q(W i,k) + ∆j,k

W , Q(Xi,k)) (9)

s.t. j = k + 1− overlap (10)

However, as shown in Experiment Table 3b, we found that LLMs with billion-level parameters result
in an exceptionally large ∆j,k

W , which can lead to significant computational overhead and substantially
impact the convergence of training. (Shao et al. (2023)) has also mentioned that AdaRound cannot be
applied to models with billions of parameters due to the vast solution space, which aligns with our
experimental findings. Thus, we employ low-rank adaptive learning on the compensation matrices,
decomposing V with much smaller low-rank matrices, and only optimize them in post-training
quantization, the decomposition is defined as:

∆W = A1 ×A2, A1 ∈ Rd×r, A2 ∈ Rr×k, (11)

Where the rank r << min(d, k), we utilize a random Gaussian initialization for A1 and zero for A2,
thus ∆W is set to zero at the beginning of post-training quantization. During training, each element
of ∆W is encouraged into 0 or 1 with a regularizer loss:

Lcom =
∑
i,j

1− |2∆W (i, j)− 1|β , (12)

Where β is a annealing factor. Following (Nagel et al. (2020)), β is set to higher in the initial phase
and set to lower in the later phase of the optimization to encourage it to converge to 0 or 1. We also
conduct ∆W = ⌊∆W ⌉ in the later phase of the optimization to force each element into {0, 1} exactly.

Compared with vanilla AdaRound for LLMs. The proposed LoRA-Rounding reduces the number
of learnable parameters from d× k to (d+ k)× r and changes the training strategy, significantly
accelerating the optimization process, we conduct ablation experiments in the next section 5.3.

3.3 OVERALL LOSS

In summary, by leveraging CBD and a low-rank decomposition of the weight-compensated matrix,
We slide the window to the last block with an interval and update all the quantization parameters
SW , SX , A1, A2 within the window, ensuring the preservation of both intra-layer and inter-layer
relationships of the model, thereby achieving optimal performance. The total loss for optimizing the
ith block to the kth block within a sliding window is formulated as

Ltotal = Lrec + γLcom, (13)

where the γ is the hyper-parameter to balance the reconstruction error and compensation error.

3.4 COARSE-TO-FINE PRE-PROCESSING

Outlier handling is crucial in quantizing LLMs. Figure 3 in Appendix F illustrates the prevalent
outliers in weights and activations, which pose significant challenges to the quantization process.
Although there are many existing studies based on outliers problem, these studies typically focus on
outliers in either weights or activations individually, such as in (Chee et al. (2024); Wei et al. (2022b);
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Xiao et al. (2022)). However, there is no precise strategy that can simultaneously detect and handle
outliers in both weights and activations. This single-mode approach can potentially damage normal
activation channels and weights due to incorrect outlier detection. To address this issue, we discard
the previous assumption of normal distributions for weights and activations (Wu et al. (2023)), and
based on statistical principles (Massart et al. (2005)), propose a coarse-to-fine pre-processing strategy
to decouple the outlier handling in activations and weights. Relevant theoretical details can be found
in Appendix F.

The comprehensive algorithm of the outlier detection is illustrated in Algorithm 1 in Appendix K,
which is divided into two stages.

Coarse-grained detection. In the first stage, we perform coarse-grained detection by calculating
the lower and upper quartile values (Q1 and Q3) and the interquartile range (IQR) (Massart et al.
(2005)) in the numerical distribution (either activations or weights). Based on these calculations, we
obtain a coarse outlier set O = {x|x > T, x ∈ X}, where T = Q3 + λ1IQR and λ1 is set to 1.5.
This stage greatly reduces the search space for outlier detection.

Fine-grained detection. In the second stage, we perform fine-grained detection by searching for
a threshold that splits the coarse outlier set into an outlier subset Ooutlier and a reserved subset
Oreserved. The goal is to minimize the intra-set variance Mintra = Var(Oreserved) while maximizing
the distance between the two subsets Minter = (Min(Ooutlier) − Max(Oreserved))

2. To balance
these objectives, we define a metric M = Minter − λ2Mintra, where λ2 = 1.0. By minimizing this
metric, we can effectively identify outliers and distinguish them from the remaining data.

Removing outliers in weights has minimal impact on performance, whereas outliers in activations,
particularly in specific channels, can greatly affect performance if directly removed. Consequently,
our approach involves truncating weight outliers and scaling outliers in activations based on the
detected outliers in both weights and activations. Figure 3 in Appendix F provides visual evidence of
weight outliers being truncated within the outlier group.

The scaling factor si for the activation tensor in ith channel (represented as Xi) is determined by the
maximum absolute value of the truncated outlier set O∗:

si =
√

Max(|Xi|)/Max(O∗). (14)

This scaling factor is then applied to update weights and activations following prior work (Wei et al.
(2023)) to counteract destabilizing fluctuations from remaining outliers.

4 RELATED WORK

Post-training quantization. The post-training quantization (PTQ) algorithm (Nagel et al. (2021);
Wu et al. (2020; 2023); Zhang et al. (2018)) converts the pre-trained full-precision network into a
fixed-point network with a few unlabeled calibration data and computational overhead, which enables
fast deployment on various devices. Recent post-training quantization methods have been widely
explored in vision models (Liu et al. (2021); Hubara et al. (2021); Frantar & Alistarh (2022); Cai et al.
(2020); Li et al. (2022)). Some techniques like AdaQuant (Hubara et al. (2020)), AdaRound (Nagel
et al. (2020)), and BRECQ (Li et al. (2021)) minimize the distance between floating point and
quantized model outputs to optimize quantization parameters. While BRECQ incorporates Fisher
information and jointly optimizes layers within each residual block, it still obtains sub-optimal
performance for not capturing interactions across neighbouring residual blocks. The proposed CBQ
improves quantization accuracy that accounts for dependencies between adjacent blocks.

Quantization for large language models. Existing large language models such as
BLOOM (Laurençon et al. (2022)), OPT (Zhang et al. (2022)), and LLAMA (Touvron et al.;
2023)) contain tens of billions of parameters, and require massive memory footprint and computa-
tion requirements in the inference (Ashkboos et al. (2023); Wang et al. (2010); Bolya & Hoffman
(2023); Brown et al. (2020a); Jacob et al. (2018)). Recent works have been proposed to compress
LLMs with post-training quantization methods that do not require a complete training procedure and
access to a full training dataset. LLM.int8() (Dettmers et al.), ZeroQuant (Yao et al. (2022)) and
nuQmm (Park et al. (2022)) focus on quantizing the parameters with mixed-precision decomposition

6



Published as a conference paper at ICLR 2025

scheme, representing the outliers with 16-bit and others with 8-bit. These methods can not truly
accelerate the inference of LLMs for that is hard to implement on hardware. Other methods like
GPTQ (Frantar et al. (2022b)) and AWQ (Lin et al. (2023)) can efficiently quantize LLMs but they
focus on FP16 activations and INT4 weights, which can not benefit from the integer matrix multiplica-
tion of existing AI accelerators. Additionally, Some methods like SmoothQuant (Xiao et al. (2022)),
Outlier Suppression (Wei et al. (2022b)), Outlier Suppression+ (Wei et al. (2023)) and QLLM (Liu
et al. (2023a)) aim at processing activation outliers (Zhao et al. (2019)) and lack optimization for the
weight quantization. Moreover, these methods rely on hand-craft quantization strategies which are
tuned based on extensive experimentation for optimization. Recent block reconstruction-based PTQ
method OmniQuant (Shao et al. (2023)),QLLM (Liu et al. (2023a)), have experienced significant
accuracy degradation in low-bit settings. In contrast, CBQ introduces a more precise outlier detection
strategy and optimizes the reconstruction process through CBD and LoRA-Rounding mechanisms by
maintaining both intra-layer and inter-layer dependencies.

5 EXPERIMENTS

5.1 SETUP

Models and datasets. We conduct experiments on large language models with different sizes,
including OPT (Zhang et al. (2022)) and LLAMA (Touvron et al.) families. We validate our quan-
tization scheme on various datasets which are divided into two categories. One is reported by the
perplexity metric of language generation experiments on C4 (Raffel et al. (2020)) and WikiText2 (Mer-
ity et al. (2016)). The other is reported by the accuracy metric of zero-shot language tasks (Gao et al.
(2021)) on PIQA (Bisk et al. (2020a)), HellaSwag (Clark et al. (2018)), ARC (Clark et al. (2018)),
Mutual (Cui et al. (2020)) and Ehics (Hendrycks et al. (2020a)).

Quantization setting. To thoroughly evaluate performance, we test extensive quantization schemes
including weight-only quantization down to W4A16 and W2A16, as well as joint weight-activation
quantization for ultra-low bitwidths like W4A8, and W4A4. This extensive assessment across
varying bitwidths provides a robust analysis of our proposed method. Also, In alignment with prior
research (Shao et al. (2023); Liu et al. (2023a); Frantar et al. (2022c)), we use per-channel weight
quantization and per-token activation quantization.

Baseline methods. For weight-only quantization settings, we selected GPTQ (Frantar et al. (2022b))
as the baseline quantization method in our experiments. This represents the most prevalent technique
for W4A16 quantization of language models. Furthermore, we compare our CBQ with Omni-
Quant (Shao et al. (2023)) and QLLM (Liu et al. (2023a)), which is the state-of-the-art method
based on block reconstruction. We include a comparison of our CBQ method with the groupwise
quantization method RPTQ (Yuan et al. (2023)), which is widely employed in the W4A8 setting.

Implementation details. Following the setting of previous work (Frantar et al. (2022b); Liu
et al. (2023b); Yao et al. (2024); Yuan et al. (2023)), our calibration dataset comprises 128 randomly
selected 2048-token segments from C4 to ensure standardized benchmarking. To balance quantization
performance and training speed, we utilize sliding windows containing two blocks with 3 epochs
per window. For the LoRA-Rounding technique, we set the rank r to 5. The optimization process
involves adjusting the learnable quantization step sizes (SX and SW ) and the weight-rounding matrix
(δW ) with learning rates of 1e− 4, 1e− 3, and 1e− 4, respectively. To manage the learning rate, we
utilize the CosineAnnealingLR scheduler. We quantize all models using a mini-batch size of 1 on a
single GPU. This configuration allows efficient cross-block dependency modeling while sufficiently
propagating information across windows.

5.2 EXPERIMENTAL RESULTS

Evaluation on zero-shot datasets with accuracy. Results on multiple zero-shot benchmarks using
accuracy as the evaluation metric demonstrate CBQ’s capabilities on LLMs including OPT (30B,
66B) and LLAMA (30B, 65B) (as shown in Table 1). Across almost all datasets, CBQ outperforms
existing quantization methods by over 2% and reduces the accuracy gap with the full precision
model to within 1% under the W4A16, W2A16 and W4A8 quantization settings. This demonstrates
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Table 1: Evaluation on multiple zero-shot datasets with the accuracy ↑ metric, where the Mutual
dataset is evaluated with the Mean Reciprocal Rank/Recall@1/Recall@2 metrics. CBQ∗ represents
that the experiments conducted with 2-bit weight-only quantization did not fully quantize the model
but only the FC2 layer of the first and last transformer blocks are converted to 4-bit precision.

Models #Bits Methods PIQA HellaSwag ARC-C ARC-E Mutual Ethics

OPT-30B

FP - 78.18 72.27 38.14 65.40 69.72 / 48.83 / 74.98 60.28

W4A16
GPTQ 78.10 71.50 37.54 63.88 68.64 / 47.40 / 74.27 58.64

OmniQuant 78.06 71.29 37.98 65.19 69.34 / 48.64 /74.71 58.73
CBQ 78.36 72.23 38.06 65.35 69.77 / 49.32 / 74.47 61.31

W2A16
GPTQ 66.38 52.55 28.41 43.86 64.50 / 41.08 / 68.62 52.15

OmniQuant 72.85 66.81 35.98 56.65 62.36 / 43.12 / 68.62 53.64
CBQ 76.19 66.90 36.23 59.72 68.20 / 47.29 / 72.23 52.10
CBQ* 78.29 71.18 36.95 64.01 69.49 / 48.76 / 75.06 60.05

W4A8
OmniQuant 77.20 71.17 37.11 64.60 68.81 / 47.51 / 74.60 59.17

RPTQ 76.93 71.25 37.45 63.46 68.98 / 47.67 / 74.75 59.21
CBQ 78.26 71.55 37.89 64.92 69.01 / 47.72 / 74.81 59.23

W4A4 OmniQuant 75.38 67.47 33.27 61.23 67.12 / 45.14 / 72.34 56.30
CBQ 75.89 67.49 34.81 61.58 67.73 / 45.94 / 73.14 56.60

OPT-66B

FP - 79.81 74.86 40.01 67.26 69.84 / 48.87 / 74.94 58.14

W4A16
GPTQ 79.32 73.15 38.95 65.45 69.10/ 48.46 / 74.26 54.90

OmniQuant 79.43 73.27 38.97 66.85 69.04 / 48.45 / 74.24 55.87
CBQ 79.71 74.69 39.18 67.38 69.50 / 48.65 / 74.83 57.35

W2A16
GPTQ 54.24 52.55 23.04 32.28 60.45 / 35.56 / 61.74 49.50

OmniQuant 77.01 73.10 34.65 66.32 65.26 / 43.23 / 70.47 51.46
CBQ 78.05 73.45 35.37 66.84 67.34 / 45.31 / 72.45 55.95
CBQ* 79.21 74.32 38.96 67.11 69.32 / 48.35 / 74.69 56.78

W4A8
OmniQuant 77.12 73.56 37.65 65.89 68.25 / 47.63 / 73.85 56.93

RPTQ 77.52 74.01 38.82 64.60 68.54 / 47.87 / 73.94 56.95
CBQ 79.12 74.21 39.25 67.16 69.07 / 48.32 / 74.53 56.98

W4A4 OmniQuant 77.85 71.76 37.20 63.29 68.20 / 46.61 / 73.02 55.54
CBQ 78.01 72.34 37.56 63.78 68.76 / 47.20 / 73.56 55.82

LLAMA1-30B

FP - 80.09 79.21 45.39 58.92 72.45 / 53.49 /78.21 57.42

W4A16
GPTQ 79.62 78.81 44.54 58.42 72.30 / 52.93 / 77.44 56.30

OmniQuant 79.83 78.95 46.26 59.34 72.29 / 53.38 / 77.65 56.21
CBQ 80.12 79.11 46.65 59.89 72.85 / 53.95 / 78.56 57.85

W2A16
GPTQ 51.03 26.34 26.02 28.87 56.53 / 29.80 / 58.13 52.72

OmniQuant 77.23 73.85 43.52 55.23 70.62 / 50.89 / 74.96 50.36
CBQ 77.23 75.05 42.93 57.12 69.96 / 49.93 /75.65 56.35

CBQ∗ 80.09 78.85 45.05 58.42 72.74 / 53.95 /78.44 57.65

W4A8 OmniQuant 78.95 76.34 44.62 57.36 71.03 / 52.89 / 77.06 57.05
CBQ 79.34 78.98 45.13 58.45 71.35 / 53.23 / 77.64 57.19

W4A4
OmniQuant 71.21 64.65 34.47 49.45 67.10 / 45.37 / 71.44 47.69

QLLM 73.83 67.91 38.40 50.67 - -
CBQ 76.33 72.74 42.92 54.50 70.12 / 50.45 / 74.73 48.70

LLAMA1-65B

FP - 80.79 80.72 46.24 58.71 73.03 / 54.17 / 79.12 61.75

W4A16
GPTQ 80.79 79.86 45.45 58.13 72.89 / 53.84 / 78.57 58.45

OmniQuant 81.01 80.30 45.74 58.41 72.99 / 54.06 / 79.11 60.12
CBQ 81.12 80.76 45.98 58.64 73.06 / 54.29 / 78.89 61.49

W2A16
GPTQ 56.47 33.31 25.43 31.69 59.28 / 33.86 / 60.49 50.93

OmniQuant 79.50 72.38 40.35 52.56 69.50 / 48.64 / 74.94 52.64
CBQ 78.12 74.28 41.64 55.35 70.67 / 50.80 / 75.51 55.95
CBQ* 81.07 80.51 45.81 57.45 73.43 / 54.96 / 79.23 61.35

W4A8 OmniQuant 79.21 78.96 44.63 57.68 72.24 / 53.89 / 78.65 59.68
CBQ 79.95 79.30 45.43 58.12 72.83 / 54.27 / 79.02 61.25

W4A4
OmniQuant 71.81 66.81 35.92 48.02 68.49 / 47.29 / 73.70 57.19

QLLM 73.56 70.94 39.68 52.06 - -
CBQ 77.69 76.65 43.25 56.01 70.93 / 51.35 / 75.62 57.50

stronger zero-shot capability. Moreover, unlike current techniques, CBQ uniquely achieves ultra-low
quantization down to W4A4 while maintaining a higher performance than the state-of-the-arts. The
consistent gains verify the generalization of CBQ’s innovations across models and datasets.

Evaluation on generation datasets with perplexity. Results in Table 2 demonstrate our method’s
generation performance on C4, WikiText2 using weight-only quantized OPT and LLAMA models.
Focusing on ultra-low bitwidths, we achieve over 1% higher perplexity versus GPTQ at W4A16.
These consistent improvements at low bitwidths highlight our advantages in preserving generative
quality under aggressive compression rates.
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Table 2: Evaluation quantization on generation datasets with the perplexity (PPL) ↓ metric, where
‘OmniQ’ represents OmniQuant.

#Bits Methods OPT-30B OPT-66B LLAMA1-30B LLAMA1-65B
C4 Wiki C4 Wiki C4 Wiki C4 Wiki

FP - 10.69 9.56 10.28 9.34 5.98 4.10 5.62 3.53

W4A16
GPTQ 10.80 9.63 10.50 9.55 6.16 4.34 5.77 3.77
OmniQ 10.80 9.71 10.63 9.37 6.06 4.19 5.68 3.62
CBQ 10.73 9.65 10.31 9.41 6.03 4.14 5.62 3.59

W2A16
GPTQ 1.6e4 9.1e3 4.3e3 6.3e3 7.2e3 1.3e4 8.8e3 1.1e4
OmniQ 12.80 11.00 12.13 10.59 9.02 7.14 7.78 6.01
CBQ 12.01 10.51 11.19 10.25 7.65 5.58 7.42 5.25
CBQ* 10.92 10.26 10.39 9.48 6.02 4.21 5.73 3.73

W4A8 OmniQ 10.96 9.95 10.73 9.52 6.45 4.58 6.12 3.96
RPTQ 11.01 10.22 10.57 9.46 - - - -
CBQ 10.86 9.83 10.42 9.44 6.25 4.32 5.96 3.84

W4A4
OmniQ 11.89 10.60 11.35 10.29 12.49 10.33 11.28 9.17
QLLM - - - - 11.51 8.37 8.89 6.87
CBQ 11.79 10.34 11.02 9.45 9.73 7.96 7.52 5.89

5.3 ABLATION STUDY

To analyze the contribution of each component in our proposed CBQ method, we performed ablation
experiments on the LLAMA-7B model under W4A4.

Table 3: Ablation studies on the proposed CBD, CFP and LoRA-Rounding.

(a) Ablation of the CFP

Method C4 ↓ Wiki ↓
w/o outlier pre-processing 1082.68 1128.33

w/ OMSE (Choukroun et al. (2019)) 76.43 47.81

w/ Percentile (Zhou et al. (2017)) 71.62 45.86

w/ OS (Wei et al. (2022b)) 41.57 26.36

w/ Smoothquant (Xiao et al. (2022)) 33.21 25.26

w/ CFP-Activation 23.48 19.75

w/ CFP-Weight + CFP-Activation 21.98 17.95

w/ OMSE + CBQ-Recon. 25.34 19.53

w/ Percentile + CBQ-Recon. 25.62 19.45

w/ OS + CBQ-Recon. 17.83 13.89

w/ Smoothquant + CBQ-Recon. 15.69 12.24

w/ CFP-Weight+Act + CBQ-Recon. 13.29 10.63

(b) Ablation of the LoRA-Rounding

Method PPL ↓
C4 Wiki #Epochs GPU (GB)

w/o Rounding 14.32 11.46 3 18.83

w/ Adarounding 14.56 11.64 3 27.73

w/ Rounding 13.86 10.98 3 27.73
w/ Rounding 13.58 10.72 6 27.73

w/ LoRA-Rounding 13.29 10.63 3 21.01

(c) Ablation on the CBD
#Num of blocks Overlap C4↓ Wiki↓ GPU (GB)

1 0 14.57 11.98 17.2

2 0 14.23 11.35 21
1 13.29 10.63 21

4
0 14.32 11.45 39
1 13.27 10.60 39
2 12.56 9.56 39
3 12.32 9.45 39

Cross-block dependency. To analyze the impact of our proposed CBD method, we performed
ablation experiments in Table 3c. Results demonstrate performance gains as the number of blocks
jointly processed per sliding window increases, validating CBD’s ability to model inter-block depen-
dencies. Furthermore, utilizing overlapping blocks between adjacent sliding windows supplements
cross-window relational representation. This redundancy helps capture nuanced block interactions
and enables additional accuracy improvements. Overall, these ablation studies highlight the bene-
fits of CBD for progressively accumulating and propagating cross-block knowledge during CBQ
optimization. For additional experimental results, please refer to Appendix D and E.

LoRA-Rounding. As shown in Table 3b, ’w/ Rounding’ indicates a modification in the training
strategy for the compensation matrix, compared to the traditional ’w/ Adarounding’ approach. This
change leads to a significant improvement in accuracy. Overall, LoRA-Rounding leverages low-rank
decomposition to reduce the number of learnable parameters and adjusts the training strategy, which
not only decreases GPU memory consumption but also enhances training speed.
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Coarse-to-fine pre-processing. As shown in Table 3a and Table 10 in Appendix F, CFP demon-
strates advantages in both weight-activation quantization and weight-only quantization. Furthermore,
we conduct a reconstruction optimization process, referred to as ’CBQ-Recon.’, based on the pre-
processed weights and activations. This two-pronged pre-processing effectively reduces outliers
which are not adequately handled by existing preprocessing techniques like OS (Wei et al. (2022b)),
Smoothquant (Xiao et al. (2022)) etc.

6 CONCLUSION

In this work, we conduct a detailed analysis of error sources in LLMs under low-bit quantization
and identify the critical role of intra-layer and inter-layer dependencies. To address these challenges,
we propose CBQ, a novel method that employs a cross-block reconstruction strategy alongside
Lora-Rounding compensation matrices. This approach effectively establishes long-range inter-layer
dependencies while capturing comprehensive intra-layer dependencies, surpassing traditional layer-
wise and block-wise reconstruction techniques. Additionally, we introduce CFP, a technique designed
to simultaneously detect and manage outliers in both weights and activations. Our experimental results
demonstrate that CBQ significantly outperforms existing PTQ, achieving substantial improvements in
ultra-low bit precision across a variety of tasks, while also offering enhanced computational efficiency
by reducing training resource demands.
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Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina Mcmillan-Major, Gérard Dupont, Stella
Biderman, Anna Rogers, LoubnaBen Allal, Francescode Toni, Giada Pistilli, Olivier Nguyen, So-
maieh Nikpoor, Maraim Masoud, Pierre Colombo, Javierdela Rosa, Paulo Villegas, Tristan Thrush,
Shayne Longpre, Sebastian Nagel, Leon Weber, ManuelRomero Muñoz, Jian Zhu, Danielvan
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A OVERVIEW

Table 4: Comparison of different quantization methods for LLMs.

Method Quantize W/A Gradient-Based Cross-Block Dependency Weight Outlier Activation Outlier Rounding Error

GPTQ (Frantar et al. (2022b)) !/% % % % % %

RPTQ (Yuan et al. (2023)) !/! % % % ! %

OS+ (Wei et al. (2023)) !/! % % % ! %

SmoothQuant (Xiao et al. (2022)) !/! % % % ! %

OmniQuant (Shao et al. (2023)) !/! ! % ! ! %

QLLM (Liu et al. (2023a)) !/! ! % % ! %

CBQ (Ours) !/! ! ! ! ! !

In Table 4, we compare the designed components of our CBQ with the existing quantization methods
for LLMs. We can observe a comparison of the different components incorporated in various
quantization methods LLMs. Our proposed CBQ method stands out by including multiple essential
components to address the challenges associated with LLM quantization.

Firstly, CBQ ensures that both weight and activation values are quantized to improve computational
efficiency and reduce memory requirements. This aligns with the requirements of other methods such
as RPTQ, OS+, and SmoothQuant, and is different from GPTQ. Additionally, CBQ incorporates a
gradient-based optimization approach, allowing for efficient optimization during the quantization
process. This component is also present in OmniQuant and QLLM, signifying its significance in
achieving accurate quantization results. Furthermore, CBQ introduces the cross-block dependency
(CBD) component, enabling the modeling of long-range dependencies between adjacent blocks. This
ensures better information flow and integration across multiple blocks, surpassing the capabilities of
other methods such as OmniQuant and QLLM. Moreover, CBQ addresses the presence of weight and
activation outliers, which can significantly impact the quantization process. By effectively handling
these outliers, CBQ surpasses the capabilities of OS+, SmoothQuant, OmniQuant, and QLLM, which
either do not consider or only partially address this issue. Lastly, CBQ accounts for rounding errors,
a critical aspect of quantization. By incorporating a rounding error reduction scheme, CBQ ensures
more accurate and reliable quantization results. This component is absent in all other compared
methods.

In summary, our CBQ method outperforms existing quantization methods for LLMs by incorporating
a comprehensive set of components that collectively address the challenges associated with LLM
quantization. These components work synergistically to enhance the precision, accuracy, and
efficiency of the quantization process, making CBQ a promising approach for LLM quantization.

B ABLATION ON THE LOSS FUNCTIONS

Table 5: Ablation study on block-wise reconstruction loss functions.

KL loss L2 loss C4 Wiki

% ! 13.82 11.13
! % 13.84 11.12
! ! 13.29 10.63

To determine optimal loss formulations, we evaluate reconstruction errors using L2 alone, KLD alone,
and a combination of them in Table 5. Ablation results demonstrate superior performance from KLD
over L2, with the combined loss achieving further gains. This highlights the benefits of KLD for
matching full-precision block distributions during CBQ optimization. Fusing both losses enables
jointly minimizing absolute and divergence-based errors to improve overall block-wise reconstruction.
Our analysis verifies the advantage of blended L2 + KLD loss for robustly optimizing blocks as
interdependent components.
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C THE CAPABILITY OF CBQ ON THE LLAMA2-7B

To demonstrate the effectiveness of CBQ, we evaluate CBQ on the LLAMA2-7B model across
various datasets and observed that it delivers excellent results.

Table 6: Evaluation on multiple zero-shot datasets and generation datasets on the LLAMA2-7B

#Bits Methods PIQA HellaSwag ARC-C ARC-E Mutual Ethics c4 ↓ Wiki ↓
FP - 76.93 72.95 40.69 53.21 70.92/51.12/75.84 52.63 6.97 5.47

W4A16 OmniQuant 77.14 71.86 40.18 53.70 70.00/50.46/74.74 53.10 7.12 5.58
CBQ 77.34 72.23 40.22 53.66 70.49/50.90/74.83 53.13 7.05 5.52

W3A16 OmniQuant 75.91 70.95 38.71 51.89 69.12/48.33/72.65 52.58 7.75 6.03
CBQ 76.25 71.34 39.21 52.36 69.35/49.02/73.15 52.67 7.56 5.89

W2A16 OmniQuant 68.71 53.43 30.88 39.81 65.12/42.21/69.18 50.54 12.72 9.62
CBQ 71.59 60.28 32.93 45.74 66.22/44.35/69.63 57.22 11.30 8.01

W4A4
QLLM 67.68 58.45 30.89 44.4 - - 13.26 11.75

OmniQuant 65.94 53.53 30.80 43.94 64.83/41.87/68.84 47.29 18.39 14.61
CBQ 68.25 57.34 31.56 46.23 64.89/41.87/68.74 47.59 12.56 11.32

W4A8 CBQ 76.85 72.06 40.16 53.34 70.23/50.12/74.89 52.56 7.12 5.72

W6A6 OmniQuant 76.82 72.13 39.33 53.36 69.57/49.67/73.62 52.62 7.48 5.87
CBQ 77.58 72.14 40.27 53.87 70.16/50.22/74.83 53.02 7.24 5.67

D THE POTENTIAL FOR SCALING WITH CBD

To further investigate the scaling potential of cross-block dependency (CBD), we conducted additional
experiments to explore whether increasing its scale could lead to further performance improvements.

Table 7: The scaling capability of CBQ on the LLAMA-7B under W4A4

#Num of blocks Overlap C4↓ Wiki↓
1 0 14.57 11.98

2 0 14.23 11.35
1 13.29 10.63

4
0 14.32 11.45
1 13.27 10.60
2 12.56 9.56
3 12.32 9.45

8
0 13.56 10.78
4 11.91 9.01
7 11.86 8.96

Table 8: The capability of CBD on the LLAMA2-7B

# Num of blocks Overlap LLAMA2-7b-W2A16 LLAMA2-7b-W4A4
C4 Wiki C4 Wiki

1 0 12.34 9.12 14.28 12.33

2 0 11.89 8.76 13.85 11.96
1 11.30 8.01 12.56 11.32

4

0 11.32 8.05 12.52 11.35
1 11.12 7.95 12.15 11.01
2 11.08 7.89 11.85 10.83
3 10.92 7.82 11.5 10.62

As shown in the Table 7,8, we validate the proposed cross-block quantization in the W2A16 and the
W4A4 experimental settings. Our ablation analysis in these settings underscores the robustness and
versatility of CBD, showcasing its inherent simplicity to ensure seamless deployment across various
quantization settings.
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E EFFICIENCY OF THE CBD

In order to further study the various performances with CBD, we performed the following experiments.
This table below illustrates the training time, GPU memory usage, and the number of cross-block
dependencies employed in the W2A16 quantization of the LLAMA-7B model.

Table 9: Ablation of the cross-block dependency (CBD) with W2A16.

#Num of blocks Overlap C4↓ Wiki ↓ time (h) GPU memory(GB)

1 0 12.72 9.62 1.09 17.2

2
0 12.56 9.34 1.50 21
1 12.30 8.87 3.02 21

4

0 12.34 8.89 1.10 39
1 11.63 8.59 1.40 39
2 11.42 8.28 1.96 39
3 11.21 8.08 2.60 39

Our CBD considers dependencies between two blocks within a sliding window, distinguishing it
from existing methods that focus solely on individual block dependencies. This unique design yields
significant performance improvements while incurring additional GPU overhead. Additionally, by
incorporating overlapping windows, CBD enhances cross-block dependencies without requiring
additional GPU memory usage.

F THE THEORETICAL FOUNDATION OF CFP

Existing outlier detection methods often assume that data follow a normal distribution, which is
not always strictly applicable to real-world datasets. Our approach avoids assuming specific data
distributions, providing flexibility in capturing outliers across diverse datasets. The quartile criterion
is robust to outliers, as it is not heavily influenced by extreme values.

We give two commonly used methods as follows:

• 3σ (sigma) rule: This method assumes that data follows a normal distribution. Typically,
data points that are more than two to three standard deviations away from the mean are
considered outliers.

• Percentile-based method: This method uses percentiles to detect outliers.

Our quartile criterion follows the existing analysis (Massart et al. (2005)), which includes the
maximum value, minimum value, median, and upper and lower quartiles, to detect outliers. This
approach does not require any assumptions about the distribution of the data and does not impose
any restrictive requirements on the data. It simply portrays the true shape of the data, providing an
objective way to identify outliers.
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Figure 3: Outliers pre-processing for weights and activations. The red dashed line indicates the
truncation threshold for weight outliers, and the deep blue line represents the reserved subset. The
light blue boxes depict activation outliers that undergo per-channel scaling.
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Table 10: The capability of CFP on the LLAMA2-7B

Method C4 ↓ Wiki ↓
w/o outlier pre-processing 1082.68 1128.33

w/ OMSE (Choukroun et al. (2019)) 76.43 47.81

w/ Percentile (Zhou et al. (2017)) 71.62 45.86

w/ OS (Wei et al. (2022b)) 41.57 26.36

w/ Smoothquant (Xiao et al. (2022)) 33.21 25.26

w/ CFP-Activation 23.48 19.75

w/ CFP-Weight + CFP-Activation 21.98 17.95

w/ OMSE + CBQ-Recon. 25.34 19.53

w/ Percentile + CBQ-Recon. 25.62 19.45

w/ OS + CBQ-Recon. 17.83 13.89

w/ Smoothquant + CBQ-Recon. 15.69 12.24

w/ CFP-Weight+Act + CBQ-Recon. 13.29 10.63

G COMPARISON OF QUANTIZATION EFFICIENCY

Table 11: Comparison of training (GPU Hours) time of our CBQ with OmniQuant.

LLAMA 7B 13B 30B 65B

OmniQuant 1.1h 2.2h 4.5h 8.9h
CBQ 0.9h 1.45 2.1h 4.3h

We evaluate the quantization efficiency of our weight-only CBQ quantization method and compare it
to OmniQuant which is the representative reconstruction-based PTQ methods. The GPU training
hours for both methods are shown in Table 11. The results demonstrate that the training cost of CBQ
can be faster than OmniQuant, particularly for larger models. This indicates that our CBQ method
offers an advantage in terms of training efficiency.

H ABLATION OF THE RANK OF LORA-ROUNDING

The ablation of the rank of LoRA-Rounding is in the Table 12 below. It is observed that with lower
ranks (3, 4, and 5), there is a slight improvement in performance. However, as the rank increases
beyond 5, the performance starts to decline. Considering the limited training resources available
for LLMs, it is worth noting that a larger rank in LoRA-Rounding results in a higher number of
parameters that need to be optimized. This increased parameter complexity poses a significant
challenge and ultimately leads to poorer performance and results.

Table 12: Ablation of the rank of LoRA-Rounding.

Dataset Rank = 3 Rank = 4 Rank = 5 Rank = 6 Rank = 7

C4↓ 13.4 13.35 13.29 13.46 13.98
Wiki↓ 10.89 10.71 10.63 10.86 11.05

I EVALUATION QUANTIZATION FOR A SERIES OF OPT MODELS

To further demonstrate the performance of the proposed CBQ, we conducted additional evaluations
under the OPT models as shown in Table 13.
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Table 13: Evaluation quantization for a series of OPT models on generation datasets with the
perplexity ↓ metric

#Bits Methods OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B

C
4

FP - 14.72 13.16 11.74 11.20

W4A16
GPTQ 15.57 13.75 12.15 11.36
CBQ 15.42 13.56 11.92 11.29

W2A16
OmniQuant 27.33 19.16 15.44 14.16

CBQ 15.99 13.83 12.19 11.52

W
ik

ite
xt

2 FP - 14.62 12.47 10.86 10.12

W4A16
GPTQ 15.56 12.82 11.41 10.31
CBQ 15.10 13.58 11.10 10.24

W2A16
OmniQuant 23.95 18.13 14.43 12.94

CBQ 15.40 17.92 11.19 10.43

J EVALUATION QUANTIZATION FOR LLAMA2 AND OPT ON W6A6

To further demonstrate the performance of the proposed CBQ, we conducted additional evaluations
under the W6A6 setting on Llama2 and OPT models,as shown in Table 14.

Table 14: Evaluation quantization for LLAMA2 and OPT on W6A6

#Bits Methods PIQA HellaSwag ARC-C ARC-E Mutual Ethics C4↓ Wiki↓

LLAMA2-7B

FP - 76.93 72.95 40.69 53.21 70.92/51.12/75.84 52.63 6.97 5.47

W6A6
Omniquant 76.82 72.13 39.33 53.36 69.57/49.67/73.62 52.62 7.48 5.87

CBQ 77.58 72.14 40.27 53.87 70.16/50.22/74.83 53.02 7.24 5.67

OPT-6.7B

FP - 76.49 67.18 34.64 60.14 69.02/47.85/74.71 57.65 11.74 10.86

W6A6
Omnquant 75.89 66.73 33.61 60.05 67.95/46.16/73.70 55.95 11.81 10.96

CBQ 76.60 66.84 33.98 60.90 69.48/48.97/74.72 57.42 11.79 10.95

K COARSE-TO-FINE PREPROCESSING ALGORITHM

Table 15: Ablation of the CFP for LLAMA-7B on W4A16.

Bits Method C4↓ Wiki ↓ PIQA HellaSwag ARC-C ARC-E

W4A16
CFP 7.22 5.78 77.62 / 76.69 55.61 / 71.94 37.22 / 39.69 66.79 / 52.98
CBD 7.2 5.75 78.12 / 77.69 55.56 / 72.16 38.39 / 40.18 67.21 / 53.03
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Algorithm 1: Coarse-to-Fine Preprocessing
Input: The input tensor X ,

The balancing coefficient λ1, λ2

Output: Outlier O
1 Coarse-grained Detection;
2 Xsorted = Sort(X);
3 Q1 = X[n/4], Q3 = X[3n/4];
4 IQR = Q3 −Q1;
5 T = Q3 + λ1IQR;
6 O = {x|x > T, x ∈ Xsorted};
7 { Fine-grained Detection.}
8 N = Len(O),M∗ = INF;
9 foreach i = 0 to N do

10 Ooutlier = Oi:N ;
11 Oreserved = O0:i;
12 Mintra = Var(Oreserved);
13 Minter = (Min(Ooutlier)− Max(Oreserved))

2;
14 M = Minter − λ2Mintra;
15 if M > M∗ then
16 O∗ = Ooutlier;
17 M∗ = M .
18 end
19 end
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