
A Evaluating Text-to-Vision generation models with GENERATE ANY SCENE611

A.1 Experiment Settings612

Models. We conduct experiments on 12 Text-to-image models [54, 50, 22, 51, 52, 55, 56, 57, 58, 3], 9613

Text-to-Video models [63, 83, 62, 60, 61, 64, 67, 66, 65], and 5 Text-to-3D models [68, 71, 69, 4, 70].614

• For Text-to-Image generation, we select a range of open-source models, including those615

utilizing UNet backbones, such as DeepFloyd IF [54], SDv2.1 [22], SDXL [50], Playground616

v2.5 [51], and Wuerstchen v2 [52], as well as models with DiT backbones, including SD3617

Medium [55], PixArt-ω [56], PixArt-! [57], FLUX.1-schnell [58], FLUX.1-dev [58], and618

FLUX 1. Closed-source models, such as DaLL-E 3 [3] and FLUX1.1 PRO [58], are also619

assessed to ensure a comprehensive comparison. All models are evaluated at a resolution of620

1024 ! 1024 pixels.621

• For Text-to-Video generation, we select nine open-source models: ModelScope [63],622

ZeroScope [83], Text2Video-Zero [62], CogVideoX-2B [66], VideoCrafter2 [65], Ani-623

mateLCM [61], AnimateDiff [60], FreeInit [64], and Open-Sora 1.2 [67]. We standardize624

the frame length to 16 across all video models for fair comparisons.625

• For Text-to-3D generation, we evaluate five recently proposed models: SJC [69], Dream-626

Fusion [68], Magic3D [71], Latent-NeRF [70], and ProlificDreamer [4]. We employ the627

implementation and configurations provided by ThreeStudio [84] and generate videos by628

rendering from 120 viewpoints. To accelerate inference, we omit the refinement stage. For629

Magic3D and DreamFusion, we respectively use DeepFloyd IF and SDv2.1 as their 2D630

backbones.631

Metrics. Across all Text-to-Vision generation tasks, we use Clip Score [49] (semantic similarity),632

VQA Score [37] (faithfulness), TIFA Score [23, 31] (faithfulness), Pick Score [85] (human preference),633

and ImageReward Score [86] (human preference) as general metrics:634

• Clip Score: Assesses semantic similarity between images and text.635

• VQA Score and TIFA Score: Evaluate faithfulness by generating question-answer pairs and636

measuring answer accuracy from images.637

• Pick Score and ImageReward Score: Capture human preference tendencies.638

We also use metrics in VBench [87] to evaluate Text-to-Video generation models on fine-grained639

dimensions, such as consistency and dynamics, providing detailed insights into video performance.640

For Text-to-Video generation and Text-to-3D generation tasks:641

• We calculate Clip Score, Pick Score, and ImageReward Score on each frame, then average642

these scores across all frames to obtain an overall video score.643

• For VQA Score and TIFA Score, we handle Text-to-Video generation and Text-to-3D genera-644

tion tasks differently:645

→ In Text-to-Video generation tasks, we uniformly sample four frames from the 16-frame646

sequence and arrange them in a 2 ! 2 grid image.647

→ For Text-to-3D generation tasks, we render images at 45-degree intervals from nine648

different viewpoints and arrange them in a 3 ! 3 grid.649

This sampling approach optimizes inference speed without affecting score accuracy [37].650

Synthetic captions. We evaluate our Text-to-Image generation and Text-to-Video generation models651

on 10K randomly generated captions, with scene graph complexity ranging from 3 to 12 and scene652

attributes from 0 to 5, using unrestricted metadata. The captions exhibit an average graph degree of653

1.15, with values spanning from 0.0 to 0.8. The mean number of connected components per scene654

graph is 3.51, ranging from 1 to 11. For Text-to-3D generation models, due to their limitations in655

handling complex captions and time-intensive generation, we restrict scene graph complexity to 1-3,656

scene attributes to 0-2, and evaluate on 1K captions.657
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Figure 7: Comparative evaluation of Text-to-Image generation models across different backbones
(DiT and UNet) using multiple metrics: TIFA Score, Pick Score, VQA Score, and ImageReward Score.

A.2 Overall results658

We evaluate Text-to-Image generation, Text-to-Video generation, and Text-to-3D generation models659

on GENERATE ANY SCENE.660

Table 3: Overall performance of Text-to-Image generation models over 10K GENERATE ANY SCENE
captions. †Evaluated on a 1K caption subset due to inference cost constraints.

Model clip score pick score vqa score tifa score image reward score
Playground v2.5 [51] 0.2581 0.2132 0.5734 0.2569 0.2919
Stable Diffusion v2-1 [22] 0.2453 0.1988 0.5282 0.2310 -0.9760
SDXL [50] 0.2614 0.2046 0.5328 0.2361 -0.3463
Wuerstchen v2 [52] 0.2448 0.2022 0.5352 0.2239 -0.3339
DeepFloyd IF XL [54] 0.2396 0.1935 0.5397 0.2171 -0.8687
Stable Diffusion 3 Medium [55] 0.2527 0.2027 0.5579 0.2693 -0.0557
PixArt-ω [56] 0.2363 0.2050 0.6049 0.2593 0.1149
PixArt-! [57] 0.2390 0.2068 0.6109 0.2683 0.0425
FLUX.1-dev [58] 0.2341 0.2060 0.5561 0.2295 0.1588
FLUX.1-schnell [58] 0.2542 0.2047 0.6132 0.2833 0.1251
FLUX1.1 PRO [58]† 0.2315 0.2065 0.5744 0.2454 -0.0361
Dalle-3 [3] 0.2518 0.2006 0.6871 0.4249 0.3464

Text-to-Image generation results. (Figure 7, Table 3)661
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1. DiT-backbone models outperform UNet-backbone models on VQA Score and TIFA Score,662

indicating greater faithfulness and comprehensiveness to input captions.663

2. Despite using a UNet architecture, Playground v2.5 achieves higher Pick Score and Im-664

ageReward Score scores than other open-source models. We attribute this to Playground665

v2.5 ’s alignment with human preferences achieved during training.666

3. The closed-source model DaLL-E 3 maintains a significant lead in VQA Score, TIFA Score,667

and ImageReward Score, demonstrating strong faithfulness and alignment with captions668

across generated content.669

Text-to-Video generation results. (Table 4,5)670

Table 4: Overall performance of open-source Text-to-Video generation models over 10K GENERATE

ANY SCENE captions. Red Cell is the highest score. Yellow Cell is the second highest score.†Close-
source models are evaluated on a 1K caption subset due to high inference cost.

Model clip score pick score image reward
score VQA score TiFA score

VideoCraft2 [65] 0.2398 0.1976 -0.4202 0.5018 0.2466
AnimateLCM [61] 0.2450 0.1987 -0.5754 0.4816 0.2176
AnimateDiff [60] 0.2610 0.1959 -0.7301 0.5255 0.2208
Open-Sora 1.2 [67] 0.2259 0.1928 -0.6277 0.5519 0.2414
FreeInit [64] 0.2579 0.1950 -0.9335 0.5123 0.2047
ModelScope [63] 0.2041 0.1886 -1.9172 0.3840 0.1219
Text2Video-Zero [62] 0.2539 0.1933 -1.2050 0.4753 0.1952
CogVideoX-2B [66] 0.2038 0.1901 -1.2301 0.4585 0.1997
ZeroScope [83] 0.2289 0.1933 -1.1599 0.4892 0.2388
KLING 1.6 [88]† 0.2215 0.1985 -0.3419 0.5307 0.2802
Wanx 2.1 [89]† 0.2308 0.1969 -0.1418 0.5970 0.3328

Table 5: Overall performance of open-source Text-to-Video generation models over 10K GENERATE

ANY SCENE captions with VBench metrics. Red Cell is the highest score. Blue Cell is the lowest
score.

Model subject
consistency

background
consistency

motion
smoothness

dynamic
degree

aesthetic
quality

imaging
quality

Open-Sora 1.2 0.9964 0.9907 0.9973 0.0044 0.5235 0.6648
Text2Video-Zero 0.8471 0.9030 0.8301 0.9999 0.4889 0.7018
VideoCraft2 0.9768 0.9688 0.9833 0.3556 0.5515 0.6974
AnimateDiff 0.9823 0.9733 0.9859 0.1406 0.5427 0.5830
FreeInit 0.9581 0.9571 0.9752 0.4440 0.5200 0.5456
ModelScope 0.9795 0.9831 0.9803 0.1281 0.3993 0.6494
AnimateLCM 0.9883 0.9802 0.9887 0.0612 0.6323 0.6977
CogVideoX-2B 0.9583 0.9602 0.9823 0.4980 0.4607 0.6098
ZeroScope 0.9814 0.9811 0.9919 0.1670 0.4582 0.6782

1. Open-source text-to-video models face challenges in balancing dynamics and consistency671

(Table 5). This is especially evident in Open-Sora 1.2, which achieves high consistency but672

minimal dynamics, and Text2Video-Zero, which excels in dynamics but suffers from frame673

inconsistency.674

2. All models exhibit negative ImageReward Score (Table 4), suggesting a lack of human-675

preferred visual appeal in the generated content, even in cases where certain models demon-676

strate strong semantic alignment.677

3. As expected, SOTA close-source text-to-video models outperform others overall, particularly678

in image reward, VQA score, and TIFA score. This indicates their superior alignment679

with human preferences, as well as stronger faithfulness and compositional capabilities in680

generation.681
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4. Among open-source models, VideoCrafter2 strikes a balance across key metrics, leading in682

human-preference alignment, faithfulness, consistency, and dynamic.683

Text-to-3D generation results. (Table 6)684

Table 6: Overall performance of Text-to-3D generation models over 1K GENERATE ANY SCENE
captions. †Evaluated on a 100 caption subset due to high inference cost.

Model clip score pick score vqa score tifa score image reward
score

Latent-NeRF [70] 0.2115 0.1910 0.4767 0.2216 -1.5311
DreamFusion-sd [68] 0.1961 0.1906 0.4421 0.1657 -1.5582
Magic3D-sd [71] 0.1947 0.1903 0.4193 0.1537 -1.6327
SJC [69] 0.2191 0.1915 0.5015 0.2563 -1.4370
DreamFusion-IF [68] 0.1828 0.1857 0.3872 0.1416 -1.9353
Magic3D-IF [71] 0.1919 0.1866 0.4039 0.1537 -1.8465
ProlificDreamer [4] 0.2125 0.1940 0.5411 0.2704 -1.2774
Meshy-4 [90]† 0.2163 0.1922 0.5290 0.2908 -1.0496

1. Among open-source models, ProlificDreamer outperforms other models, particularly in685

ImageReward Score, VQA Score and TIFA Score.686

2. All models receive negative ImageReward Score scores, highlighting a significant gap687

between human preference and current Text-to-3D generation generation capabilities.688

3. Meshy-4 demonstrates overall superior performance compared to all open-source models,689

especially in terms of Clip Score, TIFA Score and ImageReward Score, reflecting its strengths690

in semantic generation and human preference alignment.691

A.3 More Analysis with GENERATE ANY SCENE692

With GENERATE ANY SCENE, we can generate infinitely diverse and highly controllable captions.693

Using GENERATE ANY SCENE, we conduct several analyses to provide insights into the performance694

of today’s Text-to-Vision generation models.695

A.3.1 Performance analysis across caption properties696

In this section, we delve into how model performance varies with respect to distinct properties of697

GENERATE ANY SCENE captions. While GENERATE ANY SCENE is capable of generating an698

extensive diversity of captions, these outputs inherently differ in key characteristics that influence699

model evaluation. Specifically, we examine three properties of the caption: Commonsense, Perplexity,700

and Scene Graph Complexity (captured as the number of elements in the captions). These properties701

are critical in understanding how different models perform across a spectrum of linguistic and semantic702

challenges presented by captions with varying levels of coherence, plausibility, and compositional703

richness.704

Perplexity. (Figure 8) Perplexity is a metric used to measure a language model’s unpredictability705

or uncertainty in generating a text sequence. A higher perplexity value indicates that the sentences706

are less coherent or less likely to be generated by the model.707

As shown in Figure 8, From left to right, when perplexity increases, indicating that the sentences708

become less reasonable and less typical of those generated by a language model, we observe no709

clear or consistent trends across all models and metrics. This suggests that the relationship between710

perplexity and model performance varies depending on the specific model and evaluation metric.711

Commonsense. (Figure 9) Commonsense is an inherent property of text. We utilize the Vera712

Score [91], a metric generated by a fine-tuned LLM to evaluate the text’s commonsense level.713

As shown in Figure 9, from left to right, as the Vera Score increases—indicating that the captions714

exhibit greater commonsense reasoning—we observe a general improvement in performance across715
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(a) (b) (c)

(d) (e) (f)

Figure 8: Average performance of models across different percentiles of perplexity of captions,
evaluated on various metrics. From left to right, the perplexity decreases, indicating captions that are
progressively more reasonable and easier for the LLM to generate.

(a) (b) (c)

(d) (e) (f)

Figure 9: Average performance of models across different percentiles of Vera Score for captions,
evaluated on various metrics. From left to right, the Vera Score decreases, indicating captions that
exhibit less commonsense reasoning and are more likely to describe implausible scenes.

all metrics and models, except for Clip Score. This trend underscores the correlation between716

commonsense-rich captions and enhanced model performance.717
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(a) (b) (c)

(d) (e) (f)

Figure 10: Average performance of models across different numbers of elements (objects + attributes
+ relations) in the scene graph (complexity of the scene graph) of the captions, evaluated on various
metrics. From left to right, as the number of elements (complexity) increases, the scene graphs
become more complicated and compositional.

Element Numbers (Complexity of Scene Graph). (Figure 10) Finally, we evaluate model718

performance across total element numbers in the captions, which represent the complexity of scene719

graphs (objects + attributes + relations).720

From left to right, the complexity of scene graphs becomes higher, reflecting more compositional and721

intricate captions. Across most metrics and models, we observe a noticeable performance decline722

as the scene graphs become more complex. However, an interesting exception is observed in the723

performance of DaLL-E 3. Unlike other models, DaLL-E 3 performs exceptionally well on VQA724

Score and TIFA Score, particularly on VQA Score, where it even shows a slight improvement as725

caption complexity increases. This suggests that DaLL-E 3 may have a unique capacity to handle726

complex and compositional captions effectively.727

A.3.2 Analysis on different metrics728

Compared with most LLM and VLM benchmarks that use multiple-choice questions and accuracy as729

metrics. There is no universal metric in evaluating Text-to-Vision generation models. Researchers730

commonly used model-based metrics like Clip Score, VQA Score, etc. Each of these metrics is created731

and fine-tuned for different purposes with bias. Therefore, we also analysis on different metrics.732

Clip Score isn’t a universal metric. Clip Score is one of the most widely used metrics in Text-733

to-Vision generation for evaluating the alignment between visual content and text. However, our734

analysis reveals that Clip Score is not a perfect metric and displays some unusual trends. For instance,735

as shown in Figures 8, 9, and 10, we compute the perplexity across 10K captions used in our study,736

where higher perplexity indicates more unpredictable or disorganized text. Interestingly, unlike other737

metrics, Clip Score decreases as perplexity lowers, suggesting that Clip Score tends to favor more738

disorganized text. This behavior is counterintuitive and highlights the potential limitations of using739

Clip Score as a robust alignment metric.740

21



Figure 11: Average performance scores of all
models across different genders evaluated using
various metrics.

Figure 12: Average performance scores of all
models across different races evaluated using
various metrics.

Limitations of human preference-based metrics. We use two metrics fine-tuned using human741

preference data: Pick Score and ImageReward Score. However, we found that these metrics exhibit742

a strong bias toward the data on which they were fine-tuned. For instance, as shown in Table 3,743

Pick Score assigns similar scores across all models, failing to provide significant differentiation or744

meaningful insights into model performance. In contrast, ImageReward Score demonstrates clearer745

preferences, favoring models such as DaLL-E 3 and Playground v2.5, which incorporated human-746

alignment techniques during their training. However, this metric shows a significant drawback:747

it assigns disproportionately large negative scores to models like SDv2.1, indicating a potential748

over-sensitivity to alignment mismatches. Such behavior highlights the limitations of these metrics in749

providing fair and unbiased evaluations across diverse model architectures.750

VQA Score and TIFA Score are relative reliable metrics. Among the evaluated metrics, VQA751

Score and TIFA Score stand out by assessing model performance on VQA tasks, rather than relying752

solely on subjective human preferences. This approach enhances the interpretability of the evaluation753

process. Additionally, we observed that the results from VQA Score and TIFA Score show a stronger754

correlation with other established benchmarks. Based on these advantages, we recommend prioritizing755

these two metrics for evaluation. However, it is important to note that their effectiveness is constrained756

by the limitations of the VQA models utilized in the evaluation.757

A.3.3 Fairness analysis758

We evaluate fairness by examining the model’s performance across different genders and races.759

Specifically, we calculate the average performance for each node and its associated child nodes within760

the taxonomy tree constructed for objects. For example, the node “females” includes child nodes761

such as “waitresses,” and their combined performance is considered in the analysis.762

Gender. In gender, we observe a notable performance gap between females and males, as could be763

seen from Figure 11, Models are better at generating male concepts.764

Race. There are also performance gaps in different races. From Figure 12, we found that "white765

(person)" and "black (person)" perform better than "asian (person)", "Indian (amerindian)", and766

"Latin American".767

A.3.4 Correlation of GENERATE ANY SCENE with other Text-to-Vision generation768

benchmarks769

The GENERATE ANY SCENE benchmark uniquely relies entirely on synthetic captions to evaluate770

models. To assess the transferability of these synthetic captions, we analyzed the consistency in771

model rankings across different benchmarks [79, 38, 92]. Specifically, we identified the overlap of772

models evaluated by two benchmarks and computed the Spearman correlation coefficient between773

their rankings.774

As shown in the figure 13, GENERATE ANY SCENE demonstrates a strong correlation with other775

benchmarks, such as Conceptmix [79] and GenAI Bench [38], indicating the robustness and reliability776
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Figure 13: Correlation of GENERATE ANY SCENE with other popular Text-to-Vision generation

benchmarks.

(a) SDv2.1 vs. SD3 Medium on average VQA Score in
fine-grained categories.

(b) PixArt-! vs. SD3 Medium on average VQA Score

in fine-grained categories.

(c) FLUX.1-schnell vs. SD3 Medium on average VQA

Score in fine-grained categories.
(d) PixArt-! vs. FLUX.1-schnell on average VQA

Score in fine-grained categories.

Figure 14: Pairwise comparison on average VQA Score in fine-grained categories.

of GENERATE ANY SCENE’s synthetic caption-based evaluations. This suggests that the synthetic777

captions generated by GENERATE ANY SCENE can effectively reflect model performance trends,778

aligning closely with those observed in benchmarks using real-world captions or alternative evaluation779

methods.780

A.3.5 Case study: Pairwise fine-grained model comparison781

Evaluating models using a single numerical average score can be limiting, as different training data782

often lead models to excel in generating different types of concepts. By leveraging the taxonomy we783

developed for GENERATE ANY SCENE, we can systematically organize these concepts and evaluate784

each model’s performance on specific concepts over the taxonomy. This approach enables a more785

detailed comparison of how well models perform on individual concepts rather than relying solely on786

an overall average score. Our analysis revealed that, while the models may achieve similar average787
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performance, their strengths and weaknesses vary significantly across different concepts. Here we788

present a pairwise comparison of models across different metrics.789
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B Details of Taxonomy of Visual Concepts790

To construct a scene graph, we utilize three primary types of metadata: objects, attributes, and791

relations, which represent the structure of a visual scene. Additionally, scene attributes—which792

include factors like image style, perspective, and video time span—capture broader aspects of the793

visual content. Together, the scene graph and scene attributes form a comprehensive representation of794

the scene.795

Our metadata is further organized using a well-defined taxonomy, enhancing the ability to generate796

controllable captions. This hierarchical taxonomy not only facilitates the creation of diverse scene797

graphs, but also enables fine-grained and systematic model evaluation.798

Objects. To enhance the comprehensiveness and taxonomy of object data, we leverage noun synsets799

and the structure of WordNet [32]. In WordNet, a physical object is defined as "a tangible and visible800

entity; an entity that can cast a shadow." Following this definition, we designate the physical object801

as the root node, constructing a hierarchical tree with all 28,787 hyponyms under this category as the802

set of objects in our model.803

Following WordNet’s hypernym-hyponym relationships, we establish a tree structure, linking each804

object to its primary parent node based on its first-listed hypernym. For objects with multiple805

hypernyms, we retain only the primary parent to simplify the hierarchy. Furthermore, to reduce806

ambiguity, if multiple senses of a term share the same parent, we exclude that term itself and reassign807

its children to the original parent node. This approach yields a well-defined and disambiguated808

taxonomy.809

Attributes. The attributes of a scene graph represent properties or characteristics associated with810

each object. We classify these attributes into nine primary categories. For color, we aggregate 677811

unique entries sourced from Wikipedia [33]. The material category comprises 76 types, referenced812

from several public datasets [93, 94, 95]. The texture category includes 42 kinds from the Describable813

Textures Dataset [96], while the architectural style encompasses 25 distinct styles [97]. Additionally,814

we collect 85 states, 41 shapes, and 24 sizes. For human descriptors, we compile 59 terms across815

subcategories, including body type and height. Finally, we collect 465 common adjectives covering816

general characteristics of objects to enhance the descriptive richness of our scene graphs.817

Relationships. We leverage the Robin dataset [34] as the foundation for relationship metadata,818

encompassing six key categories: spatial, functional, interactional, social, emotional, and symbolic.819

With 10,492 relationships, the dataset provides a comprehensive and systematic repository that820

supports modeling diverse and complex object interactions. Its extensive coverage captures both821

tangible and abstract connections, forming a robust framework for accurate scene graph representation.822

Scene Attributes. In Text-to-Vision generation tasks, people mainly focus on creating realistic823

images and art from a text description [98, 2, 3]. For artistic styles, we define scene attributes824

using 76 renowned artists, 41 genres, and 126 painting styles from WikiArt [99], along with 29825

common painting techniques. For realistic imagery, we construct camera settings attributes across 6826

categories: camera models, focal lengths, perspectives, apertures, depths of field, and shot scales. The827

camera models are sourced from the 1000 Cameras Dataset [100], while the remaining categories828

are constructed based on photography knowledge and common captions in Text-to-Vision generation829

tasks [1, 101]. To control scene settings, we categorize location, weather and lighting attributes,830

using 430 diverse locations from Places365 [35], alongside 76 weathers and 57 lighting conditions.831

For video generation, we introduce attributes that describe dynamic elements. These include 12832

types of camera rig, 30 distinct camera movements, 15 video editing styles, and 27 temporal spans.833

The comprehensive scene attributes that we construct allow for the detailed and programmatic834

Text-to-Vision generation generation.835
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C Details of self-improving models with synthetic captions (Section 3)836

C.1 Experiment details837

C.1.1 Captions Preparation838

To evaluate the effectiveness of our iterative self-improving Text-to-Vision generation model, we839

generated three distinct sets of 10K captions using GENERATE ANY SCENE, covering a sample840

complexity range from 3 to 12. These captions were programmatically created to reflect a spectrum841

of structured scene graph compositions, designed to challenge and enrich the model’s learning842

capabilities.843

For comparative analysis, we leveraged the Conceptual Captions (CC3M) [102] dataset, a large-scale844

benchmark containing approximately 3.3 million image-caption pairs sourced from web alt-text845

descriptions. CC3M is renowned for its diverse visual content and natural language expressions,846

encompassing a wide range of styles, contexts, and semantic nuances.847

To ensure fair comparison, we randomly sampled three subsets of 10K captions from the CC3M848

dataset, matching the GENERATE ANY SCENE-generated caption sets in size. This approach stan-849

dardizes data volume while enabling direct performance evaluation. The diversity and semantic850

richness of the CC3M captions serve as a robust benchmark to assess whether GENERATE ANY851

SCENE-generated captions can match or exceed the descriptive quality of real-world data across852

varied visual contexts.853

C.1.2 Dataset Construction and Selection Strategies854

For the captions generated by GENERATE ANY SCENE, we employed a top-scoring selection strategy855

to construct the fine-tuning training dataset, using a random selection strategy as a baseline for856

comparison. Specifically, for each caption, the model generated eight images. Under the top-scoring857

strategy, we evaluated the generated images using the VQA score and selected the highest-scoring858

image as the best representation of the caption. This process yielded 10K top-ranked images per859

iteration, from which the top 25% (approximately 2.5k images) with the highest VQA scores were860

selected to form the fine-tuning dataset.861

In the random selection strategy, one image was randomly chosen from the eight generated per862

caption, and 25% of these 10K randomly selected images were sampled to create the fine-tuning863

dataset, maintaining parity in data size.864

For the CC3M dataset, each caption was uniquely paired with a real image. From the 10K real865

image-caption pairs sampled from CC3M, the top 25% with the highest VQA scores were selected as866

the fine-tuning training dataset. This ensured consistency in data size and selection criteria across all867

methods, facilitating a rigorous and equitable comparison of fine-tuning strategies.868

C.1.3 Fine-tuning details869

We fine-tuned the SDv1.5 using the LoRA technique. The training was conducted with a resolution870

of 512 ↑ 512 for input images and a batch size of 8. Gradients were accumulated over two steps.871

The optimization process utilized the AdamW optimizer with ε1 = 0.9, ε2 = 0.999, an ϑ value of872

1↑ 10→8, and a weight decay of 10→2. The learning rate was set to 1↑ 10→4 and followed a cosine873

scheduler for smooth decay during training. To ensure stability, a gradient clipping threshold of 1.0874

was applied. The fine-tuning process was executed for one epoch, with a maximum of 2500 training875

steps. For the LoRA-specific configurations, we set the rank of the low-rank adaptation layers and876

the scaling factor ω to be 128.877

After completing fine-tuning for each epoch, we set the LoRA weight to 0.75 and integrate it into878

SDv1.5 to guide image generation and selection for the next subset. For the CC3M dataset, images879

from the subsequent subset are directly selected.880

In the following epoch, the fine-tuned LoRA parameters from the previous epoch are loaded and881

used to resume training on the current subset, ensuring continuity and leveraging the incremental882

improvements from prior iterations.883
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Figure 15: Visualization of Different Caption Fine-Tuning.

In Figure 15, we present results using our captions and the CC3M captions. The model fine-tuned884

with captions generated by GENERATE ANY SCENE demonstrates superior performance in terms of885

text semantic relevance and the generation of complex compositional scenes.886

C.2 More results of fine-tuning models887

Aside from our own test set and GenAI benchmark, we also evaluated our fine-tuned Text-to-Image888

generation models on the Tifa Bench (Figure 16), where we observed the same trend: models889

fine-tuned with our captions consistently outperformed the original SDv1.5 and CC3M fine-tuned890

models.891

Figure 16: Results for Application 1: Self-Improving Models. Average TIFA score of SDv1.5

fine-tuned with different data over TIFA Bench.

27



D Details of distilling targeted capabilities (Section 4)892

D.1 Collecting hard concepts893

We selected 81 challenging object concepts where SDv1.5 and DaLL-E 3 exhibit the largest gap in894

VQA Score. To determine the score for each concept, we calculated the average VQA score of the895

captions containing that specific concept. The full list of hard concepts is shown below:896

1. cloverleaf897

2. aerie (habitation)898

3. admixture899

4. webbing (web)900

5. platter901

6. voussoir902

7. hearthstone903

8. puttee904

9. biretta905

10. yarmulke906

11. surplice907

12. overcoat908

13. needlepoint909

14. headshot910

15. photomicrograph911

16. lavaliere912

17. crepe913

18. tureen914

19. bale915

20. jetliner916

21. square-rigger917

22. supertanker918

23. pocketcomb919

24. filament (wire)920

25. inverter921

26. denture922

27. lidar923

28. volumeter924

29. colonoscope925

30. synchrocyclotron926

31. miller (shaper)927

32. alternator928

33. dicer929

34. trundle930

35. paddle (blade)931

36. harmonica932

37. piccolo933

38. handrest934

28



39. rundle935

40. blowtorch936

41. volleyball937

42. tile (man)938

43. shuttlecock939

44. jigsaw940

45. roaster (pan)941

46. maze942

47. belt (ammunition)943

48. gaddi944

49. drawer (container)945

50. tenter946

51. pinnacle (steeple)947

52. pegboard948

53. afterdeck949

54. scaffold950

55. catheter951

56. broomcorn952

57. spearmint953

58. okra (herb)954

59. goatsfoot955

60. peperomia956

61. ammobium957

62. gazania958

63. echinocactus959

64. birthwort960

65. love-in-a-mist (passionflower)961

66. ragwort962

67. spicebush (allspice)963

68. leadplant964

69. barberry965

70. hamelia966

71. jimsonweed967

72. undershrub968

73. dogwood969

74. butternut (walnut)970

75. bayberry (tree)971

76. lodestar972

77. tapa (bark)973

78. epicalyx974

79. blackberry (berry)975

80. stub976

81. shag (tangle)977
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D.2 Experiment details978

We conducted targeted fine-tuning experiments on SDv1.5 to evaluate GENERATE ANY SCENE’s979

effectiveness in distilling model compositionality and learning hard concepts. For each task, we980

selected a dataset of 778 GENERATE ANY SCENE captions paired with images generated by DaLL-981

E 3. For compositionality, we selected multi-object captions from the existing dataset of 10K982

GENERATE ANY SCENE captions and paired them with the corresponding images generated by983

DaLL-E 3. To address hard concept learning, we first used SDv1.5 to generate images based on984

the 10K GENERATE ANY SCENE captions and identified the hard concepts with the lowest VQA985

scores. These concepts were then used to create a subset of objects, which we recombined into our986

scene-graph based captions with complexity levels ranging from 3 to 9. Finally, we used DaLL-E 3987

to generate corresponding images for these newly composed captions.988

The fine-tuning configurations were consistent with those used in the self-improving setup (Ap-989

pendix C.1.3). To accommodate the reduced dataset size, the maximum training steps were set to990

1000.991

As a baseline, we randomly selected 778 images from 10K GENERATE ANY SCENE-generated992

images, using captions produced by GENERATE ANY SCENE. This ensured a controlled comparison993

between the targeted and random fine-tuning strategies.994
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E Details of reinforcement learning with a synthetic reward function (Section995

5)996

E.1 Training data preparation997

We adopt SimpleAR-0.5B-SFT [26] as our base model. Given that SImpleAR-0.5B-SFT is pretrained998

on high-quality real image datasets such as LAION [11] and CC3M [12], we aim to mitigate potential999

distributional shift between the original training data and the reinforcement learning phase. To this1000

end, we perform metadata pre-selection for GENERATE ANY SCENE by analyzing the frequency of1001

each object category appearing in the LAION dataset. Leveraging the controllable compositional1002

capabilities of GENERATE ANY SCENE, we filter object categories by selecting the top 10% most1003

frequent entries and constrain scene complexity to 3–6 objects per scene. Based on these conditions,1004

we synthesize a set of 10K captions, ensuring semantic alignment with the base model’s pretraining1005

distribution while maintaining structural and content diversity.1006

E.2 Experiment details1007

The detailed training configuration is provided in Table 7. We utilize 8 ↑ NVIDIA H100 GPUs1008

(80GB HBM3), with one GPU allocated for online generation using vLLM. The total training time is1009

approximately 14 hours.

Table 7: Scene-graph based GRPO Fine-tuning Configuration for SimpleAR
Component Details
Model Name SimpleAR-0.5B-SFT
Model Size ↓0.5B parameters
Training Policy GRPO
Inference Engine vLLM (GPU utilization = 0.7)
Completion Length 4096 tokens
Training Epochs 1
Batch Size per Device 4
Learning Rate 1↑ 10→5

Scheduler Cosine Annealing (min lr rate = 0.1)
Warm-up Ratio 0.1
Gradient Accumulation 1

1010

Figure 17: Reward progression during scene-graph based GRPO training.

Figure 17 illustrates the reward progression during training. A noticeable improvement in reward1011

is observed following the application of a learning rate of 1e-5 combined with a warm-up strategy.1012
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Overall, the reward increases by approximately 0.2, indicating effective learning under the adjusted1013

training configuration.1014

In Table 2, we observe that the reproduced results of baseline models on DPG-Bench and GenEval1015

Bench are slightly lower than those reported in the original paper. Considering the inherent stochas-1016

ticity in generative model outputs, we cite the original results for comparison. For GenAI-Bench, all1017

reported results are based on our own experimental evaluations.1018
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F Details of improving generated-content detection (Section 6)1019

F.1 Experiment details1020

In this section, our goal is to validate that the more diverse captions generated by GENERATE ANY1021

SCENE can complement existing datasets, which are predominantly composed of real-world images1022

paired with captions. By doing so, we aim to train AI-generated content detectors to achieve greater1023

robustness.1024

Dataset preparation We conducted comparative experiments between captions generated by1025

GENERATE ANY SCENE and entries from the D3 dataset. From the D3 dataset, we randomly1026

sampled 10K entries, each including a caption, a link to a real image, and an image generated by SD1027

v1.4. Due to some broken links, we successfully downloaded 8.5K real images and retained 10K SD1028

v1.4-generated images. We also used SD v1.4 to generate images based on 10K GENERATE ANY1029

SCENE captions.1030

We varied the training data sizes based on the sampled dataset. Specifically, we sampled N real1031

images from the 10K D3 real images. For synthetic data, we compared N samples exclusively from1032

D3 with a mixed set of N/2 samples from 10K GENERATE ANY SCENE images and N/2 sampled1033

from D3, ensuring a total of N synthetic samples. Combined, this resulted in 2N training images. We1034

tested 2N across various sizes, ranging from 2K to 10K.1035

Detector architecture and training We employed ViT-T [47] and ResNet-18 [103] as backbones1036

for the detection models. Their pretrained parameters on ImageNet-21K were frozen, and the final1037

classification head was replaced with a linear layer using a sigmoid activation function to predict the1038

probability of an image being AI-generated. During training, We used Binary Cross-Entropy (BCE)1039

as the loss function, and the AdamW optimizer was applied with a learning rate of 2e→3. Training1040

was conducted with a batch size of 256 for up to 50 epochs, with early stopping triggered after six1041

epochs of no improvement in validation performance.1042

Testing To evaluate the performance of models trained with varying dataset sizes and synthetic data1043

combinations, we tested them on both GenImage and GENERATE ANY SCENE datasets to assess1044

their in-domain and out-of-domain performance under different settings.1045

For GenImage, we used validation data from four models: SD v1.4, SD v1.5, MidJourney, and1046

VQDM. Each validation set contained 8K real images and 8k generated images. For GENERATE1047

ANY SCENE, we sampled 10K real images from CC3M and paired them with 10K generated images1048

from each of the following models: SDv2.1, PixArt-ω, SD3 Medium, and Playground v2.5. This1049

created distinct test sets for evaluating model performance across different synthetic data sources.1050

Table 8: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D3 and D3+ GENER-
ATE ANY SCENE Across In-Domain Settings

Detector Data Scale
(2N)

SDv1.4
(In-domain, same model) SDv2.1 Pixart-ω SDv3-medium Playground v2.5 Average

(In-domain, cross model)
D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3

Resnet-18

2K 0.6561 0.6663 0.7682 0.6750 0.7379 0.606 0.7509 0.6724 0.7380 0.5939 0.7488 0.6368
4K 0.6751 0.6812 0.7624 0.6853 0.7328 0.6494 0.7576 0.7028 0.7208 0.6163 0.7434 0.6635
6K 0.6780 0.6995 0.7886 0.6870 0.7493 0.6586 0.7768 0.7285 0.7349 0.6335 0.7624 0.6769
8K 0.6828 0.6964 0.7710 0.6741 0.7454 0.6418 0.7785 0.7186 0.7215 0.6033 0.7541 0.6595
10K 0.6830 0.6957 0.7807 0.6897 0.7483 0.6682 0.7781 0.7326 0.7300 0.6229 0.7593 0.6784

ViT-T

2K 0.6759 0.6672 0.7550 0.6827 0.7585 0.6758 0.7473 0.6941 0.7327 0.6106 0.7484 0.6658
4K 0.6878 0.6871 0.7576 0.7000 0.7605 0.7071 0.7549 0.7217 0.7221 0.6144 0.7488 0.6858
6K 0.6898 0.6891 0.7663 0.6962 0.7666 0.7164 0.7629 0.7238 0.7303 0.6134 0.7565 0.6875
8K 0.6962 0.6974 0.7655 0.6894 0.7712 0.7253 0.7653 0.7253 0.7381 0.6344 0.7600 0.6936
10K 0.6986 0.6984 0.7828 0.6960 0.7777 0.7275 0.7786 0.7334 0.7330 0.6293 0.7680 0.6966

F.2 Results1051

Table 9 and Table 8 evaluate the performance of ResNet-18 and ViT-T detection backbones trained1052

on datasets of varying sizes and compositions across in-domain (same model and cross-model) and1053

out-of-domain settings. While models trained with D3 and GENERATE ANY SCENE occasionally1054

underperform compared to those trained solely on D3 in the in-domain same-model setting, they1055

exhibit significant advantages in both in-domain cross-model and out-of-domain evaluations. These1056

results demonstrate that incorporating our data (GENERATE ANY SCENE) into the training process1057
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enhances the detector’s robustness. By supplementing existing datasets with GENERATE ANY SCENE1058

under the same training configurations and dataset sizes, detectors achieve stronger cross-model and1059

cross-dataset capabilities, highlighting improved generalizability to diverse generative models and1060

datasets.1061

Table 9: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D3 and D3+ GENER-
ATE ANY SCENE Across Out-of-Domain Settings

Detector Data Scale
(2N)

SDv1.5 VQDM Midjourney Average
(Out-of-domain)

D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3

Resnet-18

2K 0.6515 0.6591 0.5629 0.5285 0.5803 0.5647 0.5982 0.5841
4K 0.6709 0.6817 0.5693 0.5428 0.6016 0.5941 0.6139 0.6062
6K 0.6750 0.6963 0.5724 0.5327 0.6084 0.6072 0.6186 0.6121
8K 0.6792 0.6965 0.5716 0.5282 0.6097 0.5873 0.6202 0.6040
10K 0.6814 0.6955 0.5812 0.5454 0.6109 0.6040 0.6245 0.6150

ViT-T

2K 0.6755 0.6685 0.5443 0.4966 0.6207 0.6066 0.6135 0.5906
4K 0.6845 0.6865 0.5591 0.4971 0.6416 0.6149 0.6284 0.5995
6K 0.6900 0.6890 0.5580 0.4948 0.6455 0.6259 0.6313 0.6032
8K 0.6940 0.6969 0.5553 0.4962 0.6495 0.6387 0.6329 0.6106
10K 0.6961 0.6988 0.5499 0.4975 0.6447 0.6358 0.6302 0.6107
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G Limitation1062

Programmatically generated prompts can be unrealistic and biased. Programmatically gener-1063

ated prompts can be unrealistic and biased. Although our system is capable of producing a wide range1064

of rare compositional scenes and corresponding prompts, some of these outputs may violate rules or1065

conventions, going beyond what is even considered imaginable or plausible. We also implement a1066

pipeline to filter the commonsense of the generated prompts using the Vera score (a large language1067

model-based commonsense metric) and Perplexity, but we make this pipeline optional.1068

Linguistic diversity of programmatic prompts is limited. While GENERATE ANY SCENE excels1069

at generating diverse and compositional scene graphs and prompts, its ability to produce varied1070

language expressions is somewhat constrained. The programmatic approach to generating content1071

ensures diversity in terms of the elements of the scene, but it is limited when it comes to linguistic1072

diversity and the richness of expression. To address this, we introduce a pipeline that leverages large1073

language models (LLMs) to paraphrase prompts, enhancing linguistic variety. However, this addition1074

introduces new challenges. LLMs are prone to biases and hallucinations, which can affect the quality1075

and reliability of the output. Furthermore, the use of LLMs risks distorting the integrity of the original1076

scene graph structure, compromising the coherence and accuracy of the generated content. So we1077

make this LLM paraphrase pipeline optional for our paper.1078

Toward curriculum-aware GRPO training. Our proposed GENERATE ANY SCENE framework1079

plays a central role in GRPO training by providing structured scene graphs that serve as the foun-1080

dation for a semantically grounded and controllable reward function. This design enables effective1081

optimization by aligning generation objectives with fine-grained visual semantics. Beyond this, we1082

also observe that GENERATE ANY SCENE also offers broader potential: the scene graphs it produces1083

vary in complexity, such as in the number of objects, attributes, relationships and graph degree.1084

These variations naturally correspond to different levels of generation difficulty and reward variance.1085

This property suggests an opportunity for curriculum-based training, where the model could be1086

progressively exposed to increasingly complex scene graphs. Such a strategy may improve training1087

stability and efficiency, especially in the early stages of learning. We identify this as a promising1088

direction for future work, further leveraging the controllability of GENERATE ANY SCENE to guide1089

structured policy learning.1090
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