
Penguin: Parallel-Packed Homomorphic Encryption
for Fast Graph Convolutional Network Inference

Anonymous Author(s)
Affiliation
Address
email

Abstract

The marriage of Graph Convolutional Network (GCN) and Homomorphic En-1

cryption (HE) enables the inference of graph data on the cloud with significantly2

enhanced client data privacy. However, the tremendous computation and memory3

overhead associated with HE operations challenges the practicality of HE-based4

GCN inference. GCN inference involves a sequence of expensive matrix-matrix5

multiplications, and we observe that directly applying the state-of-the-art HE-based6

secure matrix-matrix multiplication solutions to accelerate HE-GCN inference is7

far less efficient as it does not exploit the unique aggregation mechanism of two-8

dimension graph node-features in GCN layer computation. As a result, in this paper,9

we propose a novel HE-based ciphertext packing technique, i.e.,Penguin, that can10

take advantage of the unique computation pattern during the HE-GCN inference11

to significantly reduce the computation and memory overhead associated with HE12

operations. Specifically, Penguin employs (i) an effective two-dimension parallel13

packing technique for feature ciphertext with optimal graph node partitioning and14

graph feature interleaving, and (ii) an interleaved assembly technique that can15

effectively make use of blank slots to merge ciphertexts after feature reduction and16

thus significantly reduce costly rotation operations. We perform detailed theoretical17

analysis to support our arguments. In the meantime, our experimental results also18

show that Penguin can achieve up to ∼ 10× speedup and around ∼ 79% reduction19

in computational memory overhead, significantly outperforming state-of-the-art20

solutions. To the best of our knowledge, this is the first work that can ensure21

the protection of both graph structure and features when accelerating HE-GCN22

inference on encrypted data.23

1 Introduction24

Graph Convolution Neural Networks (GCNs) have recently demonstrated phenomenal performance25

for many privacy-sensitive applications such as social networks [33], cross-domain recommendation26

systems [34], and personal healthcare [17]. A popular solution for clients seeking to leverage these27

advanced GCN models is to utilize cloud-based inference services. However, clients often hesitate28

to share their graph data with the public cloud due to concerns about sensitive information, such as29

graph structure and node features that reveal personal social relationships and medical records. To30

address this privacy concern, one viable approach is to adopt the Homomorphic Encryption (HE)31

scheme [2, 5, 6]. By performing the entire inference computation on the cloud using encrypted data,32

the privacy of client data is significantly enhanced. This enables privacy-preserving GCN inferences33

while ensuring that sensitive information remains confidential.34

While the idea of embedding HE into GCN inference on graph data seems appealing, it faces several35

significant challenges: Firstly, similar to HE-based CNN inference on non-graph data (such as for36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Latency
(s)

Latency(ms)

Rotation

PMult

Add

6.2

0.297

0.318

6.44CMult
Rotation+CMult

PMult+Add
Non-Linear

(a) (b)

Linear

96.70% 99.98%

Linear
Latency

Total
Latency

(c)

Latency Memory

Feature-wise
Node-wise

R
el

at
iv

e
R

at
io

Node-Feature-joint
1.0

0.76

0.21
0.35

0.09

Figure 1: (a) Latency comparison of different HE operations under same encryption parameter and
hardware environment; (b) Latency breakdown of linear/nonlinear HE operations in a typical GCN
layer computation. (Detailed settings in Sec. 4.1). (c) Single optimization and wasted ciphertext slots
have a negative effect on memory utilization and computation latency.

using convolutional neural networks (CNN) [9, 3, 7, 22, 1, 18, 25, 16, 13]), the enhanced privacy37

would come at the cost of the tremendously escalated computational overhead associated with38

HE operations (e.g., ciphertext (ct) rotations/multiplications, additions), which could be orders of39

magnitude higher than the counterparts in the non-encrypted computation [9, 28, 15]. Secondly,40

existing solutions focusing on alleviating computation overhead of HE-based CNN inference may41

not be applicable or optimal to GCNs due to computing pattern differences between the CNN42

and GCN [20]. For example, a GCN layer’s computation is dominated by the special consecutive43

matrix multiplications (A ·X ·W) for 2-dimensional feature-node aggregation–feature aggregation44

via multiplying a high dimensional feature matrix X with weight matrix W , followed by graph45

node aggregation with A, while a CNN layer’s computation is bottlenecked by multi-channel 2D46

convolutions. Thirdly, simply treating the above critical matrix operations in HE-based GCN47

inference as a traditional encrypted matrix-matrix multiplication (MM) problem for speedup is48

sub-optimal because: 1) state-of-the-art (SOTA) HE-based MM acceleration often requires the matrix49

to satisfy some special properties, e.g. square matrix with size 64× 64 [14], while GCN matrices50

like feature matrix X are typically irregular depending on applications (i.e. 2708 × 1433 in Cora51

dataset [31]); 2) SOTA solutions focus on a one-time MM without considering the consecutive MMs52

incurred by the two-dimensional feature-node aggregation, as well as the further processing of MMs’53

result in the next GCN layer. This leads to inefficient ciphertext space utilization and unnecessary HE54

operations, which further translates into prolonged HE-GCN inference, as we shall show in Sec. 4.2.55

To better understand the computation cost of HE operations that dominate the HE-GCN inference56

latency, we profile the latency of different HE operations using one GCN layer with 32 hidden units57

and the Cora dataset with 2708 graph nodes and 1433 (32) input (output) features per node. All58

HE operations are defined in Sec. 2. For generality, we assume both feature matrix and adjacency59

matrix are encrypted, which is a typical case in inductive learning (e.g. dynamic graph structure in60

link prediction) [21]. Without loss of generality, the same indexed features from different nodes are61

packed as a ciphertext (feature-wise packing) and the encrypted matrices are diagonal-encoded for62

MMs (detailed settings in Sec. 4.1). As Figure 1 (a) shows, first, the latency of ciphertext rotation63

and ciphertext multiplication (CMult) can be much higher than other operations like plaintext (pt)64

multiplication (PMult) or Addition, e.g. > 20× Rotation v.s. PMult. Furthermore, about > 99%65

latency comes from the linear operations (mainly HE rotation and CMult due to the consecutive MMs),66

instead of the nonlinear operations (ReLU replaced by a square function) due to feature reduction67

in GCN (from 1433 input features to 32 output features). Meanwhile, for linear latency, Rotation68

and CMult dominate the latency (e.g. > 96% of total) as the size of the adjacency matrix could69

be quite large (Cora: 2708×2708) in the GCN problem. Last, we profile the latencies of different70

ciphertext packing formats under the same evaluation setup as (b) in Figure 1 (c). From the profiling71

result in Figure 1 (c), either the node-wise packing format (e.g. 1 ciphertext contains one node’s 143372

features) or the feature-wise packing format (e.g. 1 ciphertext contains the same indexed features73

from 2707 nodes) could not effectively perform the HE-GCN inference. With node-feature-joint74

packing format (e.g. 1 ciphertext packs 32 features and 128 nodes) by our proposed Two-Dimension75

Parallel-Packing (see Sec. 3.2), the ciphertext size is fully exploited, and the total HE operation count76

reaches a minimum, leading to significantly reduced latency and memory cost. These results indicate77

that the key to accelerating the HE-based GCN inference is to significantly reduce the rotation and78

CMult operations with a GCN-dedicated ciphertext packing format.79

2

To this end, we propose Penguin, a novel HE ciphertext packing framework dedicated to accelerating80

GCN inference with the consideration of encrypting both graph structure and features simul-81

taneously (both adjacency matrix A and input feature matrix X). The driving vision of Penguin82

is: feature ciphertext packing (X) for efficient HE-based GCN inference needs to be designed in a83

manner that is aware of the unique GCN computation–both the left-side graph node aggregation84

AX and right-side feature aggregation (XW), instead of optimization in one direction (either AX85

or XW). In this way, the whole ciphertext space can be efficiently utilized with minimized slot86

waste, enabling the significant reduction of ciphertext number (memory overhead) as well as the87

expensive HE rotation and CMult operations under the single instruction multiple data (SIMD)88

architecture. Our major contributions are three-fold: 1) We propose an efficient two-dimension89

parallel packing technique for ciphertext via optimal graph node partition and feature interleaving.90

By performing the feature-level aggregation first and formulating the HE computation overhead91

as a constrained optimization problem, we analytically obtain the best feature-node partition that92

can maximize the usage of ciphertext space and minimize the costly HE operations. Experimental93

results are well consistent with theoretical analysis. 2) We propose an interleaved assembling (IA)94

technique to efficiently merge ciphertexts with blank slots incurred by feature dimension reduction in95

the feature aggregation stage. This extra-level optimization further significantly reduces the number96

of ciphertexts and associated HE operations. 3) We comprehensively evaluate our proposed Penguin97

for CKKS-based GCN inference using Cora-based graph node classification, Citeseer-based link98

prediction, and Pubmed-based link prediction. Results show that our method achieves by up to99

about 10× inference speedup and 79% memory overhead reduction, significantly outperforming the100

state-of-the-art solutions. To the best of our knowledge, this is the first work focusing on accelerating101

the HE-based private graph convolutional neural network inference on encrypted graph data, of102

which both the sensitive graph features and graph structure are protected.103

2 Preliminary104

CKKS Homomorphic Encryption Scheme. Homomorphic Encryption (HE) allows computations105

on encrypted data. HE has different categories according to the different computation types they106

support. The Leveled HE (LHE) schemes support a limited number of additions or multiplications107

while Fully HE (FHE) allows an arbitrary number of computations using a bootstrapping procedure108

that can effectively refresh the ciphertext and obtain a new ciphertext that encrypts the same value109

but has lower noise [8]. In this work, we focus on reducing the number of bottlenecked operations in110

CKKS–one of the promising LHEs, without considering the costly bootstrapping.111

CKKS [5] is an LHE scheme and its security is based on the hardness of ring learning with errors112

(RLWE) problem. CKKS allows arithmetic operations on encrypted data over fixed-point numbers113

with predefined precision, which makes it an ideal candidate for performing machine learning tasks114

where most of the computations are approximate. The supported homomorphic operations include115

ciphertext addition Add ∼ (ct1 + ct2), ciphertext multiplication CMult ∼ (ct1 × ct2), plaintext116

multiplication PMult ∼ (ct × pt), ciphertext Rotation ∼ ρ(ct, k). The rotation is to apply Galois117

automorphisms of the cyclotomic extension to the plaintext polynomials in encrypted form resulting118

in a cyclic shift of the slot vector. Among these four operations, Rotation and CMult are substantially119

slower (∼ 20× slower) than ciphertext-plaintext addition and multiplication as shown in our runtime120

performance of CKKS in Figure 1 due to the expensive key-switching operation [22].121

Graph Convolution Neural Network. To extract the hidden graph features H , the 2-dimensional122

feature-node aggregation of a typical GCN layer can be often abstracted as [20]:123

H = σ(D̃j
− 1

2 ÃjD̃j
− 1

2XW) (1)

Where X ∈ RN×F is the input feature matrix. Wj ∈ RF×F ′
represents weight parameters to124

transform the input features from an input dimension F to an output dimension F ′ (feature level125

aggregation). D̃j . Ãj is the adjacency matrix with self-loop. The XW term is implemented by a126

fully-connected layer (node level aggregation) and then multiplied with the normalized adjacency127

matrix D̃j
− 1

2 ÃjD̃j
− 1

2 . Finally, a non-linear activation function σ (e.g. ReLU) is applied to get one128

GCN layer’s output feature matrix H . Throughout this work, we refer A as the normalized adjacency129

matrix since normalization could be absorbed in a pre-processing step.130

3

1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

Feature-Aggregation Node-Aggregation

Figure 2: Feature-Optimized Packing Ciphertext Computation Flow.

Threat Model. We adopt a threat model setting consistent with prior works [9, 14, 3, 7, 18, 22, 27].131

A client uploads private and sensitive data to the cloud for obtaining the online machine learning132

model prediction results. The cloud server is semi-honest (e.g. honest but curious). To ensure data133

privacy, the client encrypts their own data by HE and decrypts this inference result by their private134

key. In this work, we focus on encrypting both graph node features X and the normalized adjacency135

matrix A. The clients run the decoder of GAE [21] at their end because this step does not involve136

trained model parameters on the cloud server.137

3 Method138

Overview. The GCN inference A ·X ·W can be separated into the two-dimension (A ·X on the139

nodes and X ·W on the features) aggregation on feature matrix X . When we perform HE matrix140

multiplication on the encrypted feature matrix (ciphertexts), it is inevitable that we need to perform141

HE rotation on the same ciphertext. Unfortunately, the rotation operation not only incurs high latency142

but also generates a huge number of ciphertext copies that consume a large amount of memory space.143

In this section, we propose a holistic solution set to systematically address these issues.144

In order to effectively reduce the number of ciphertexts involved in HE computation, our design is145

built upon the feature-wise packing since multiplying W often leads to a lower feature dimension.146

However, for non-densely packed ciphertexts, feature-wise packing is further subject to the data147

alignment issue, resulting in extra rotations. To overcome this challenge, we propose the two-148

dimension parallel-packing. In addition, considering that the layer-wise feature number reduction149

would result in many wasted slots, we further propose the interleaved assembling to efficiently merge150

such ciphertexts.151

3.1 Motivation of Feature-Oriented Ciphertext Packing152

The major inference computation in GCN can be illustrated as A ·X ·W , where A ∈ RN×N is the153

normalized adjacency matrix used for node-wise aggregation, X ∈ RN×F is the input feature matrix,154

and W ∈ RF×F ′
is the weight matrix used for feature-wise aggregation. Apparently, we can choose155

A · X or X · W as the first step, which will not change the final product. However, considering156

that matrix X is encrypted as ciphertexts, the order of computation will affect the efficiency since157

the ciphertexts with fewer dimensions will reduce the required HE operations and copies of the158

ciphertexts. For example, if F ′ < F , we first perform X ·W to produce an intermediate product with159

fewer dimensions, i.e., RN×F ′
. This will reduce the computational overhead and latency in the next160

step A ·X . On the contrary, if F < F ′, we first perform A ·X .161

We explore two ciphertext packing design options that could lead to minimized computational162

overhead of a single-dimension aggregation (either graph node or feature). One is the feature-wise163

packing, where one ciphertext only packs one feature data from different nodes. The number of164

ciphertexts is proportional to feature number. The other is the node-wise packing, where the number165

of ciphertexts is equal to the number of graph nodes. However, in this case, the number of graph166

nodes (or ciphertexts) does not change during inference, this inevitably results in too many wasted167

empty slots in the ciphertexts and thus would yield more HE rotations. As the example in Figure 2168

shows, we assume the ciphertext packing size is 8, adjacency matrix A ∈ R4×4, weight matrix169

W ∈ R4×1, and feature matrix X ∈ R4×4. The 4 feature-wise packing ciphertexts can be reduced to170

1 ciphertext after feature aggregation, which only needs 4 ciphertext-multiplication (CMult) in the171

4

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

(a)

Interleaved Assembling

(b)

1 0 1 0 1 0 1 0

0 1 0 10 1 0 1

Figure 3: (a) The Two-Dimension Parallel-Packing. (b) The Interleaved Assembling.

next adjacency matrix multiplication. If using the node-wise packing, we still need 16 CMult in the172

next step. Therefore, we choose feature-wise packing in our design.173

3.2 Two-Dimension Parallel-Packing174

Optimization Problem Formulation Following the definition in the previous section, we assume175

that the ciphertext has M available slots for packing data and consider the following general case:176

M > N and M > F . As shown in Figure 2, after the feature-wise packing, the same features of177

different data from feature matrix X are encoded into the same ciphertext X = [ct1 . . . ctF] and178

then multiplied with weights wij to get matrix X ′ = XW = [ct′1, . . . , ct
′
F ′] in the same feature-wise179

packing format (see Eq.(2)).180

ct′j =

F∑
i=1

cti ⊗ wij , j ∈ F ′ (2)

For node-wise aggregation, we need to perform diagonal-encoded matrix multiplication [11] on181

ciphertexts F ′ individually. However, due to M > N , we need to generate the corresponding182

ciphertext copies with each data aligned by rotating each ciphertext twice and scaling with the mask183

vector then summing (see Eq.(3)).184

ct′ij = ρ(ct′j , i)⊗msi + ρ(ct′j ,−(N − i))⊗ms−(N−i), i ≥ 1 (3)

After that, we multiply them with the corresponding diagonal-encoded vector di of adjacency matrix185

A and sum up them to get the node-wise aggregation result of A ·X ′ (see Eq.(4)).186

ct′′j =

N−1∑
i=0

(ct′ij)⊗ di, ct′0j = ct′j (4)

In this process, we can find that data alignment issue for non-densely packed ciphertexts leads to187

extra rotations. We propose the two-dimension parallel-packing to solve it. Our idea is to leverage188

the matrix partition to fully pack data in all slots and amortize the HE computation cost.189

Figure 3(a) shows our basic idea. We partition n (a power two number) graph nodes into a small190

block to fully utilize the size of the ciphertext and encode the feature matrix X . In each ciphertext,191

we actually pack n nodes corresponding to f different features together in an interleaved way. For192

feature-wise aggregation, we adopt the baby-step algorithm [18, 14] to get the different output features193

with good alignment. As shown in Figure 3 (a), the number of rotations 2(f − 1) used here for each194

ciphertext depends on the number of different features f = M/n (we assume the output feature195

F ′ ≥ f). Then, we continue to rotate each ciphertext for n − 1 times and perform the diagonal196

encoded matrix multiplication [11] for A ·X . The total complexity of rotation is:197

(n− 1) · (N · F ′/M) + (2(f − 1)) · (N/n · (F ′/f)) (5)

Since M = n · f , the total complexity is further equal to198

(N · F ′/M) · ((n− 1) + 2(f − 1)) (6)

According to Cauchy-Schwarz inequality:199

O(n+ 2f) ≥ O(2 ·
√

2nf/2) = O(2 ·
√
M) (7)

5

Where n = 2f , the total complexity of rotation reaches a minimum. Hence minimizing the number200

of rotations can be modeled as an optimization problem:201

argmin(f,n){(n− 1) + 2(f − 1)}s.t.


M = n ∗ f

f = 2k, k ∈ N+

M > N,M > F

(8)

Supporting Large Graph Eq. 8 assumes that the number of graph nodes should be smaller than202

that of ciphertext slots (M > N), however, for scaled graph networks, it is possible that M ≤ N .203

For example, the PubMed [31] contains 19717 nodes, which is far more than the 4096 ciphertext204

slots. To address this, our method can be scalable to such cases by splitting a large graph into several205

sub-graphs. Assuming we use feature-wise encoding and it requires 5 cts (each with 4096 slots) to206

pack 1 feature. Accordingly, each feature will have 4 cts with fully packed 4096 nodes and 1 ct with207

partially packed 3333 nodes. To solve the problem under the constraint–M ≤ N , we split N as:208

N = x ·M +R (9)

where x = N mod M , R = N % M . Eq. 9 leads to one R×F sub-block matrix and x of M×F sub-209

block matrices. For the R× F matrix, we refer to Eq. 7 to optimize the Rotation as N = R < M .210

For other M × F sub-block matrices with N = M , we change the assumption from N < M to211

N = M . Then, again with our proposed Two-Dimension Parallel-Packed ct, the total complexity of212

rotations becomes:213

(M · F ′/M) · ((n− 1) + 2(f − 1)) = F ′ · (n+ 2f − 3) (10)

The corner case f = 1 is different from that in the discussion of optimization problem formulation.214

Because ct here is fully packed for n = M and does not have the data alignment issue. For215

n = M,F = 1, the total complexity of Rotation becomes:216

F ′ · (M − 1) (11)

Except for this corner case n = M,f = 1, the total complexity reaches a minimum when n = 2f .217

We compare the previously proved minimum with the corner case n = M,f = 1 here, and get the218

difference of rotations complexity as follows:219

F ′ · ((M − 1)− (2
√
M − 3)) = F ′ · (M − 2

√
M − 4) = F ′ · (

√
M − 2)2 > 0 (12)

In general, since M is set as ≥ 211 to guarantee security level [16, 27], the above inequality 12220

always holds. Thus, when considering a M×F matrix, the proposed Two-Dimension Parallel-Packing221

can still reach the minimum at n = 2f .222

3.3 Interleaved Assembling223

In GCN inference, the reduction in feature size may result in wasted slots in two-dimension parallel-224

packing. As the example shown in Figure 3(b), we optimally encode 32 different features into one225

ciphertext at the beginning. After the feature extraction layer with 16 hidden units, the previous dense226

encoded ciphertext will have half of the slots turn to blank. These blank slots in ciphertext bring227

higher memory overhead, especially given that the adjacency matrix A is also encrypted, resulting in228

more CMult operations thus computational overhead. We propose interleaved assembling to solve229

this issue. Figure 3(b) shows our idea. We rotate the ct2 that contains node 5-8’s features by 1 slot230

and then add it with ct1 that contains node 1-4’s features. After that, we have a new ciphertext ct′ that231

contains 8 nodes with 1 feature. Meanwhile, we multiply the two mask vectors with the ciphertexts232

for sub-square matrix A11 (for node 1-4) and A22 (for node 5-8) and get an interleaved assembled233

ciphertext contains matrix A11 and A22. Then, by rotating ciphertext ct′ 3 times and performing234

element-wise multiplication with new diagonal-encoded ciphertexts of the matrix A11 and A22, we235

could get the results–ciphertext ct′1 of node 1-4 with the matrix A11 and node 5-8 with the matrix A22236

simultaneously. In this way, the complexity of HE operations including both rotation and ciphertext237

multiplication can be reduced by half. After that, we repeat the steps to perform multiplication on ct′238

and ciphertext that contains A21 and A12 to get the ct′2. Based on the formula ct′′ = ct′1 + ρ(ct′2, 1),239

we get the final result ciphertext ct′′ that multiples matrix (A11, A12, A21, A22). By leveraging such240

an interleaved assembling, we could achieve f ′

f times reduction of the total computational complexity,241

where f ′ is the number of features on the current ciphertext, and f is the number of features on the242

ciphertext before feature reduction.243

6

4 Evaluation244

4.1 Experiment Setup245

Datasets. We adopt the Cora [31], Citeseer [10] and Pubmed [31] scientific publication datasets for246

graph learning. The Cora, Citeseer, and Pubmed contain 2708, 3327, and 19717 publication nodes247

divided into 7, 6, and 3 classes respectively. And each node consists of 1433, 3703, and 500 unique248

word features, respectively. To test the link prediction task [21], 90% of edges are removed and all249

node features are retained on all datasets.250

Models. We train 3 Graph Auto-Encoder (GAE) models with 2 hidden layers and 2 activation251

layers on 3 different datasets, i.e., Cora, Citeseer, and Pubmed. The three models follow the same252

GAE architecture in [21], and are implemented using the DGL library [32]. Table 1 lists the model253

architecture and pertinent encryption parameters for encrypting both adjacency matrix A and feature254

matrix X . We use x2 as the non-linear function [9] to replace the ReLU activation and apply the255

ADAM optimizer to train the model for 200 epochs using a learning rate of 0.01. The accuracy of256

each model (AUC in Link Prediction) is maintained at the original level.257

Encryption parameters. For all tasks, we apply a scaling factor ∆ = 230 to ensure the accuracy of258

the encrypted inference using CKKS. Each rescale consumes 30 bits of ciphertext modulus Q, and259

there are 6 times rescale and corresponding 6 levels across the whole network. Thus, we set Q = 218,260

and the polynomial degree N = 213 to guarantee a 128-bit security level. Additionally, the scale261

factor of mask plaintext used in comparison with E2DM [14] & uSCORE [12] is set to 215.262

Baseline designs. To better evaluate the proposed approach, we develop several baselines, including:263

• Penguin-family. We implement several Penguin baselines by applying only our proposed two-264

dimension parallel-packing technique (see Sec. 3.2). We set up different pairs of features and265

nodes when optimizing the packing format. Table 2 lists the numbers of features/nodes selected.266

Here Penguin(f, n) denotes that f features and n nodes are used in the corresponding baseline267

design. Note that, the baseline designs with f = 1 or n = 1 are the extreme cases when only the268

feature-wise or node-wise packing method is used.269

• Penguin+IA. We develop two Penguin+IA baselines by further applying the proposed Interleaved270

Assembling (IA) technique (see Sec. 3.3) to the Penguin-family.271

• We also implement the approaches using E2DM [14] and uSCORE [12] to represent the state-of-272

the-art secure matrix matrix multiplication solutions.273

Measurements. We use inference latency as our main performance metric, which is averaged over274

20 simulations. Besides, we record the Homomorphic Operation Count (HOC), including the number275

of rotations (Rotation), the number of ciphertext multiplications (CMult), etc. We also calibrate276

the numbers of ciphertexts and memory usage. A lower number of these metrics indicates better277

performance.278

Environment. We conduct all experiments on a machine equipped with Threadripper 3975WX CPU279

using the single thread setting to test the inference latency and train these GAE models with 2 Nvidia280

3090 GPUs. We use Microsoft SEAL version 3.7.2 [30] to implement the RNS-variant of CKKS [4]281

scheme.282

4.2 Evaluation Results283

4.2.1 Two-Dimension Parallel-Packing284

Table 2 presents our evaluation results of the proposed two-dimension parallel-packing and interleaved285

assembling approach. We find that the packing format Penguin(f, n = 1) performs the worst on286

Table 1: Model and encryption parameters.

Dataset # Layers Accuracy Encryption Parameters Mult Security
Hidden1 Hidden2 Activation (AUC) N Q P Level Level

Cora
32 16 x2

0.974
8192 218 30 6 128-bitCiteseer 0.747

PubMed 0.858

7

Table 2: Ablation study of Two-Dimension Parallel-Packing and Interleaved Assembling.

Dataset Packing-Format HOC # of Ciphertexts Memory (GB) Latency (s) Speedup (×)Rot CMult Others

Cora

Penguin(1433,1) 1048K 74K 282K 2708-2708-2708 2.38 7018.51 -
Penguin(1, 2708) 260K 130K 223K 1433-32-16 1.82 2475.78 2.83
Penguin(16,256) 9.7K 9.3K 157k 990-22-11 0.49 678.03 10.35
Penguin(32,128) 8.3K 124K 188K 990-22-22 0.65 871.15 8.06
Penguin(64,64) 13.5k 237k 365K 990-43-43 1.25 1650.28 4.25

Penguin(32,128)+IA 6.9K 9.3K 157K 990-22-11 0.49 660.67 10.62
Penguin(64,64)+IA 10.3K 9.3K 220k 989-22-11 0.49 693.13 10.13

Citeseer

Penguin(3703,1) 1521K 1110K 3852K 3327-3327-3327 2.92 9240.10 -
Penguin (1, 3327) 319K 160K 385K 3703-32-16 3.08 3064.91 3.01
Penguin(16,256) 110K 130K 324K 3016-26-13 1.40 950.30 9.72
Penguin(32,128) 9.8K 173K 367K 3016-26-26 1.62 1225.05 7.54
Penguin(64,64) 16.3K 346K 734K 3016-52-52 2.51 2429.47 3.80

Penguin(32,128)+IA 7.4K 130K 324K 3016-26-13 1.39 928.10 9.96
Penguin(64,64)+IA 12K 130K 387K 3016-26-13 1.39 982.08 9.41

PubMed

Penguin(19717,1) 5974K 817K 12687K 19717-19717-19717 9.75 44586.03 -
Penguin (1, 500) 1106K 4732K 4897K 2500-160-80 17.3 37727.58 1.18
Penguin(16,256) 69K 4673K 4837K 2496-156-78 3.76 30906.28663 1.44
Penguin(32,128) 59K 6151K 6314K 2480-155-155 11.6 40474.11 1.10
Penguin(64,64) 117K 12222K 12547K 2472-309-309 42.9 80424.70 0.55

Penguin(32,128)+IA 49K 4633K 4794K 2480-155-78 3.76 30522.43 1.46
Penguin(64,64)+IA 73K 4633K 4954K 2472-155-78 3.75 30701.59 1.45

the three datasets due to having the largest number of HOCs and no slot packing optimization. This287

results in significant latency and memory overhead. In particular, since PubMed contains more288

encrypted features (number of cts), the same design performs worse on PubMed than on the other two289

datasets. We use this Penguin(f, n = 1) as the baseline to compare the speed of other approaches.290

Our results clearly show that our proposed two-dimension parallel-packing method can significantly291

reduce the HOCs (especially the number of rotations) and the number of ciphertexts. For example,292

on the Cora dataset, our Penguin(16, 256), Penguin(32, 128), and Penguin(64, 64) designs can293

reduce the number of rotations from 1048K to 9.7K, 8.3K, and 13.5K, respectively, thus reducing294

memory usage by ∼ 79%, ∼ 76%, and ∼ 47%, and reaching ∼ 10.35×, ∼ 8.06×, and ∼ 4.25×295

speed up, respectively.296

In particular, the results we observed are well consistent with the theoretical analysis. For example,297

with M = f ∗ n = 4096, n = 2f , we have the theoretical minimum fmin =
√
2048 ≃ 45 (see298

Section 3.2). We can observe that the baseline Penguin(32, 128) with f = 32, n = 128 is very close299

to the theoretical minimum and achieves the best results among the three designs. Meanwhile, other300

HOCs besides Rotation may increase under the optimal packing and affect the overall latency. For301

example, Penguin(32, 128) yields more ciphertext multiplication (CMult) than Penguin(16, 256)302

due to wasted slots from feature reduction, which can be further optimized using the proposed303

Interleaved Assembling method.304

Moreover, as we discussed for the large graph (see Section 3.2), all designs perform much worse in305

PubMed than the other two datasets. This is because the number of nodes in PubMed is significantly306

larger than the size of ciphertext (19717 ≫ 4096), which means that it needs to be multiplied with a307

large 19717× 19717 adjacency matrix. Therefore, the number of CMult ≫ number of Rot. However,308

our proposed packing technique can still improve the performance in such cases.309

4.2.2 Interleaved Assembling310

Table 2 also reports the evaluation results of incorporating the two-dimensional parallel packing311

and interleaved assembly methods. For example, in Cora, the number of rotations, the number of312

CMult, and the number of other HOCs in the Penguin(32, 128) + IA design are further reduced313

by 1.4K, 114.7K, and 31K, respectively, compared to the parallel-packing only Penguin(32, 128).314

This makes Penguin(32, 128) + IA the best design on all datasets, i.e., with the minimum memory315

usage of 0.49GB, 1.39GB, and 3.76GB and a 10.62×, 9.96×, and 1.46× speedup on dataset Cora,316

Citeseer, and PubMed, respectively. These results illustrate that our proposed interleaved assembly317

can effectively reduce the wasted empty slots and save the number of ciphertexts selected in the318

computation, thus significantly improving the efficiency based on the SIMD.319

8

Table 3: Compare with the state-of-the-art.
Dataset Method Security Level Latency (s) Amortized Latency Speedup (×)

Cora
E2DM(64) [14] 98-bit 3150.74 1.16 -

uSCORE(32,128) [12] 98-bit 1727.12 0.64 1.82
Penguin(32,128)+IA 128-bit 660.57 0.24 4.77

Citeseer
E2DM(64) [14] 98-bit 4561.15 1.37 -

uSCORE(32,128) [12] 98-bit 2377.50 0.72 1.92
Penguin(32,128)+IA 128-bit 928.10 0.28 4.91

Pubmed
E2DM(64) [14] 98-bit 154530.49 7.84 -

uSCORE(32,128) [12] 98-bit 78843.49 4.00 1.96
Penguin(32,128)+IA 128-bit 30522.43 1.55 5.06

4.2.3 Compare with SOTA Solutions320

In our evaluation, we also compare our best design Penguin(32, 128) + IA with the state-of-the-art321

(SOTA) solutions, including E2DM [14] and uSCORE [12]. Both SOTA solutions can speed up322

HE-GCN inference using the optimized matrix-matrix multiplication. Table 3 reports the results. Our323

encryption parameters can guarantee a 128-bit security level, which is higher than SOTA solutions324

that need more multiplicative levels to mask the plaintexts. To provide a fair comparison, we measure325

amortized latency, which is the latency required for link predictions of one node. As listed in Table 3,326

our method achieves an amortized latency of 0.24s on the Cora, which is 4.77× (or 1.82×) faster327

than that of E2DM (or uSCORE). We observe a similar improvement on the Citeseer and PubMed.328

These results illustrate that by leveraging the unique features of GCN computation to reduce the329

number of ciphertexts and HOCs, our method significantly outperforms the SOTA methods that are330

based on the optimization of the general matrix-matrix multiplication in encryption domain.331

5 Related Work332

CryptoNets [9] is the first work that demonstrates the feasibility of building privacy-preserving333

machine learning (PPML) by HE. However, the long inference latency and the inflexible packing334

format make it hard to be applied to large-scale models and datasets. Another following work named335

SHE [24], translates the nonlinear ReLU and Max Pooling operations as Boolean operations to336

support the TFHE-based [6] PPML without modifying the pretrained models. There also exist many337

multi-party computation (MPC) solutions that combine the two-party computation protocols [35]338

with HE frameworks to achieve the low inference latency [29, 16, 25, 13, 23, 26]. However, they339

suffer from high communication overhead incurred by data transfer between multiple parties. Recent340

studies such as LoLa [3], CHET [7], and HEAR [19] leverage the ciphertext packing technique to341

place multiple data in the same ciphertext so that HE operations can be conducted efficiently via342

single instruction multiple data (SIMD) for accelerating HE-based CNN inference. These approaches343

are often not applicable or optimal to GCN inference due to the very different computation patterns344

between the GCN and CNN. CryptoGCN [27] is the first attempt to build HE-based PPML for345

GCNs. It packs the ciphertexts from individual node to relieve the adjacency matrix multiplication346

overhead. However, they assume the adjacency matrix as plaintext, which is not applicable to347

dynamic graph settings which require protecting both graph structure and features like our work.348

E2DM [14] and uSCORE [12] consider the two encrypted matrix-matrix multiplication optimization349

by decomposing the problem into small square matrix multiplication and supporting the consecutive350

matrix multiplication. However, these general solutions demonstrate limited efficiency to accelerate351

HE-based GCN inference, as shown in Sec. 4.2.352

6 Conclusion353

In this paper, we propose a two-dimension parallel packing technique for feature ciphertext by354

optimizing the feature matrix partition size and further propose an interleaved assembling technique355

to merge ciphertexts that have wasted slots from feature reduction in CKKS-based secure GCN356

inference. These techniques can better save ciphertext memory and effectively reduce the number357

of homomorphic operations required. Experimental results based on the GAEs for link prediction358

and 3 popular graph datasets show that our solution can speed up the latency of the secure GCN359

inference by 10× and reduce the memory requirement by more than 79%, greatly outperforming the360

state-of-the-art solutions.361

9

References362

[1] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzynski. ngraph-he2:363

A high-throughput framework for neural network inference on encrypted data. In Proceedings364

of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,365

pages 45–56, 2019.366

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic367

encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–368

36, 2014.369

[3] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference.370

In International Conference on Machine Learning, pages 812–821. PMLR, 2019.371

[4] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns372

variant of approximate homomorphic encryption. In International Conference on Selected Areas373

in Cryptography, pages 347–368. Springer, 2018.374

[5] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for375

arithmetic of approximate numbers. In International Conference on the Theory and Application376

of Cryptology and Information Security, pages 409–437. Springer, 2017.377

[6] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully378

homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.379

[7] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal380

Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-381

network inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming382

Language Design and Implementation, pages 142–156, 2019.383

[8] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.384

[9] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John385

Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and386

accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.387

[10] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing388

system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.389

[11] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Conference, pages390

554–571. Springer, 2014.391

[12] Zhicong Huang, Cheng Hong, Wen-jie Lu, Chenkai Weng, and Hunter Qu. More efficient392

secure matrix multiplication for unbalanced recommender systems. IEEE Transactions on393

Dependable and Secure Computing, 2021.394

[13] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure395

two-party deep neural network inference. IACR Cryptol. ePrint Arch., 2022:207, 2022.396

[14] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix397

computation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC398

conference on computer and communications security, pages 1209–1222, 2018.399

[15] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Jongmin Kim, Namhoon Kim, Keewoo Lee,400

Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. Accelerating fully homomorphic en-401

cryption through architecture-centric analysis and optimization. IEEE Access, 9:98772–98789,402

2021.403

[16] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low404

latency framework for secure neural network inference. In 27th USENIX Security Symposium405

(USENIX Security 18), pages 1651–1669, 2018.406

[17] Oussema Keskes and Rita Noumeir. Vision-based fall detection using st-gcn. IEEE Access,407

9:28224–28236, 2021.408

10

[18] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Hear:409

Human action recognition via neural networks on homomorphically encrypted data. preprint410

arXiv:2104.09164, 2021.411

[19] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Secure412

human action recognition by encrypted neural network inference. Nature communications,413

13(1):1–13, 2022.414

[20] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional415

networks. arXiv preprint arXiv:1609.02907, 2016.416

[21] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint417

arXiv:1611.07308, 2016.418

[22] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,419

and Woosuk Choi. Low-complexity deep convolutional neural networks on fully homomorphic420

encryption using multiplexed parallel convolutions. In International Conference on Machine421

Learning, pages 12403–12422. PMLR, 2022.422

[23] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via423

minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer424

and communications security, pages 619–631, 2017.425

[24] Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data.426

Advances in Neural Information Processing Systems, 32, 2019.427

[25] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada428

Popa. Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security429

Symposium (USENIX Security 20), pages 2505–2522, 2020.430

[26] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving431

machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE,432

2017.433

[27] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. CryptoGCN: Fast434

and scalable homomorphically encrypted graph convolutional network inference. In Alice H.435

Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural436

Information Processing Systems, 2022.437

[28] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy438

homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.439

[29] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-440

secure deep learning. In Proceedings of the 55th annual design automation conference, pages441

1–6, 2018.442

[30] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL, September 2021.443

Microsoft Research, Redmond, WA.444

[31] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-445

Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.446

[32] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,447

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.448

Deep graph library: A graph-centric, highly-performant package for graph neural networks.449

preprint arXiv:1909.01315, 2019.450

[33] Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting Wang, and Meng Wang. Socialgcn: An451

efficient graph convolutional network based model for social recommendation. arXiv preprint452

arXiv:1811.02815, 2018.453

[34] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-454

mender systems: a survey. ACM Computing Surveys (CSUR), 2020.455

[35] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on456

Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.457

11

https://github.com/Microsoft/SEAL

	Introduction
	Preliminary
	Method
	Motivation of Feature-Oriented Ciphertext Packing
	Two-Dimension Parallel-Packing
	Interleaved Assembling

	Evaluation
	Experiment Setup
	Evaluation Results
	Two-Dimension Parallel-Packing
	Interleaved Assembling
	Compare with SOTA Solutions

	Related Work
	Conclusion

