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A MATHEMATICAL DERIVATIONS

A.1 DERIVATION OF MULTI-RESOLUTION DIFFUSION TRANSITIONS

Given the diffusion trajectory modified by cross-scale correlation, which is defined as Eq. (I)), we
now derive the multi-resolution diffusion transitions:

9o (xilxg 1, x5, %0 T) = N (Varx g + o (x5, %57, k) = Varye—1€4 (x5, x5 k= 1), BiI).
©))
We can achieve this by proving that Lemma.

lemma 1 Given the forward process defined as q(x7, x5, ..., X},|Xp) = Hthl q(x}|x5_ 1, X5, x6+1),
where the diffusion transitions q(X},|x},_,, X5, xt) are defined as:

Q¢(X;|X67 X6+1) = N(X£7 vV dkxs + ’Ykgqb(xga X6+17 k)7 (1 - dk)I)' (10)

Proof 1 We can prove this lemma by induction. Assume that at time k, both q(x}|x}_ |, x5, x5™")

and q(x},_ x4, x4t adhere to their respective distributions as in Eq. and Eq. . We need to
prove that q(x|x5, x5 ™) = N (x}; vVarxh + s (x5, x5 k), (1 — ag)I).

r+1

Y and q(x,_,|x5, x5TY) as follows:

; T T ‘s T
We can rewrite q(X},|X},_1,X{, Xg

X}, =/ apXp_1 + ’yk5¢(x6,xg+l, k) — \/Oék")/k_lg(i)(xg,xg_‘—l, k—1) 4+ +/Bre, (11

— 1 —

Xpo1 = VO-1x) + 7e-18 (x5, x5k = 1) + /1 = G, (12)
where €1 and €5 denote independent standard Gaussian variables. Substituting Xj,_, from the latter
equation into the former, we obtain:

Xp, = Vagx) + 7k5¢(x6,x6+1,k) + v/ Brer + Vag * (1 —ag_1) * &
= Voux, + 7k5¢(x6,x6+1, k) + \/at(l —ak — 1) + Pre,

where € is a Gaussian noise resulting from a linear combination of €1 and €s. To this end,

Qo (X4 |xh 1, xb, x5 ) with mean \/agpxly + 1€y (x5, x4, k) and variance € admits the expected

distribution.

13)

A.2 DERIVATION OF POSTERIOR DISTRIBUTIONS OF MULTI-RESOLUTION DIFFUSION
PROCESS

Given the modified diffusion trajectories in Eq. and the diffusion transitions in Eq. (2)), we now
derive the posterior distributions of multi-resolution diffusion process:

r+1) 7N(\/O_zk—15er n Var(l —ag_1) (KT — (0, X0, )
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Proof 2 By Bayes’s rule, we have:
X! |xh xE T g(xE |xE x5, x0T
o 1) = L P X0 JIOCAP X000 (15)

a(x x5, x5 )

Given that the numerator and denominator are both Gaussian, the posterior distribution is also
Gaussian, and we can proceed to calculate its mean and variance:

NGy VA 1xh + s (x5, %07 k), (1 — ay 1)) .

N (g, varxh + k18 (xh, x0T k= 1), (1 — ay_1)T)

N (@, w1 + (X, x5 k) — Jarye—1Es(xh, x5tk — 1), B I)
N (x, vVarxh + Wk-—15¢>(X67X6+1a E—1),(1—a;1)I)

Q(X};fl |X27 XS’ XS) =

(16)
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Dropping the constants that are unrelated to X{, X, Xj,_,, and X6+1, we have:

(Xk_1 — Var—1x5 — W€ (x5, x5, k))?

q(Xg_1|Xk, X0, X6+1) x exp{—

2(1 — @kfl)
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2(1 — O_ék)
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28k
1 Q@
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where C(k, ) is a constant term with respect to X;_,. With some algebraic derivation, this can be
simplified to:

r r r Qp—10k %" Oék(l - 5[k:—l) r r
0o (55 3, 1) N (L VORLZ Oet) 0 et it )
1 ak 1 Qe (18)
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+ ’Yk—15¢(X0aX0+1 k—1), D).

1—ay
A.3 DERIVATION OF TRAINING OBJECTIVE

According to Eq. (]I[), x{, can be rewritten as:

(X}, — 1Eo(xh, x5 k) — VI — age), (19)

i
ol

where € denotes gaussian noise. Then we can obatin:

. — VOEX( . 7k5¢(X6aX6+17 k) (20)
V1 — oy V1 —ag '

Since the second term is available, we employ a denoising network fp(x},, k, ) to predict the first
term for training. Then we can obtain the predicted posterior distributions:

€ =

r+1 1 ro ﬂk r o Ofk(]. - @k—l) r r4+1
p@(xk 1|Xk:7 )_N(M[Xk m‘f@(xk7k7r)] 1— ap, 7k8¢(X07X0 vk) (21)
§ 1— ap
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Revisiting the objective of diffusion model (Song et al., 2020), we insteadly minimize the KL-
divergence D, (g (X} [xh xb, x5 )l1pg (X} [XG, x5 ).

With Eq. (3) and Eq. (@), we can obtain the training objective:

Lo,6,k,r ZDKL(%(XZ 1|XZ,XS»XSH)IIPH(XLﬂXk» xth)

Xi VX (22)

_anEmer leo (x5, k1) — m

where x}, = /aux{ + V€4 (X7, X6+1, k) + 1 — areand g, = ﬁ is a loss weight.
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A.4 DERIVATION OF ACCELERATED SAMPLING

Given x7,, we can obtain x7,_, via:

X, — v/ aRpXy

_ =2 ~ 2 Xk 0

Xp_1 =V X+ /1 — a1 — 0} - e
V31— ay

Lo 20k e k1),
m —1Cp\ &0y 20 >

Proof 3 We can prove this by induction. Assume that at time k, the posterior and marginal distribu-

tions admit the expected distributions, then we need to prove that at time k — 1, q4(x},_,|X7, xpt)

also has the expected distribution. We can rewrite the posterior and marginal distribution:

X}, — V/agXg
V1 — &y
V91— a1 7013
V1 — &y

X§ = Varxh + (x5, x5 k) + V1 — ages, (25)

where €1, €3 are standard gaussian noises. Plugging in Xj,, we have:

Xp_1 =V k_1X{
V1—agp_1— o2
+ & XT7XT+17]€ *—k
Yk d)( 070 ) m

+ ’yk_lé'qg(xs,xSH, k—1)+orer + /1 — a1 —oie
= o‘zk_lxg + ’Yk_15¢(X6,X6+1, k— 1) +orer +14/1 — ap—1 — O’,%eg.

Since the variance of (oe1 + /1 — ay_1 — 02€2)? = (1 — ay_1)I, we have the expected sampling.

(23)
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B EXPERIMENTAL DETAILS

B.1 DATASETS
We use the following five datasets for anomaly detection experiments:

* SMD (Server Machine Dataset) (Su et al.,[2019): The SMD dataset is collected from a large
internet company and includes 5 weeks of data from 28 server machines with 38 sensors
each. The initial 5 days consist solely of normal data, while anomalies are intermittently
introduced over the last 5 days.

e PSM (Pooled Server Metrics) (Abdulaal et al., 2021): The PSM dataset is collected
internally from multiple application server nodes at eBay. It consists of 13 weeks of training
data and 8 weeks of testing data.

« MSL (Mars Science Laboratory) (Hundman et al., [2018) and SMAP (Soil Moisture
Active Passive satellite) (Entekhabi et al.,|2010): The MSL and SMAP datasets are publicly
available datasets collected by NASA. They contain telemetry anomaly data derived from
the Incident Surprise Anomaly (ISA) reports of spacecraft monitoring systems. The MSL
dataset has 55 dimensions, while the SMAP dataset has 25 dimensions. The training sets for
both datasets include unlabeled anomalies.

e SWaT (Secure Water Treatment) (Mathur & Tippenhauer, 2016): The SWaT dataset is
collected over 11 days from a scaled-down water treatment testbed with 51 sensors. For the
first 7 days, only normal data were generated. During the last 4 days, 41 anomalies were
injected using various attack methods.
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Table 7: Datasets used for anomaly detection experiments.

Dataset Entities Dimensions Train# Test# Anomaly Rate (%)

SMD 28 38 708405 708420 4.16
PSM 1 25 132481 87841 27.76
MSL 27 55 58317 73729 10.48
SMAP 55 25 140825 444035 12.83
SWaT 1 51 495000 449919 12.14

We present the statistics of these datasets in Table. [/} Train # and Test # denote the number of training
and testing data, respectively. Anomaly Rate is the ratio between the sum of all anomaly points and
sum of all test points.

We use the following three non-stationary datasets for forecasting and imputation experiments to
assess the generalization ability of MODEM.

* Traffic (Tashiro et al.l 2021)): The Traffic dataset records the hourly road occupancy rates
generated by sensors in the San Francisco Bay area freeways.

* Exchange (Shen & Kwok| 2023): The Exchange dataset describes the daily exchange rates
of eight countries (Australia, British, Canada, Switzerland, China, Japan, New Zealand, and
Singapore).

* KDDCup (Kollovieh et al.l 2024): The KDDCup is a dataset of the air quality indices
(AQIs) of Beijing and London used in the KDD Cup 2018.

For imputation performance evaluation, we examine three scenarios following (Kollovieh et al.| [2024):
(1) random missing, where values are missing sporadically, (2) blackout missing at the beginning of
the context window, involving a sequence of consecutive missing values, and (3) blackout missing at
the end of the context window. We report the average performance of three conditions.

B.2 BASELINES

We introduce the following state-of-the-art time series anomaly detection methods for extensive
comparisons:

* Isolation Forest (Li et al.l 2022): constructs 3D features (text, reviewer behavior, deceptive
ratings) and integrates feature selection to detect fake reviews.

* LSTM-AD (Malhotra et al.| 2015)): possesses long-term memory capabilities, and for the
first time, hierarchical recurrent processing layers have been combined to detect anomalies
in univariate time series without using labels for training.

* MSCRED (Zhang et al.,|2019): designs an attention-based ConvLSTM network to capture
temporal trends, and a convolutional autoencoder is used to encode and reconstruct the
signature matrix instead of relying on the time series explicitly.

* OmniAnomaly (Su et al., [2019): is a Variational Autoencoder that performs anomaly
detection by computing the reconstruction probability and quantifying interpretability based
on the reconstruction probability of each feature.

¢ InterFusion (Li et al., 2021): uses a hierarchical variational autoencoder with two ran-
dom latent variables to learn metrics and temporal representations and by relying on a
“reconstruction input” to compress the MTS.

* GDN (Deng & Hooil [2021)): utilizes the nodes and edges of the GNN to capture sensor
features and spatial information, respectively. It then leverages this data to predict sensor
behavior based on the attention function of adjacent sensors.

* MST-GAT (Ding et al.;2023): uses a multimodal graph attention network and a temporal
convolutional network to capture spatiotemporal correlations in multimodal time series.

BeatGAN (Zhou et al.l [2019): uses a group of autoencoders and GANs in cases where tags
are not available, which accurately detect anomalies in both ECG and sensor data.
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* MAD-GAN (Li et al.;|2019): uses LSTM-RNN as a generator and discriminator to capture
temporal relationships in Gans, while using reconstruction and discriminant losses to detect
anomalies.

* Anomaly Transformer (Xu et al.,|2022)): captures association differences by modeling prior
and sequential associations for each timestamp, making rare exceptions easier to distinguish.

* TFAD (Zhang et al.|2022)): introduces time series decomposition and data augmentation
mechanisms into the designed time-frequency architecture, enhancing both performance
and interpretability.

e TranAD (Tuli et al.;,[2022): adopts a two-step reconstruction method, introduces the attention
mechanism into Transformer model, and integrates adversarial training.

e NPSR (Lai et al., [2024): proposes a framework for unsupervised time series anomaly
detection using point-based and sequence-based reconstruction models.

 DiffAD (Xiao et al.l[2023)): designs a novel denoising diffusion-based imputation method to
improve the imputation performance of missing values with conditional weight-incremental
diffusion.

* ImDiffusion (Chen et al.,[2023): combines time series imputation and diffusion models to
achieve accurate and robust anomaly detection.

* D3R (Wang et al., 2024): tackles the drift via decomposition and reconstruction, overcoming
the limitation of the local sliding window.

We introduce the following state-of-the-art time series forecasting and imputation methods for
comparison to assess the generalization ability of MODEM:

» CSDI (Tashiro et al.} 2021): is a self-supervised method that uses the observed value as
conditional information to imputation the masked time series.

* TSDIff (Kollovieh et al., 2024)): is an unconditionally trained diffusion model for time
series and a mechanism to condition TSDiff during inference for arbitrary forecasting tasks
(observation self-guidance).

To ensure fair comparisons, we first reference the best-reported values from the original papers or
other publications. If these values are unavailable, we report the results reproduced on our machine
using the publicly available codes. Moreover, we assume that the thresholds of these SOTA methods
have been optimized for optimal performance.

B.3 EVALUATION METRICS

We use the following metrics for evaluating the performance of time series anomaly detection
methods:

* Precision: It measures the proportion of correctly detected anomalies among all time points
flagged as anomalies:
TP
TP + FP’
where TP denotes the number of true anomalies correctly detected, and FP denotes the
number of normal time points incorrectly identified as anomalies.

Precision = 27

* Recall: This metric is also named as sensitivity or true positive rate. It measures the
proportion of actual anomalies that are correctly detected by the algorithm:

TP
TP + FN’

where FN denotes the number of true anomalies that are not detected.

Recall = (28)

¢ F1-score: F1-score is the harmonic mean of Precision and Recall, which can balance both
false positives and false negatives:
Precision x Recall

F1- =2 . 2
score x Precision + Recall (29)
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* Average Sequence Detection Delay (ADD) (Tuli et al.| [2022): It is used for evaluating the
speed and timeliness of time series anomaly detection algorithm:

S
1
ADD = E;(Ti—pix (30)

where p; denotes the initial time of anomalous span i, 7; > p; denotes the corresponding
detection delay time by the anomaly detection algorithm. .S is the total number of anomalous
spans. A small ADD signifies a more timely detection of anomalies.

B.4 NETWORK STRUCTURE

The detailed architecture of Time-Invariant Encoder is presented in Figure. [6] it comprises multiple
residual blocks. The residual block first uses a 1 x 1 convolution kernel to encode the time-invariant
components obtained from frequency decomposition. The diffusion step k and resolution scale r are
fed into simple MLPs to obtain corresponding embeddings, which are added to the convolution result
as supplementary information. Subsequently, it employs hierarchical transformers to further explore
the intra-series temporal features and inter-series dependencies among various variables.
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Figure 6: Architecture of Time-Invariant Encoder, consisting of multiple stacked Residual Block.

B.5 HYPERPARAMETER SETTINGS

The detailed hyperparameter settings of our MODEM are presented in Tab.[8] Due to the large number
of hyperparameters and resource constraints, we use empirical tuning combined with Bayesian
selection to determine the parameter combination. The diffusion step K is set to 50, while the
resolution scale R is 4, indicating the number of steps for the forward process. The sampling step L
is set to 20 for the denoising process. 20% of the frequency components are used for decomposition,
represented by m. Our model incorporates 2 residual blocks and 4 DMTBs. Additionally, a dilation
factor of 2 is applied, and our model is equipped with 5 ModernTCN modules, which are temporal
convolutional networks that help handle non-stationary time series. These hyperparameter values
collectively define our model’s structure and its ability to process non-stationarity.

B.6 ADDITIONAL EFFECTIVENESS ANALYSIS
Multi-Resolution Modeling We present several case studies in Fig.[7} which quantitatively validate

the effectiveness of multi-resolution modeling for anomaly detection. In the figure, the pink and
yellow areas represent true anomalies and false anomalies (normal data), respectively. The green
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Table 8: Detailed hyperparameter settings of MODEM.

Hyperparameter Value

Diffusion step K 50

Sampling step L 20
Resolution scale R 4

Percentage of frequency decomposition m 20
Number of residual blocks
Number of DMTBs
Dilated Factor
Number of ModernTCN modules

[, S RF N )

and purple lines correspond to the input and reconstructed time series, respectively, with the red
bold frame highlighting anomalies detected by the model. These examples demonstrate that models
operating at a single resolution struggle to detect true anomalies and frequently trigger false alarms.
Benefiting from an expansion to multi-resolution settings, our model learns normal temporal patterns
more effectively, providing a more reliable reconstructed baseline that significantly reduces false
alarms while accurately detecting true anomalies.

Input Time Series True Anomaly Predicted Anomal
Reconstructed Series False Anomaly edicte omaly

Input Time Series

Single Resolution

Figure 7: Comparison of detection performance across different resolution settings originates from the
SMD dataset, where the pink and yellow areas represent true anomalies and false anomalies (normal
data), respectively. The green and purple lines indicate the input time series and the reconstructed
time series, respectively, while the red bold frame highlights anomalies detected by the model.

Frequency-Enhanced Decomposable Network Previous works (Yang & Hong} [2022; [He et all
2023)) have demonstrated that spectral responses can more robustly capture underlying temporal
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patterns compared to time-domain representations. Despite this foundation, our approach introduces
several distinct contributions and innovations for non-stationary time series anomaly detection.

Firstly, we explore different frequency computation strategies and utilize the Short-Term Fourier
Transform (STFT) to extract the spectral information. STFT not only provides a detailed view of
how the frequency content of the signal changes over time but also captures the transient behavior
and dynamics of time series through overlapping windows. Compared to the conventional Fast
Fourier Transform (FFT), STFT is more suitable for decomposing non-stationary time series, which
is quantitatively verified through experiments on PSM and SMD datasets, as shown in Tab. [9]

Secondly, the proposed Frequency-Enhanced Decomposable Network differs significantly in its
network structure from the MLP-based block like Koopa (Liu et al.,|2024). Specifically, it incorporates
hierarchical transformers in the time-variant and time-invariant encoders to capture both intra-series
temporal dependencies and inter-series correlations among variables. Additionally, it designs a
novel ModernTCN block enhanced by dilated convolution (named DMTBs) to uncover complex
periodic patterns across multiple time scales. These unique designs, compared to Koopa’s all-MLP
architecture, are more suitable for long-series reconstruction, thus providing reliable reconstruction
signals for anomaly detection, as demonstrated by the quantitative validations in Tab.

Table 9: Comparison of different fre-

quency statistics approaches on PSM and Table 10: Comparison of different network

types on PSM and SMD datasets.

SMD datasets.
Dataset Network | P R F1
Dataset Approach | P R F1 < P | 9568 9733 9639
PSM FFT | 96.64 9798 9730 PSM ?\?[IE?D(EM) 0607 9835 9765
STFT 96.97 98.35 97.65 ’ ’ :
STFT 95.70 96.32 96.01 . . .

In our method, we select frequency components with the top m percent of amplitudes as stationary
factors based on spectral statistics, with the remaining frequency components treated as non-stationary
factors. As mentioned in Appendix we set the percentage m to 20, because the frequencies
corresponding to the top 20% of amplitudes account for over 90% of all frequency components,
which aligns with the reality where stationary factors are dominant. To investigate the impact of
percentage m on the detection performance further, we conduct a sensitivity analysis on the SMD
dataset regarding m, as illustrated in Tab. Variations within a reasonable range of m do not cause
drastic changes in performance, demonstrating that this frequency-based selection approach is robust.
If m is set too low (see m = 2) or too high (see m = 50), the model’s performance significantly
decreases because the time-variant and time-invariant variables are not effectively separated.

Table 11: Impact of different percentages m on detection performance.

Percentage m \ Frequency Ratio | R F1
2 66.89% 95.34  95.67 95.50
10 85.33% 95.68 96.10 96.88
15 88.62% 95.74 9621 9597
20 91.45% 95.70 96.32 96.01
25 93.56% 95.66 96.25 95.95
50 98.73% 9540 95.76 95.57

C LIMITATIONS AND FUTURE WORK

We extend the diffusion model into a multi-resolution paradigm, leading directly to an R-fold increase
in the number of sampling steps, which results in longer training convergence times and prolonged
inference durations. While we introduce accelerated sampling strategies for each resolution R,
these are predicated on the acceptance of loss in precision. In the future, it may prove beneficial
to investigate sampling along a deterministic trajectory within mixed resolutions to improve both
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accuracy and efficiency. Furthermore, the hyperparameters R and m in our proposed frequency-
enhanced decomposition network require customization for different datasets, thereby adding to the
complexity of parameter tuning. Additionally, in the future, it may be advantageous to consider
employing dynamic smoothing strategies instead of fixed pooling sizes to better reveal the periodic
and varying characteristics of non-stationary time series.

D POTENTIAL NEGATIVE SOCIETAL IMPACTS

The diffusion models, like other generative technologies, have inherent risks. Our model, as a case in
point, could potentially have negative societal effects. For instance, it might memorize private data
and be exploited to fabricate misleading or false information.
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