11 A Evaluating Text-to-Vision generation models with GENERATE ANY SCENE

612 A.1 Experiment Settings

615

618

619

620

621

622

623

624

625

626

629

630

631

632

633

634

635

636

637

638

642

643

644

645

646

647

648

649

Models. We conduct experiments on 12 Text-to-image models [54] 50, 22, 51, 52, 55, 56, 57, 58, 3, 9

Text-to-Video models [63] 83, 62, 60, 61, 64, 67, 66, 65, and 5 Text-to-3D models [68, 71, 69, 4, 70].

- For *Text-to-Image generation*, we select a range of open-source models, including those utilizing UNet backbones, such as *DeepFloyd IF* [54], *SDv2.1* [22], *SDXL* [50], *Playground v2.5* [51], and *Wuerstchen v2* [52], as well as models with DiT backbones, including *SD3 Medium* [55], *PixArt-α* [56], *PixArt-Σ* [57], *FLUX.1-schnell* [58], *FLUX.1-dev* [58], and FLUX 1. Closed-source models, such as *DaLL-E 3* [3] and *FLUX1.1 PRO* [58], are also assessed to ensure a comprehensive comparison. All models are evaluated at a resolution of 1024 × 1024 pixels.
- For Text-to-Video generation, we select nine open-source models: ModelScope [63], ZeroScope [83], Text2Video-Zero [62], CogVideoX-2B [66], VideoCrafter2 [65], AnimateLCM [61], AnimateDiff [60], FreeInit [64], and Open-Sora 1.2 [67]. We standardize the frame length to 16 across all video models for fair comparisons.
- For Text-to-3D generation, we evaluate five recently proposed models: SJC [69], Dream-Fusion [68], Magic3D [71], Latent-NeRF [70], and ProlificDreamer [4]. We employ the implementation and configurations provided by ThreeStudio [84] and generate videos by rendering from 120 viewpoints. To accelerate inference, we omit the refinement stage. For Magic3D and DreamFusion, we respectively use DeepFloyd IF and SDv2.1 as their 2D backbones.

Metrics. Across all *Text-to-Vision generation* tasks, we use *Clip Score* [49] (semantic similarity), *VQA Score* [37] (faithfulness), *TIFA Score* [23] [31] (faithfulness), *Pick Score* [85] (human preference), and *ImageReward Score* [86] (human preference) as general metrics:

- Clip Score: Assesses semantic similarity between images and text.
- VQA Score and TIFA Score: Evaluate faithfulness by generating question-answer pairs and measuring answer accuracy from images.
- Pick Score and ImageReward Score: Capture human preference tendencies.
- We also use metrics in VBench [87] to evaluate *Text-to-Video generation* models on fine-grained dimensions, such as consistency and dynamics, providing detailed insights into video performance.
- For *Text-to-Video generation* and *Text-to-3D generation* tasks:
 - We calculate Clip Score, Pick Score, and ImageReward Score on each frame, then average
 these scores across all frames to obtain an overall video score.
 - For *VQA Score* and *TIFA Score*, we handle *Text-to-Video generation* and *Text-to-3D generation* tasks differently:
 - \circ In *Text-to-Video generation* tasks, we uniformly sample four frames from the 16-frame sequence and arrange them in a 2 × 2 grid image.
 - For Text-to-3D generation tasks, we render images at 45-degree intervals from nine different viewpoints and arrange them in a 3 × 3 grid.
- This sampling approach optimizes inference speed without affecting score accuracy [37].
- Synthetic captions. We evaluate our *Text-to-Image generation* and *Text-to-Video generation* models on 10K randomly generated captions, with scene graph complexity ranging from 3 to 12 and scene attributes from 0 to 5, using unrestricted metadata. The captions exhibit an average graph degree of 1.15, with values spanning from 0.0 to 0.8. The mean number of connected components per scene graph is 3.51, ranging from 1 to 11. For *Text-to-3D generation* models, due to their limitations in handling complex captions and time-intensive generation, we restrict scene graph complexity to 1-3, scene attributes to 0-2, and evaluate on 1K captions.

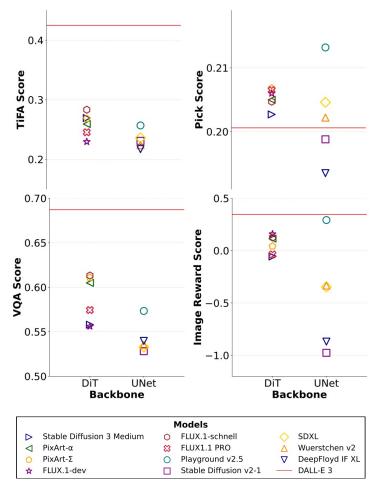


Figure 7: Comparative evaluation of *Text-to-Image generation* models across different backbones (DiT and UNet) using multiple metrics: *TIFA Score*, *Pick Score*, *VQA Score*, and *ImageReward Score*.

658 A.2 Overall results

We evaluate *Text-to-Image generation*, *Text-to-Video generation*, and *Text-to-3D generation* models on GENERATE ANY SCENE.

Table 3: Overall performance of *Text-to-Image generation* models over 10K GENERATE ANY SCENE captions. †Evaluated on a 1K caption subset due to inference cost constraints.

Model	clip score	pick score	vqa score	tifa score	image reward score
Playground v2.5 51	0.2581	0.2132	0.5734	0.2569	0.2919
Stable Diffusion v2-1 [22]	0.2453	0.1988	0.5282	0.2310	-0.9760
SDXL [50]	0.2614	0.2046	0.5328	0.2361	-0.3463
Wuerstchen v2 52	0.2448	0.2022	0.5352	0.2239	-0.3339
DeepFloyd IF XL [54]	0.2396	0.1935	0.5397	0.2171	-0.8687
Stable Diffusion 3 Medium [55]	0.2527	0.2027	0.5579	0.2693	-0.0557
PixArt- α [56]	0.2363	0.2050	0.6049	0.2593	0.1149
PixArt- Σ [57]	0.2390	0.2068	0.6109	0.2683	0.0425
FLUX.1-dev [58]	0.2341	0.2060	0.5561	0.2295	0.1588
FLUX.1-schnell [58]	0.2542	0.2047	0.6132	0.2833	0.1251
FLUX1.1 PRO 58 †	0.2315	0.2065	0.5744	0.2454	-0.0361
Dalle-3 3	0.2518	0.2006	0.6871	0.4249	0.3464

Text-to-Image generation results. (Figure 7, Table 3)

- 1. DiT-backbone models outperform UNet-backbone models on *VQA Score* and *TIFA Score*, indicating greater faithfulness and comprehensiveness to input captions.
- 2. Despite using a UNet architecture, *Playground v2.5* achieves higher *Pick Score* and *ImageReward Score* scores than other open-source models. We attribute this to *Playground v2.5* 's alignment with human preferences achieved during training.
- 3. The closed-source model *DaLL-E 3* maintains a significant lead in *VQA Score*, *TIFA Score*, and *ImageReward Score*, demonstrating strong faithfulness and alignment with captions across generated content.

770 Text-to-Video generation results. (Table 4.5)

Table 4: Overall performance of open-source *Text-to-Video generation* models over 10K GENERATE ANY SCENE captions. Red Cell is the highest score. Yellow Cell is the second highest score. †Close-source models are evaluated on a 1K caption subset due to high inference cost.

Model	clip score	pick score	image reward score	VQA score	TiFA score
VideoCraft2 [65]	0.2398	0.1976	-0.4202	0.5018	0.2466
AnimateLCM [61]	0.2450	0.1987	-0.5754	0.4816	0.2176
AnimateDiff [60]	0.2610	0.1959	-0.7301	0.5255	0.2208
Open-Sora 1.2 [67]	0.2259	0.1928	-0.6277	0.5519	0.2414
FreeInit [64]	0.2579	0.1950	-0.9335	0.5123	0.2047
ModelScope [63]	0.2041	0.1886	-1.9172	0.3840	0.1219
Text2Video-Zero [62]	0.2539	0.1933	-1.2050	0.4753	0.1952
CogVideoX-2B [66]	0.2038	0.1901	-1.2301	0.4585	0.1997
ZeroScope [83]	0.2289	0.1933	-1.1599	0.4892	0.2388
KLING 1.6 [88] [†]	0.2215	0.1985	-0.3419	0.5307	0.2802
Wanx 2.1 [89] [†]	0.2308	0.1969	-0.1418	0.5970	0.3328

Table 5: Overall performance of open-source *Text-to-Video generation* models over 10K GENERATE ANY SCENE captions with VBench metrics. Red Cell is the highest score. Blue Cell is the lowest score.

Model	subject consistency	background consistency	motion smoothness	dynamic degree	aesthetic quality	imaging quality
Open-Sora 1.2	0.9964	0.9907	0.9973	0.0044	0.5235	0.6648
Text2Video-Zero	0.8471	0.9030	0.8301	0.9999	0.4889	0.7018
VideoCraft2	0.9768	0.9688	0.9833	0.3556	0.5515	0.6974
AnimateDiff	0.9823	0.9733	0.9859	0.1406	0.5427	0.5830
FreeInit	0.9581	0.9571	0.9752	0.4440	0.5200	0.5456
ModelScope	0.9795	0.9831	0.9803	0.1281	0.3993	0.6494
AnimateLCM	0.9883	0.9802	0.9887	0.0612	0.6323	0.6977
CogVideoX-2B	0.9583	0.9602	0.9823	0.4980	0.4607	0.6098
ZeroScope	0.9814	0.9811	0.9919	0.1670	0.4582	0.6782

- 1. Open-source text-to-video models face challenges in balancing dynamics and consistency (Table 5). This is especially evident in *Open-Sora 1.2*, which achieves high consistency but minimal dynamics, and *Text2Video-Zero*, which excels in dynamics but suffers from frame inconsistency.
- 2. All models exhibit negative *ImageReward Score* (Table 4), suggesting a lack of human-preferred visual appeal in the generated content, even in cases where certain models demonstrate strong semantic alignment.
- 3. As expected, SOTA close-source text-to-video models outperform others overall, particularly in image reward, VQA score, and TIFA score. This indicates their superior alignment with human preferences, as well as stronger faithfulness and compositional capabilities in generation.

 Among open-source models, VideoCrafter2 strikes a balance across key metrics, leading in human-preference alignment, faithfulness, consistency, and dynamic.

34 Text-to-3D generation results. (Table 6)

682

683

685

686

687

688

689

690

691

692

696

697

698

699

700

701

702

703

704

Table 6: Overall performance of *Text-to-3D generation* models over 1K GENERATE ANY SCENE captions. [†]Evaluated on a 100 caption subset due to high inference cost.

Model	clip score	pick score	vqa score	tifa score	image reward score
Latent-NeRF [70]	0.2115	0.1910	0.4767	0.2216	-1.5311
DreamFusion-sd [68]	0.1961	0.1906	0.4421	0.1657	-1.5582
Magic3D-sd [71]	0.1947	0.1903	0.4193	0.1537	-1.6327
SJC [69]	0.2191	0.1915	0.5015	0.2563	-1.4370
DreamFusion-IF [68]	0.1828	0.1857	0.3872	0.1416	-1.9353
Magic3D-IF [71]	0.1919	0.1866	0.4039	0.1537	-1.8465
ProlificDreamer [4]	0.2125	0.1940	0.5411	0.2704	-1.2774
Meshy-4 [90] [†]	0.2163	0.1922	0.5290	0.2908	-1.0496

- Among open-source models, ProlificDreamer outperforms other models, particularly in ImageReward Score, VQA Score and TIFA Score.
- 2. All models receive negative *ImageReward Score* scores, highlighting a significant gap between human preference and current *Text-to-3D generation* generation capabilities.
- 3. Meshy-4 demonstrates overall superior performance compared to all open-source models, especially in terms of *Clip Score*, *TIFA Score* and *ImageReward Score*, reflecting its strengths in semantic generation and human preference alignment.

A.3 More Analysis with GENERATE ANY SCENE

With GENERATE ANY SCENE, we can generate infinitely diverse and highly controllable captions.
Using GENERATE ANY SCENE, we conduct several analyses to provide insights into the performance of today's *Text-to-Vision generation* models.

A.3.1 Performance analysis across caption properties

In this section, we delve into how model performance varies with respect to distinct properties of GENERATE ANY SCENE captions. While GENERATE ANY SCENE is capable of generating an extensive diversity of captions, these outputs inherently differ in key characteristics that influence model evaluation. Specifically, we examine three properties of the caption: Commonsense, Perplexity, and Scene Graph Complexity (captured as the number of elements in the captions). These properties are critical in understanding how different models perform across a spectrum of linguistic and semantic challenges presented by captions with varying levels of coherence, plausibility, and compositional richness.

Perplexity. (Figure 8) Perplexity is a metric used to measure a language model's unpredictability or uncertainty in generating a text sequence. A higher perplexity value indicates that the sentences are less coherent or less likely to be generated by the model.

As shown in Figure 709 As shown in Figure 709 As shown in Figure 709 Ecome less reasonable and less typical of those generated by a language model, we observe no 710 clear or consistent trends across all models and metrics. This suggests that the relationship between 711 perplexity and model performance varies depending on the specific model and evaluation metric.

Commonsense. (Figure 9) Commonsense is an inherent property of text. We utilize the Vera Score 91, a metric generated by a fine-tuned LLM to evaluate the text's commonsense level.

As shown in Figure 9, from left to right, as the Vera Score increases—indicating that the captions exhibit greater commonsense reasoning—we observe a general improvement in performance across

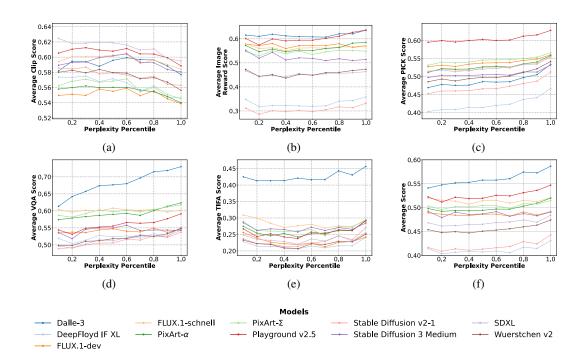


Figure 8: Average performance of models across different percentiles of perplexity of captions, evaluated on various metrics. From left to right, the perplexity decreases, indicating captions that are progressively more reasonable and easier for the LLM to generate.

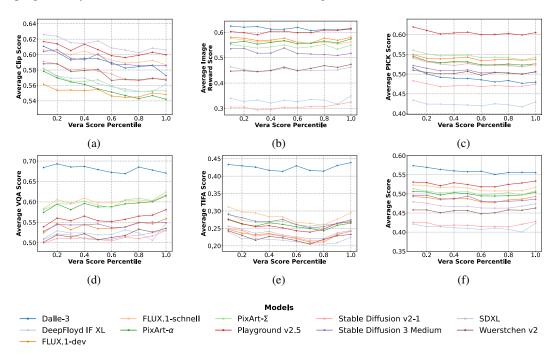


Figure 9: Average performance of models across different percentiles of Vera Score for captions, evaluated on various metrics. From left to right, the Vera Score decreases, indicating captions that exhibit less commonsense reasoning and are more likely to describe implausible scenes.

all metrics and models, except for *Clip Score*. This trend underscores the correlation between commonsense-rich captions and enhanced model performance.

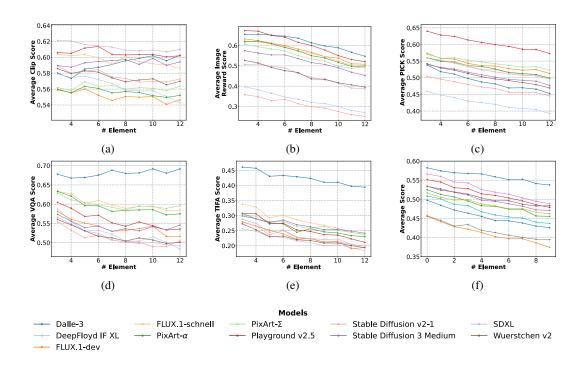


Figure 10: Average performance of models across different numbers of elements (objects + attributes + relations) in the scene graph (complexity of the scene graph) of the captions, evaluated on various metrics. From left to right, as the number of elements (complexity) increases, the scene graphs become more complicated and compositional.

Element Numbers (Complexity of Scene Graph). (Figure 10) Finally, we evaluate model performance across total element numbers in the captions, which represent the complexity of scene graphs (objects + attributes + relations).

From left to right, the complexity of scene graphs becomes higher, reflecting more compositional and intricate captions. Across most metrics and models, we observe a noticeable performance decline as the scene graphs become more complex. However, an interesting exception is observed in the performance of *DaLL-E 3*. Unlike other models, *DaLL-E 3* performs exceptionally well on *VQA Score* and *TIFA Score*, particularly on *VQA Score*, where it even shows a slight improvement as caption complexity increases. This suggests that *DaLL-E 3* may have a unique capacity to handle complex and compositional captions effectively.

A.3.2 Analysis on different metrics

Compared with most LLM and VLM benchmarks that use multiple-choice questions and accuracy as metrics. There is no universal metric in evaluating *Text-to-Vision generation* models. Researchers commonly used model-based metrics like *Clip Score*, *VQA Score*, etc. Each of these metrics is created and fine-tuned for different purposes with bias. Therefore, we also analysis on different metrics.

Clip Score isn't a universal metric. Clip Score is one of the most widely used metrics in Text-to-Vision generation for evaluating the alignment between visual content and text. However, our analysis reveals that Clip Score is not a perfect metric and displays some unusual trends. For instance, as shown in Figures [8], [9], and [10] we compute the perplexity across 10K captions used in our study, where higher perplexity indicates more unpredictable or disorganized text. Interestingly, unlike other metrics, Clip Score decreases as perplexity lowers, suggesting that Clip Score tends to favor more disorganized text. This behavior is counterintuitive and highlights the potential limitations of using Clip Score as a robust alignment metric.

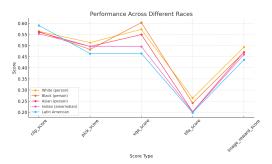


Figure 11: Average performance scores of all models across different genders evaluated using various metrics.

Figure 12: Average performance scores of all models across different races evaluated using various metrics.

Limitations of human preference-based metrics. We use two metrics fine-tuned using human preference data: Pick Score and ImageReward Score. However, we found that these metrics exhibit 742 a strong bias toward the data on which they were fine-tuned. For instance, as shown in Table 3, 743 Pick Score assigns similar scores across all models, failing to provide significant differentiation or 744 meaningful insights into model performance. In contrast, ImageReward Score demonstrates clearer 745 preferences, favoring models such as DaLL-E 3 and Playground v2.5, which incorporated human-746 alignment techniques during their training. However, this metric shows a significant drawback: 747 it assigns disproportionately large negative scores to models like SDv2.1, indicating a potential 748 over-sensitivity to alignment mismatches. Such behavior highlights the limitations of these metrics in providing fair and unbiased evaluations across diverse model architectures. 750

VQA Score and **TIFA Score** are relative reliable metrics. Among the evaluated metrics, **VQA Score** and **TIFA Score** stand out by assessing model performance on VQA tasks, rather than relying solely on subjective human preferences. This approach enhances the interpretability of the evaluation process. Additionally, we observed that the results from **VQA Score** and **TIFA Score** show a stronger correlation with other established benchmarks. Based on these advantages, we recommend prioritizing these two metrics for evaluation. However, it is important to note that their effectiveness is constrained by the limitations of the VQA models utilized in the evaluation.

A.3.3 Fairness analysis

751

753

754

755

756

757

758

768

769

We evaluate fairness by examining the model's performance across different genders and races. Specifically, we calculate the average performance for each node and its associated child nodes within the taxonomy tree constructed for objects. For example, the node "females" includes child nodes such as "waitresses," and their combined performance is considered in the analysis.

Gender. In gender, we observe a notable performance gap between females and males, as could be seen from Figure 11. Models are better at generating male concepts.

Race. There are also performance gaps in different races. From Figure 12, we found that "white (person)" and "black (person)" perform better than "asian (person)", "Indian (amerindian)", and "Latin American".

A.3.4 Correlation of GENERATE ANY SCENE with other *Text-to-Vision generation* benchmarks

The GENERATE ANY SCENE benchmark uniquely relies entirely on synthetic captions to evaluate models. To assess the transferability of these synthetic captions, we analyzed the consistency in model rankings across different benchmarks [79, 38, 92]. Specifically, we identified the overlap of models evaluated by two benchmarks and computed the Spearman correlation coefficient between their rankings.

As shown in the figure 13, GENERATE ANY SCENE demonstrates a strong correlation with other benchmarks, such as Conceptmix [79] and GenAI Bench [38], indicating the robustness and reliability

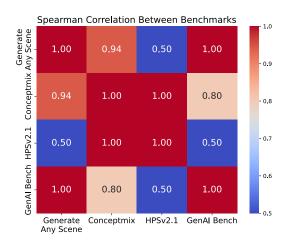
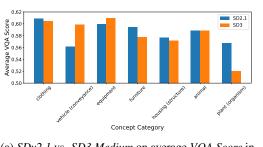
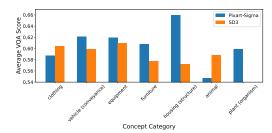
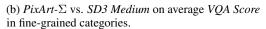


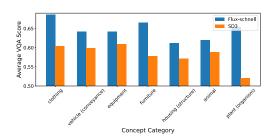
Figure 13: Correlation of GENERATE ANY SCENE with other popular *Text-to-Vision generation* benchmarks.

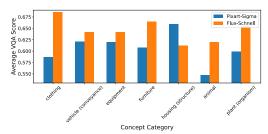




(a) SDv2.1 vs. SD3 Medium on average VQA Score in fine-grained categories.







(c) FLUX.1-schnell vs. SD3 Medium on average VQA Score in fine-grained categories.

777

778

780

781

782

783

784

785

786

787

(d) PixArt- Σ vs. FLUX.1-schnell on average VQA Score in fine-grained categories.

Figure 14: Pairwise comparison on average *VQA Score* in fine-grained categories.

of GENERATE ANY SCENE's synthetic caption-based evaluations. This suggests that the synthetic captions generated by GENERATE ANY SCENE can effectively reflect model performance trends, aligning closely with those observed in benchmarks using real-world captions or alternative evaluation methods.

A.3.5 Case study: Pairwise fine-grained model comparison

Evaluating models using a single numerical average score can be limiting, as different training data often lead models to excel in generating different types of concepts. By leveraging the taxonomy we developed for GENERATE ANY SCENE, we can systematically organize these concepts and evaluate each model's performance on specific concepts over the taxonomy. This approach enables a more detailed comparison of how well models perform on individual concepts rather than relying solely on an overall average score. Our analysis revealed that, while the models may achieve similar average

- performance, their strengths and weaknesses vary significantly across different concepts. Here we present a pairwise comparison of models across different metrics.

B Details of Taxonomy of Visual Concepts

To construct a scene graph, we utilize three primary types of metadata: objects, attributes, and relations, which represent the structure of a visual scene. Additionally, scene attributes—which include factors like image style, perspective, and video time span—capture broader aspects of the visual content. Together, the scene graph and scene attributes form a comprehensive representation of the scene.

Our metadata is further organized using a well-defined taxonomy, enhancing the ability to generate controllable captions. This hierarchical taxonomy not only facilitates the creation of diverse scene graphs, but also enables fine-grained and systematic model evaluation.

Objects. To enhance the comprehensiveness and taxonomy of object data, we leverage noun synsets and the structure of WordNet [32]. In WordNet, a *physical object* is defined as "a tangible and visible entity; an entity that can cast a shadow." Following this definition, we designate the *physical object* as the root node, constructing a hierarchical tree with all 28,787 hyponyms under this category as the set of objects in our model.

Following WordNet's hypernym-hyponym relationships, we establish a tree structure, linking each object to its primary parent node based on its first-listed hypernym. For objects with multiple hypernyms, we retain only the primary parent to simplify the hierarchy. Furthermore, to reduce ambiguity, if multiple senses of a term share the same parent, we exclude that term itself and reassign its children to the original parent node. This approach yields a well-defined and disambiguated taxonomy.

Attributes. The attributes of a scene graph represent properties or characteristics associated with each object. We classify these attributes into *nine* primary categories. For *color*, we aggregate 677 unique entries sourced from Wikipedia [33]. The *material* category comprises 76 types, referenced from several public datasets [93] [94] [95]. The *texture* category includes 42 kinds from the Describable Textures Dataset [96], while the *architectural style* encompasses 25 distinct styles [97]. Additionally, we collect 85 states, 41 shapes, and 24 sizes. For human descriptors, we compile 59 terms across subcategories, including body type and height. Finally, we collect 465 common adjectives covering general characteristics of objects to enhance the descriptive richness of our scene graphs.

Relationships. We leverage the Robin dataset [34] as the foundation for relationship metadata, encompassing six key categories: spatial, functional, interactional, social, emotional, and symbolic. With 10,492 relationships, the dataset provides a comprehensive and systematic repository that supports modeling diverse and complex object interactions. Its extensive coverage captures both tangible and abstract connections, forming a robust framework for accurate scene graph representation.

Scene Attributes. In *Text-to-Vision generation* tasks, people mainly focus on creating realistic images and art from a text description [98, 2, 3]. For artistic styles, we define scene attributes using 76 renowned *artists*, 41 genres, and 126 painting styles from WikiArt [99], along with 29 common painting techniques. For realistic imagery, we construct camera settings attributes across 6 categories: camera models, focal lengths, perspectives, apertures, depths of field, and shot scales. The camera models are sourced from the 1000 Cameras Dataset [100], while the remaining categories are constructed based on photography knowledge and common captions in *Text-to-Vision generation* tasks [11, 101]. To control scene settings, we categorize location, weather and lighting attributes, using 430 diverse locations from Places365 [35], alongside 76 weathers and 57 lighting conditions. For video generation, we introduce attributes that describe dynamic elements. These include 12 types of camera rig, 30 distinct camera movements, 15 video editing styles, and 27 temporal spans. The comprehensive scene attributes that we construct allow for the detailed and programmatic *Text-to-Vision generation* generation.

836 C Details of self-improving models with synthetic captions (Section 3)

837 C.1 Experiment details

838 C.1.1 Captions Preparation

- To evaluate the effectiveness of our iterative self-improving *Text-to-Vision generation* model, we generated three distinct sets of 10K captions using GENERATE ANY SCENE, covering a sample complexity range from 3 to 12. These captions were programmatically created to reflect a spectrum of structured scene graph compositions, designed to challenge and enrich the model's learning capabilities.
- For comparative analysis, we leveraged the Conceptual Captions (CC3M) 102 dataset, a large-scale benchmark containing approximately 3.3 million image-caption pairs sourced from web alt-text descriptions. CC3M is renowned for its diverse visual content and natural language expressions, encompassing a wide range of styles, contexts, and semantic nuances.
- To ensure fair comparison, we randomly sampled three subsets of 10K captions from the CC3M dataset, matching the GENERATE ANY SCENE-generated caption sets in size. This approach standardizes data volume while enabling direct performance evaluation. The diversity and semantic richness of the CC3M captions serve as a robust benchmark to assess whether GENERATE ANY SCENE-generated captions can match or exceed the descriptive quality of real-world data across varied visual contexts.

854 C.1.2 Dataset Construction and Selection Strategies

- For the captions generated by GENERATE ANY SCENE, we employed a top-scoring selection strategy to construct the fine-tuning training dataset, using a random selection strategy as a baseline for comparison. Specifically, for each caption, the model generated eight images. Under the top-scoring strategy, we evaluated the generated images using the VQA score and selected the highest-scoring image as the best representation of the caption. This process yielded 10K top-ranked images per iteration, from which the top 25% (approximately 2.5k images) with the highest VQA scores were selected to form the fine-tuning dataset.
- In the random selection strategy, one image was randomly chosen from the eight generated per caption, and 25% of these 10K randomly selected images were sampled to create the fine-tuning dataset, maintaining parity in data size.
- For the CC3M dataset, each caption was uniquely paired with a real image. From the 10K real image-caption pairs sampled from CC3M, the top 25% with the highest VQA scores were selected as the fine-tuning training dataset. This ensured consistency in data size and selection criteria across all methods, facilitating a rigorous and equitable comparison of fine-tuning strategies.

869 C.1.3 Fine-tuning details

- We fine-tuned the SDv1.5 using the LoRA technique. The training was conducted with a resolution of 512 \times 512 for input images and a batch size of 8. Gradients were accumulated over two steps. The optimization process utilized the AdamW optimizer with $\beta_1=0.9,\,\beta_2=0.999,\,$ an ϵ value of $1\times10^{-8},\,$ and a weight decay of $10^{-2}.\,$ The learning rate was set to 1×10^{-4} and followed a cosine scheduler for smooth decay during training. To ensure stability, a gradient clipping threshold of 1.0 was applied. The fine-tuning process was executed for one epoch, with a maximum of 2500 training steps. For the LoRA-specific configurations, we set the rank of the low-rank adaptation layers and the scaling factor α to be 128.
- After completing fine-tuning for each epoch, we set the LoRA weight to 0.75 and integrate it into SDv1.5 to guide image generation and selection for the next subset. For the CC3M dataset, images from the subsequent subset are directly selected.
- In the following epoch, the fine-tuned LoRA parameters from the previous epoch are loaded and used to resume training on the current subset, ensuring continuity and leveraging the incremental improvements from prior iterations.

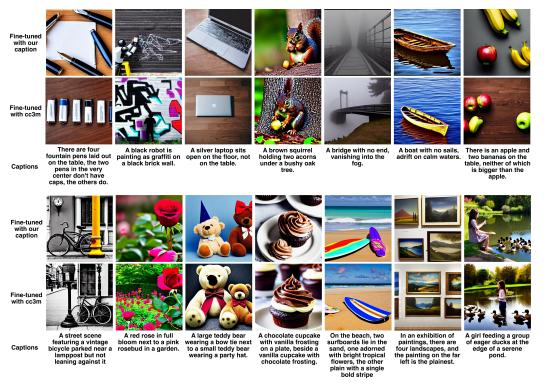


Figure 15: Visualization of Different Caption Fine-Tuning.

In Figure 15 we present results using our captions and the CC3M captions. The model fine-tuned with captions generated by GENERATE ANY SCENE demonstrates superior performance in terms of text semantic relevance and the generation of complex compositional scenes.

C.2 More results of fine-tuning models

Aside from our own test set and GenAI benchmark, we also evaluated our fine-tuned *Text-to-Image generation* models on the Tifa Bench (Figure 16), where we observed the same trend: models fine-tuned with our captions consistently outperformed the original *SDv1.5* and CC3M fine-tuned models.

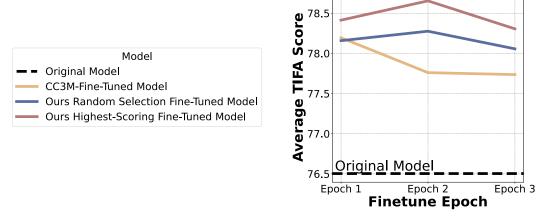


Figure 16: **Results for Application 1: Self-Improving Models**. Average TIFA score of *SDv1.5* fine-tuned with different data over TIFA Bench.

D Details of distilling targeted capabilities (Section 4)

893 D.1 Collecting hard concepts

- We selected 81 challenging object concepts where *SDv1.5* and *DaLL-E 3* exhibit the largest gap in *VQA Score*. To determine the score for each concept, we calculated the average VQA score of the captions containing that specific concept. The full list of hard concepts is shown below:
- 1. cloverleaf
- 898 2. aerie (habitation)
- 3. admixture
- 900 4. webbing (web)
- 901 5. platter
- 902 6. voussoir
- 903 7. hearthstone
- 904 8. puttee
- 905 9. biretta
- 906 10. yarmulke
- 907 11. surplice
- 908 12. overcoat
- 909 13. needlepoint
- 910 14. headshot
- 911 15. photomicrograph
- 912 16. lavaliere
- 913 17. crepe
- 914 18. tureen
- 915 19. bale
- 916 20. jetliner
- 917 21. square-rigger
- 918 22. supertanker
- 919 23. pocketcomb
- 920 24. filament (wire)
- 921 25. inverter
- 922 26. denture
- 923 27. lidar
- 924 28. volumeter
- 925 29. colonoscope
- 926 30. synchrocyclotron
- 927 31. miller (shaper)
- 928 32. alternator
- 929 33. dicer
- 930 34. trundle
- 931 35. paddle (blade)
- 932 36. harmonica
- 933 37. piccolo
- 934 38. handrest

- 935 39. rundle
- 936 40. blowtorch
- 937 41. volleyball
- 938 42. tile (man)
- 939 43. shuttlecock
- 940 44. jigsaw
- 941 45. roaster (pan)
- 942 46. maze
- 943 47. belt (ammunition)
- 944 48. gaddi
- 945 49. drawer (container)
- 946 50. tenter
- 947 51. pinnacle (steeple)
- 948 52. pegboard
- 53. afterdeck
- 950 54. scaffold
- 951 55. catheter
- 952 56. broomcorn
- 953 57. spearmint
- 954 58. okra (herb)
- 955 59. goatsfoot
- 956 60. peperomia
- 957 61. ammobium
- 958 62. gazania
- 959 63. echinocactus
- 960 64. birthwort
- 961 65. love-in-a-mist (passionflower)
- 962 66. ragwort
- 963 67. spicebush (allspice)
- 964 68. leadplant
- 965 69. barberry
- 966 70. hamelia
- 967 71. jimsonweed
- 968 72. undershrub
- 969 73. dogwood
- 970 74. butternut (walnut)
- 971 75. bayberry (tree)
- 972 76. lodestar
- 973 77. tapa (bark)
- 974 78. epicalyx
- 975 79. blackberry (berry)
- 976 80. stub
- 977 81. shag (tangle)

D.2 Experiment details

978

We conducted targeted fine-tuning experiments on SDv1.5 to evaluate GENERATE ANY SCENE'S 979 effectiveness in distilling model compositionality and learning hard concepts. For each task, we 980 selected a dataset of 778 GENERATE ANY SCENE captions paired with images generated by DaLL-981 E 3. For compositionality, we selected multi-object captions from the existing dataset of 10K 982 GENERATE ANY SCENE captions and paired them with the corresponding images generated by 983 DaLL-E 3. To address hard concept learning, we first used SDv1.5 to generate images based on 984 the 10K GENERATE ANY SCENE captions and identified the hard concepts with the lowest VQA 985 scores. These concepts were then used to create a subset of objects, which we recombined into our 986 scene-graph based captions with complexity levels ranging from 3 to 9. Finally, we used DaLL-E 3 987 to generate corresponding images for these newly composed captions. 988

The fine-tuning configurations were consistent with those used in the self-improving setup (Appendix C.1.3). To accommodate the reduced dataset size, the maximum training steps were set to 1000.

As a baseline, we randomly selected 778 images from 10K GENERATE ANY SCENE-generated images, using captions produced by GENERATE ANY SCENE. This ensured a controlled comparison between the targeted and random fine-tuning strategies.

Details of reinforcement learning with a synthetic reward function (Section 5)

E.1 Training data preparation

We adopt SimpleAR-0.5B-SFT [26] as our base model. Given that SImpleAR-0.5B-SFT is pretrained on high-quality real image datasets such as LAION [11] and CC3M [12], we aim to mitigate potential distributional shift between the original training data and the reinforcement learning phase. To this end, we perform metadata pre-selection for GENERATE ANY SCENE by analyzing the frequency of each object category appearing in the LAION dataset. Leveraging the controllable compositional capabilities of GENERATE ANY SCENE, we filter object categories by selecting the top 10% most frequent entries and constrain scene complexity to 3–6 objects per scene. Based on these conditions, we synthesize a set of 10K captions, ensuring semantic alignment with the base model's pretraining distribution while maintaining structural and content diversity.

E.2 Experiment details

The detailed training configuration is provided in Table 7. We utilize $8 \times \text{NVIDIA H}100 \text{ GPUs}$ (80GB HBM3), with one GPU allocated for online generation using vLLM. The total training time is approximately 14 hours.

Table 7: Scene-graph based GRPO Fine-tuning Configuration for SimpleAR

Component	Details
Model Name	SimpleAR-0.5B-SFT
Model Size	\sim 0.5B parameters
Training Policy	GRPO
Inference Engine	vLLM (GPU utilization = 0.7)
Completion Length	4096 tokens
Training Epochs	1
Batch Size per Device	4
Learning Rate	1×10^{-5}
Scheduler	Cosine Annealing (min lr rate = 0.1)
Warm-up Ratio	0.1
Gradient Accumulation	1

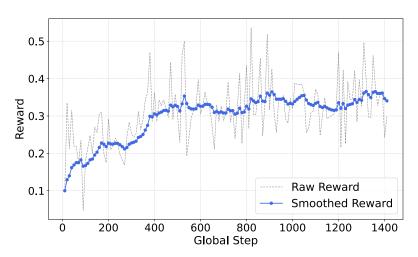


Figure 17: Reward progression during scene-graph based GRPO training.

Figure 17 illustrates the reward progression during training. A noticeable improvement in reward is observed following the application of a learning rate of 1e-5 combined with a warm-up strategy.

- Overall, the reward increases by approximately 0.2, indicating effective learning under the adjusted training configuration.
- In Table 2, we observe that the reproduced results of baseline models on DPG-Bench and GenEval
- Bench are slightly lower than those reported in the original paper. Considering the inherent stochas-
- ticity in generative model outputs, we cite the original results for comparison. For GenAI-Bench, all
- reported results are based on our own experimental evaluations.

F Details of improving generated-content detection (Section 6)

F.1 Experiment details

1019

1020

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

In this section, our goal is to validate that the more diverse captions generated by GENERATE ANY SCENE can complement existing datasets, which are predominantly composed of real-world images paired with captions. By doing so, we aim to train AI-generated content detectors to achieve greater robustness.

Dataset preparation We conducted comparative experiments between captions generated by Generate Any Scene and entries from the D^3 dataset. From the D^3 dataset, we randomly sampled 10K entries, each including a caption, a link to a real image, and an image generated by SD v1.4. Due to some broken links, we successfully downloaded 8.5K real images and retained 10K SD v1.4-generated images. We also used SD v1.4 to generate images based on 10K Generate Any Scene captions.

We varied the training data sizes based on the sampled dataset. Specifically, we sampled N real images from the 10K D^3 real images. For synthetic data, we compared N samples exclusively from D^3 with a mixed set of N/2 samples from 10K GENERATE ANY SCENE images and N/2 sampled from D^3 , ensuring a total of N synthetic samples. Combined, this resulted in 2N training images. We tested 2N across various sizes, ranging from 2K to 10K.

Detector architecture and training We employed ViT-T 47 and ResNet-18 103 as backbones for the detection models. Their pretrained parameters on ImageNet-21K were frozen, and the final classification head was replaced with a linear layer using a sigmoid activation function to predict the probability of an image being AI-generated. During training, We used Binary Cross-Entropy (BCE) as the loss function, and the AdamW optimizer was applied with a learning rate of $2e^{-3}$. Training was conducted with a batch size of 256 for up to 50 epochs, with early stopping triggered after six epochs of no improvement in validation performance.

Testing To evaluate the performance of models trained with varying dataset sizes and synthetic data combinations, we tested them on both GenImage and GENERATE ANY SCENE datasets to assess their in-domain and out-of-domain performance under different settings.

For GenImage, we used validation data from four models: SD v1.4, SD v1.5, MidJourney, and VQDM. Each validation set contained 8K real images and 8k generated images. For GENERATE ANY SCENE, we sampled 10K real images from CC3M and paired them with 10K generated images from each of the following models: SDv2.1, PixArt-α, SD3 Medium, and Playground v2.5. This created distinct test sets for evaluating model performance across different synthetic data sources.

Table 8: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D^3 and D^3 + GENER-ATE ANY SCENE Across In-Domain Settings

Detector I	Data Scale (2N)	SDv1.4 (In-domain, same model)		SDv2.1 Pixart-α		-α	SDv3-medium		Playground v2.5		Average (In-domain, cross model)		
	(214)	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3
	2K	0.6561	0.6663	0.7682	0.6750	0.7379	0.606	0.7509	0.6724	0.7380	0.5939	0.7488	0.6368
	4K	0.6751	0.6812	0.7624	0.6853	0.7328	0.6494	0.7576	0.7028	0.7208	0.6163	0.7434	0.6635
Resnet-18	6K	0.6780	0.6995	0.7886	0.6870	0.7493	0.6586	0.7768	0.7285	0.7349	0.6335	0.7624	0.6769
	8K	0.6828	0.6964	0.7710	0.6741	0.7454	0.6418	0.7785	0.7186	0.7215	0.6033	0.7541	0.6595
	10K	0.6830	0.6957	0.7807	0.6897	0.7483	0.6682	0.7781	0.7326	0.7300	0.6229	0.7593	0.6784
	2K	0.6759	0.6672	0.7550	0.6827	0.7585	0.6758	0.7473	0.6941	0.7327	0.6106	0.7484	0.6658
	4K	0.6878	0.6871	0.7576	0.7000	0.7605	0.7071	0.7549	0.7217	0.7221	0.6144	0.7488	0.6858
ViT-T	6K	0.6898	0.6891	0.7663	0.6962	0.7666	0.7164	0.7629	0.7238	0.7303	0.6134	0.7565	0.6875
	8K	0.6962	0.6974	0.7655	0.6894	0.7712	0.7253	0.7653	0.7253	0.7381	0.6344	0.7600	0.6936
	10K	0.6986	0.6984	0.7828	0.6960	0.7777	0.7275	0.7786	0.7334	0.7330	0.6293	0.7680	0.6966

F.2 Results

Table $\[\]$ and Table $\[\]$ evaluate the performance of ResNet-18 and ViT-T detection backbones trained on datasets of varying sizes and compositions across in-domain (same model and cross-model) and out-of-domain settings. While models trained with D^3 and GENERATE ANY SCENE occasionally underperform compared to those trained solely on D^3 in the in-domain same-model setting, they exhibit significant advantages in both in-domain cross-model and out-of-domain evaluations. These results demonstrate that incorporating our data (GENERATE ANY SCENE) into the training process

enhances the detector's robustness. By supplementing existing datasets with GENERATE ANY SCENE under the same training configurations and dataset sizes, detectors achieve stronger cross-model and cross-dataset capabilities, highlighting improved generalizability to diverse generative models and datasets.

Table 9: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D^3 and D^3 + GENER-ATE ANY SCENE Across Out-of-Domain Settings

Detector	Data Scale (2N)	SDv1.5		VQDM		Midjourney		Average (Out-of-domain)	
		D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3
	2K	0.6515	0.6591	0.5629	0.5285	0.5803	0.5647	0.5982	0.5841
	4K	0.6709	0.6817	0.5693	0.5428	0.6016	0.5941	0.6139	0.6062
Resnet-18	6K	0.6750	0.6963	0.5724	0.5327	0.6084	0.6072	0.6186	0.6121
	8K	0.6792	0.6965	0.5716	0.5282	0.6097	0.5873	0.6202	0.6040
	10K	0.6814	0.6955	0.5812	0.5454	0.6109	0.6040	0.6245	0.6150
	2K	0.6755	0.6685	0.5443	0.4966	0.6207	0.6066	0.6135	0.5906
	4K	0.6845	0.6865	0.5591	0.4971	0.6416	0.6149	0.6284	0.5995
ViT-T	6K	0.6900	0.6890	0.5580	0.4948	0.6455	0.6259	0.6313	0.6032
	8K	0.6940	0.6969	0.5553	0.4962	0.6495	0.6387	0.6329	0.6106
	10K	0.6961	0.6988	0.5499	0.4975	0.6447	0.6358	0.6302	0.6107

G Limitation

Programmatically generated prompts can be unrealistic and biased. Programmatically generated prompts can be unrealistic and biased. Although our system is capable of producing a wide range of rare compositional scenes and corresponding prompts, some of these outputs may violate rules or conventions, going beyond what is even considered imaginable or plausible. We also implement a pipeline to filter the commonsense of the generated prompts using the *Vera score* (a large language model-based commonsense metric) and *Perplexity*, but we make this pipeline **optional**.

Linguistic diversity of programmatic prompts is limited. While GENERATE ANY SCENE excels at generating diverse and compositional scene graphs and prompts, its ability to produce varied language expressions is somewhat constrained. The programmatic approach to generating content ensures diversity in terms of the elements of the scene, but it is limited when it comes to linguistic diversity and the richness of expression. To address this, we introduce a pipeline that leverages large language models (LLMs) to paraphrase prompts, enhancing linguistic variety. However, this addition introduces new challenges. LLMs are prone to biases and hallucinations, which can affect the quality and reliability of the output. Furthermore, the use of LLMs risks distorting the integrity of the original scene graph structure, compromising the coherence and accuracy of the generated content. So we make this LLM paraphrase pipeline **optional** for our paper.

Toward curriculum-aware GRPO training. Our proposed GENERATE ANY SCENE framework plays a central role in GRPO training by providing structured scene graphs that serve as the foundation for a semantically grounded and controllable reward function. This design enables effective optimization by aligning generation objectives with fine-grained visual semantics. Beyond this, we also observe that GENERATE ANY SCENE also offers broader potential: the scene graphs it produces vary in complexity, such as in the number of objects, attributes, relationships and graph degree. These variations naturally correspond to different levels of generation difficulty and reward variance. This property suggests an opportunity for curriculum-based training, where the model could be progressively exposed to increasingly complex scene graphs. Such a strategy may improve training stability and efficiency, especially in the early stages of learning. We identify this as a promising direction for future work, further leveraging the controllability of GENERATE ANY SCENE to guide structured policy learning.

1091 Appendix References

- [1] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024. *URL https://openai. com/research/video-generation-models-as-world-simulators*, 3, 2024.
- 1096 [2] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.
- [3] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. **Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.
- [4] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
 Advances in Neural Information Processing Systems, 36, 2024.
- [5] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
 James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion
 transformer for photorealistic text-to-image synthesis. *ArXiv*, abs/2310.00426, 2023.
- 1108 [6] Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Con1109 trolnext: Powerful and efficient control for image and video generation. *arXiv preprint*1110 *arXiv:2408.06070*, 2024.
- [7] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark for open-world compositional text-to-image generation. *ArXiv*, abs/2307.06350, 2023.
- 1114 [8] Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v1115 compbench: A comprehensive benchmark for compositional text-to-video generation. *ArXiv*,
 1116 abs/2407.14505, 2024.
- [9] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:52132–52152, 2023.
- 1120 [10] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.
- [11] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
 Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion 5b: An open large-scale dataset for training next generation image-text models. Advances in
 neural information processing systems, 35:25278–25294, 2022.
- 1126 [12] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
 1127 cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings*1128 of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 1129 Papers), pages 2556–2565, 2018.
- [13] Zejian Li, Chenye Meng, Yize Li, Ling Yang, Shengyuan Zhang, Jiarui Ma, Jiayi Li, Guang Yang, Changyuan Yang, Zhiyuan Yang, et al. Laion-sg: An enhanced large-scale dataset for training complex image-text models with structural annotations. *arXiv preprint* arXiv:2412.08580, 2024.
- 1134 [14] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 1135 Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting
 1136 language and vision using crowdsourced dense image annotations. *International journal of*1137 computer vision, 123:32–73, 2017.

- 1138 [15] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3668–3678, 2015.
- [16] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs
 for dynamic scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2856–2865, 2021.
- 1144 [17] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In
 1145 Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1219–
 1146 1228, 2018.
- [18] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as compositions of spatio-temporal scene graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10236–10247, 2020.
- 1150 [19] Irving Biederman. Recognition-by-components: a theory of human image understanding.

 1151 Psychological review, 94(2):115, 1987.
- 1152 [20] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection
 1153 with language priors. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
 1154 The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 852–869. Springer,
 1155 2016.
- [21] Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu
 Ma, Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. In *Advances in neural information processing systems*, 2024.
- 1159 [22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
 1160 High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF*1161 Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, June 2022.
- 1163 [23] Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question answering, 2023.
- [24] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
 Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis
 Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow instructions
 with human feedback. ArXiv, abs/2203.02155, 2022.
- [25] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 mathematical reasoning in open language models, 2024.
- [26] Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang
 Jiang. Simplear: Pushing the frontier of autoregressive visual generation through pretraining,
 sft, and rl. arXiv preprint arXiv:2504.11455, 2025.
- 1177 [27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini 1178 Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and 1179 Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021.
- 1180 [28] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment, 2024.
- 1182 [29] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
 1183 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
 1184 Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
 1185 recognition at scale, 2021.

- 1186 [30] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In *Proceedings of the IEEE/CVF conference* on computer vision and pattern recognition, pages 6700–6709, 2019.
- 1189 [31] Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit 1190 Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in 1191 fine-grained evaluation for text-to-image generation. *ArXiv*, abs/2310.18235, 2023.
- 1192 [32] George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):39–41, 1995.
- [33] Wikipedia Contributors. Lists of colors. https://en.wikipedia.org/wiki/Lists_of_colors, 2024. Accessed: 2024-11-09.
- [34] Jae Sung Park, Zixian Ma, Linjie Li, Chenhao Zheng, Cheng-Yu Hsieh, Ximing Lu, Khyathi
 Chandu, Quan Kong, Norimasa Kobori, Ali Farhadi, Yejin Choi, and Ranjay Krishna. Synthetic
 visual genome. In CVPR, 2025.
- [35] Alejandro López-Cifuentes, Marcos Escudero-Vinolo, Jesús Bescós, and Álvaro García-Martín. Semantic-aware scene recognition. *Pattern Recognition*, 102:107256, 2020.
- [36] Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Agqa: A benchmark for compositional spatio-temporal reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11287–11297, 2021.
- [37] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. *ArXiv*, abs/2404.01291, 2024.
- [38] Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Emily Li, Xide Xia, Graham Neubig, Pengchuan
 Zhang, and Deva Ramanan. Genai-bench: A holistic benchmark for compositional text-to visual generation. In Synthetic Data for Computer Vision Workshop@ CVPR 2024, 2024.
- 1210 [39] Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles
 1211 Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, and Cyrus Rashtchian. Dreamsync: Align1212 ing text-to-image generation with image understanding feedback. *ArXiv*, abs/2311.17946,
 1213 2023.
- 1214 [40] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
 1215 Weizhu Chen. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685,
 1216 2021.
- 1217 [41] Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu, Yichun Shi, et al. Seedream 2.0: A native chinese-english bilingual image generation foundation model. *arXiv preprint arXiv:2503.07703*, 2025.
- 1220 [42] Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-1221 Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative 1222 semantic-level and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025.
- [43] Gan Pei, Jiangning Zhang, Menghan Hu, Zhenyu Zhang, Chengjie Wang, Yunsheng Wu, Guangtao Zhai, Jian Yang, Chunhua Shen, and Dacheng Tao. Deepfake generation and detection: A benchmark and survey. *arXiv preprint arXiv:2403.17881*, 2024.
- 1226 [44] Tianyi Wang, Xin Liao, Kam Pui Chow, Xiaodong Lin, and Yinglong Wang. Deepfake 1227 detection: A comprehensive survey from the reliability perspective. *ACM Computing Surveys*, 1228 2024.
- 1229 [45] Achhardeep Kaur, Azadeh Noori Hoshyar, Vidya Saikrishna, Selena Firmin, and Feng Xia.
 1230 Deepfake video detection: challenges and opportunities. *Artificial Intelligence Review*, 57(6):1–
 1231 47, 2024.
- [46] Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Alessandro Nicolosi, and Rita Cucchiara.

 Contrasting deepfakes diffusion via contrastive learning and global-local similarities. *arXiv*preprint arXiv:2407.20337, 2024.

- 1235 [47] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
 1236 Tinyvit: Fast pretraining distillation for small vision transformers. In *European conference on computer vision*, pages 68–85. Springer, 2022.
- [48] Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image. *Advances in Neural Information Processing Systems*, 36, 2024.
- 1241 [49] Tuhin Chakrabarty, Kanishk Singh, Arkadiy Saakyan, and Smaranda Muresan. Learning to follow object-centric image editing instructions faithfully. *ArXiv*, abs/2310.19145, 2023.
- [50] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller,
 Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution
 image synthesis. arXiv preprint arXiv:2307.01952, 2023.
- 1246 [51] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Play-1247 ground v2. 5: Three insights towards enhancing aesthetic quality in text-to-image generation. 1248 *arXiv* preprint arXiv:2402.17245, 2024.
- [52] Pablo Pernias, Dominic Rampas, Mats L Richter, Christopher J Pal, and Marc Aubreville. Würstchen: An efficient architecture for large-scale text-to-image diffusion models. *arXiv* preprint arXiv:2306.00637, 2023.
- 1252 [53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
 1253 High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF*1254 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10684–10695, June
 1255 2022.
- 1256 [54] DeepFloyd Lab at StabilityAI. DeepFloyd IF: a novel state-of-the-art open-source text-1257 to-image model with a high degree of photorealism and language understanding. https: 1258 //www.deepfloyd.ai/deepfloyd-if, 2023. Retrieved on 2023-11-08.
- 1259 [55] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine* Learning, 2024.
- [56] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
 James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-\alpha: Fast training of diffusion transformer
 for photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.
- 1266 [57] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-\sigma: Weak-to-strong training of diffusion transformer for 4k text-to-image generation. *arXiv preprint arXiv:2403.04692*, 2024.
- 1269 [58] Black Forest Labs. Flux.1: Advanced text-to-image models, 2024. Accessed: 2024-11-10.
- [59] Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Kelvin
 Chan, Yichang Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, et al. Imagen 3. arXiv
 preprint arXiv:2408.07009, 2024.
- 1273 [60] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. *arXiv* preprint arXiv:2307.04725, 2023.
- 1276 [61] Fu-Yun Wang, Zhaoyang Huang, Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, and Hongsheng Li. Animatelcm: Accelerating the animation of personalized diffusion models and adapters with decoupled consistency learning. *arXiv* preprint arXiv:2402.00769, 2024.
- 1279 [62] Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
 1280 Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion mod1281 els are zero-shot video generators. In *Proceedings of the IEEE/CVF International Conference*1282 on Computer Vision, pages 15954–15964, 2023.

- [63] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Modelscope text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023.
- 1285 [64] Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, and Ziwei Liu. Freeinit: Bridging initialization gap in video diffusion models. In *European Conference on Computer Vision*, pages 378–394. Springer, 2025.
- 1288 [65] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7310–7320, 2024.
- 1292 [66] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
- [67] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
 March 2024.
- [68] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. *arXiv preprint arXiv:2209.14988*, 2022.
- [69] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12619–12629, 2023.
- [70] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-guided generation of 3d shapes and textures. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12663–12673, 2023.
- 1307 [71] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 300–309, 2023.
- 1311 [72] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024.
- 1314 [73] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model scaling. *arXiv preprint arXiv:2501.17811*, 2025.
- [74] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt understanding of text-to-image diffusion models with large language models. *Trans. Mach. Learn. Res.*, 2024, 2023.
- 1320 [75] Jialu Li, Jaemin Cho, Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Selma: Learning and merging skill-specific text-to-image experts with auto-generated data. *ArXiv*, abs/2403.06952, 2024.
- 1323 [76] Rui Zhao, Hangjie Yuan, Yujie Wei, Shiwei Zhang, Yuchao Gu, Lin Hao Ran, Xiang Wang,
 1324 Zhangjie Wu, Junhao Zhang, Yingya Zhang, and Mike Zheng Shou. Evolvedirector: Ap1325 proaching advanced text-to-image generation with large vision-language models, 2024.
- 1326 [77] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell, and Anna Rohrbach. Benchmark for compositional text-to-image synthesis. In *NeurIPS Datasets and Benchmarks*, 2021.
- 1328 [78] Song Wen, Guian Fang, Renrui Zhang, Peng Gao, Hao Dong, and Dimitris Metaxas. Improving compositional text-to-image generation with large vision-language models. *ArXiv*, abs/2310.06311, 2023.

- 1331 [79] Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, and Sanjeev Arora. Conceptmix: A compositional image generation benchmark with controllable difficulty. *ArXiv*, abs/2408.14339, 2024.
- 180] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing real images using guided diffusion models. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6038–6047, 2022.
- 1337 [81] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. *ArXiv*, abs/2208.01618, 2022.
- [82] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
 22500–22510, 2022.
- 1344 [83] Spencer Sterling. zeroscope_v2_576w, 2023. Accessed: 2024-11-10.
- 1345 [84] Y.C. Guo, Y.T. Liu, R. Shao, C. Laforte, V. Voleti, G. Luo, C.H. Chen, Z.X. Zou, C. Wang, Y.P. Cao, and S.H. Zhang. threestudio: A unified framework for 3d content generation. https://github.com/threestudio-project/threestudio, 2023.
- 1348 [85] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. 1349 Pick-a-pic: An open dataset of user preferences for text-to-image generation, 2023.
- [86] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
 2023.
- 1353 [87] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, 1354 Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark 1355 suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21807–21818, 2024.
- 1357 [88] Kling AI. Kling ai text-to-video. https://klingai.com/text-to-video/new, 2025.
 Accessed May 23, 2025.
- [89] Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, 1359 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, 1360 Jinkai Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, 1361 1362 Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei 1363 Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming 1364 Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, 1365 Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, 1366 Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced 1367 large-scale video generative models. arXiv preprint arXiv:2503.20314, 2025. 1368
- 1369 [90] Meshy AI. Meshy ai text-to-3d, image-to-3d, and text-to-texture 3d model generator. 1370 https://www.meshy.ai, 2025. Accessed May 23, 2025.
- 1371 [91] Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A. Smith, Yejin Choi, and Hannaneh 1372 Hajishirzi. Vera: A general-purpose plausibility estimation model for commonsense statements, 1373 2023.
- 1374 [92] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.
- [93] Giuseppe Vecchio and Valentin Deschaintre. Matsynth: A modern pbr materials dataset. In
 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
 22109–22118, 2024.

- [94] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild
 with the materials in context database. In *Proceedings of the IEEE conference on computer* vision and pattern recognition, pages 3479–3487, 2015.
- [95] Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Differential angular imaging for
 material recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 764–773, 2017.
- 1386 [96] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
 1387 Describing textures in the wild. In *Proceedings of the IEEE conference on computer vision*1388 *and pattern recognition*, pages 3606–3613, 2014.
- 1389 [97] Zhe Xu, Dacheng Tao, Ya Zhang, Junjie Wu, and Ah Chung Tsoi. Architectural style classification using multinomial latent logistic regression. In *Computer Vision–ECCV 2014:* 1391 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 1392 13, pages 600–615. Springer, 2014.
- 1393 [98] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
 1394 Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
 1395 Photorealistic text-to-image diffusion models with deep language understanding. *Advances in*1396 neural information processing systems, 35:36479–36494, 2022.
- [99] Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning the right metric on the right feature. *arXiv preprint arXiv:1505.00855*, 2015.
- [100] Colby Crawford. 1000 cameras dataset. https://www.kaggle.com/datasets/crawford/ 1000-cameras-dataset, 2018. Accessed: 2024-11-09.
- [101] Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and
 Duen Horng Chau. DiffusionDB: A large-scale prompt gallery dataset for text-to-image
 generative models. arXiv:2210.14896 [cs], 2022.
- 1404 [102] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.