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ABSTRACT

Generating realistic time series data is important for many engineering and scien-
tific applications. Existing work tackles this problem using generative adversarial
networks (GANs). However, GANs are unstable during training, and they can
suffer from mode collapse. While variational autoencoders (VAEs) are known to
be more robust to the these issues, they are (surprisingly) less considered for time
series generation. In this work, we introduce Koopman VAE (KoVAE), a new gen-
erative framework that is based on a novel design for the model prior, and that can
be optimized for either regular and irregular training data. Inspired by Koopman
theory, we represent the latent conditional prior dynamics using a linear map. Our
approach enhances generative modeling with two desired features: (i) incorporat-
ing domain knowledge can be achieved by leveraging spectral tools that prescribe
constraints on the eigenvalues of the linear map; and (ii) studying the qualitative
behavior and stability of the system can be performed using tools from dynam-
ical systems theory. Our results show that KoVAE outperforms state-of-the-art
GAN and VAE methods across several challenging synthetic and real-world time
series generation benchmarks. Whether trained on regular or irregular data, Ko-
VAE generates time series that improve both discriminative and predictive metrics.
We also present visual evidence suggesting that KoVAE learns probability density
functions that better approximate the empirical ground truth distribution.

1 INTRODUCTION

Generative modeling is an important problem in modern machine learning (Kingma & Welling,
2014; Goodfellow et al., 2014; Sohl-Dickstein et al., 2015), with a recent surge in interest due to
results in natural language processing (Brown et al., 2020) and computer vision (Rombach et al.,
2022; Ramesh et al., 2022). While image and text data have benefited from the recent development
of generative models, time series (TS) data has received relatively little attention. This is in spite
of the importance of generating TS data in various scientific and engineering domains, including
seismology, climate studies, and energy analysis. Since these fields can face challenges in collect-
ing sufficient data, e.g., due to high computational costs or limited sensor availability, high-quality
generative models could be invaluable. However, generating TS data presents its own unique set of
challenges. First, synthetic TS must preserve the related statistical distribution to fit into downstream
forecasting, uncertainty quantification, and classification tasks. Second, advanced objectives such
as supporting irregular sampling and integrating domain knowledge require models that respect the
underlying dynamics (Che et al., 2018; Kidger et al., 2020; Jeon et al., 2022; Coletta et al., 2023).

Several existing state-of-the-art (SOTA) generative TS models are based on generative adversarial
networks (GAN). For example, TimeGAN (Yoon et al., 2019) learns an embedding space where
adversarial and supervised losses are optimized to mimic the data dynamics. Unfortunately, GANs
are unstable during training and are prone to mode collapse, where the learned distribution is not
sufficiently expressive (Goodfellow, 2016; Lucic et al., 2018; Saxena & Cao, 2021). In addition,
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train sets with missing values or more generally, non-equispaced (irregularly-sampled) train sets,
may be not straightforward to support in GAN architectures. For instance, Jeon et al. (2022) combine
multiple different technologies to handle irregularly-sampled data, resulting in a complex system
with many hyper-parameters. These challenges suggest that other generative paradigms should be
also considered for generating time series information.

Surprisingly, variational autoencoders (VAEs) are not considered as strong baselines in generative
time series benchmarks (Ang et al., 2023), although they suffer less from unstable training and mode
collapse. In VAE, an approximate posterior is learned via a neural network to match a certain prior
distribution that spans the data statistics. Recent methods including TimeVAE (Desai et al., 2021)
and CR-VAE (Li et al., 2023) employ a variational viewpoint, however, their prior modeling is based
on non-sequential standard normal priors. Thus, the learned posterior may struggle to properly rep-
resent the latent dynamics (Girin et al., 2021). This issue is further exacerbated when designing
advanced sequential objectives. For instance, it is unclear how to incorporate domain knowledge
about dynamical systems (e.g., stable dynamics, slow or fast converging or diverging dynamics) with
unstructured Gaussian prior distributions. One promising direction to modeling latent dynamics is
via linear approaches, that recently have been shown to improve performance and analysis (Zeng
et al., 2023; Orvieto et al., 2023). More generally, this line of work aligns with theoretical and nu-
merical tools from Koopman literature (Koopman, 1931; Rowley et al., 2009; Takeishi et al., 2017).
Koopman theory offers a dual representation for autonomous dynamical systems via linear, albeit
infinite-dimensional, operators. Harnessing this viewpoint facilitates autoencoder design, yielding
finite-dimensional approximate Koopman operators that model the latent dynamics.

In this work, we propose Koopman VAE (KoVAE), a novel model that leverages linear latent Koop-
man dynamics within a VAE setup. KoVAE employs a prior stating that sequential latent data is
governed by a linear dynamical system. Namely, the conditional prior distribution of the next latent
variable, given the current variable, can be represented using a linear map. Under this assumption,
we train an approximate posterior distribution that learns a nonlinear coordinate transformation of
the inputs to a linear latent representation. Our approach offers two benefits: (i) it models the under-
lying dynamics and it respects the sequential nature of input data; and (ii) it seamlessly allows one
to incorporate domain knowledge and study the qualitative behavior of the system by using spectral
tools from dynamical systems theory. Moreover, we integrate into KoVAE a time-continuous module
based on neural controlled differential equations (NCDE) (Kidger et al., 2020) to support irregularly-
sampled time series information during training. The advantages of KoVAE are paramount as they
facilitate the capturing of statistical and physical features of sequential information, and, in addition,
imposing physics-constraints and analyzing the dynamics is straightforward.

Contributions. The main contributions of our work can be summarized as follows:

• We propose a new variational generative TS framework for regular and irregular data that is based
on a novel prior distribution assuming an implicit linear latent Koopman representation. Our
design and modeling yield a flexible, easy-to-code, and powerful generative TS model.

• We show that our approach facilitates high-level capabilities such as physics-constrained TS gen-
eration, by penalizing the eigenvalues of the approximated Koopman operator. We also perform
stability analysis by inspecting the spectrum and its spread.

• We show improved state-of-the-art results in regular and irregular settings on several synthetic and
real-world datasets, often surpassing strong baselines such as TimeGAN and GT-GAN by large
margins. For instance, on the regular and irregular discriminative task we report a total mean
relative improvement of 58% and 49% with respect to the second best approach, respectively.

2 RELATED WORK

Our work is related to generative models for TS as well as Koopman-based methods. Both areas
enjoy increased interest in recent years, and thus, we focus our discussion on the most related work.

Generative Models for Time Series. Recurrent neural networks (RNNs) and their step-wise pre-
dictions have been used to generate sequences in Teacher forcing (Graves, 2013) and Professor forc-
ing (Goyal et al., 2016) approaches. Autoregressive methods such as WaveNet (van den Oord et al.,
2016) represent the predictive distribution of each audio sample by probabilistic conditioning on all
previous samples, whereas TimeGCI (Jarrett et al., 2021) also incorporates GANs and optimizes a
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transition policy where the reinforcement signal is provided by a global energy framework trained
with contrastive estimation. Flow-based models for generating time series information utilize nor-
malizing flows for an explicit likelihood distribution (Alaa et al., 2020). Long-range sequences were
recently treated via state-space models (Zhou et al., 2023).

GANs and VAEs. GAN-based architectures have been shown to be effective for generating TS data.
C-RNN-GAN (Mogren, 2016) directly applied GAN to sequential data, using LSTM networks for
the generator and the discriminator. Recurrent Conditional GAN (Esteban et al., 2017) extends the
latter work by dropping the dependence on the previous output while conditioning on additional
inputs. TimeGAN (Yoon et al., 2019) is still one of the SOTA methods, and it jointly optimizes
unsupervised and supervised loss terms to preserve the temporal dynamics of the training data during
the generation process. COT-GAN (Xu et al., 2020) exploits optimal transport and temporal causal
constraints to devise a new adversarial loss. Recently, GT-GAN (Jeon et al., 2022) was proposed as
one of the few approaches that support irregular sampling, and it employs autoencoders, GANs, and
Neural ODEs (Chen et al., 2018). While GAN techniques are more common in generative TS, there
are also a few VAE-based approaches. A variational RNN was proposed in (Chung et al., 2015).
TimeVAE (Desai et al., 2021) models the whole sequence by a global random variable with a normal
Gaussian distribution for a prior, and they introduce trend and seasonality building blocks into the
decoder. CR-VAE (Li et al., 2023) learns a Granger causal graph by predicting future data from
past observations and using a multi-head decoder acting separately on latent variable coordinates.
Additional related VAE works include (Rubanova et al., 2019; Li et al., 2020; Zhu et al., 2023).

Koopman-based Approaches. Koopman techniques have gained increasing interest over the past
two decades, with applications ranging across analysis (Rowley et al., 2009; Schmid, 2010; Takeishi
et al., 2017; Lusch et al., 2018; Azencot et al., 2019), optimization (Dogra & Redman, 2020; Redman
et al., 2022), forecasting (Erichson et al., 2019; Azencot et al., 2020; Wang et al., 2023; Tayal
et al., 2023), and disentanglement (Berman et al., 2023), among many others (Budišić et al., 2012;
Brunton et al., 2021). Most related to our work are Koopman-based probabilistic models, which
have received less attention in the literature. Deep variational Koopman models were introduced
in Morton et al. (2019), allowing to sample from distributions over latent observables for prediction
tasks. In Srinivasan & Takeishi (2020), the authors sample via Markov Chain Monte Carlo tools
over transfer operators. A mean-field variational inference method with guaranteed stability was
suggested in Pan & Duraisamy (2020) for the analysis and prediction of nonlinear dynamics. Finally,
Han et al. (2022) designed a stochastic Koopman neural network for control that models the latent
observables via a Gaussian distribution. To the best of our knowledge, our work is the first to
combine VAEs and Koopman-based methods for generating regular and irregular TS information.

3 BACKGROUND

Below, we discuss background information essential to our method. In App. A and App. B, we also
cover VAE and NCDE, used in our work to support irregularly-sampled sequential train sets.

Koopman theory and practice. The underlying theoretical justification for our work is related to
dynamical systems and Koopman theory (Koopman, 1931). Let M ⊂ Rm be a finite-dimensional
domain and φ : M → M be a dynamical system defined by

xt+1 = φ(xt) ,

where xt ∈ M, and t ∈ N is a discrete variable that represents time. Remarkably, under some mild
conditions (Eisner et al., 2015), there exists an infinite-dimensional operator known as the Koopman
operator Kφ that acts on observable functions f : M → C ⊂ F and it fully characterizes the
dynamics. The operator Kφ is given by

Kφf(xt) = f ◦ φ(xt) ,

where f ◦φ denotes composition of transformations. It can be shown that Kφ is linear, while φ may
be nonlinear. Further, if the eigendecomposition of the Koopman operator exists, the eigenvalues
and eigenvectors bear dynamical semantics. Spectral analysis of Koopman operators is currently
still being researched (Mezić, 2013; Arbabi & Mezic, 2017; Mezic, 2017; Das & Giannakis, 2019).
For instance, eigenfunctions whose eigenvalues lie within the unit circle are related to global stabil-
ity (Mauroy & Mezić, 2016), and to orbits of the system (Mauroy & Mezić, 2013; Azencot et al.,
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Figure 1: A) The posterior is composed of an embedding layer (NCDE), an encoder (GRU + BN),
mean/variance computation and sampling (linear + repr. trick), and a decoder (GRU + linear +
sigmoid). B) The prior consists of GRU, linear, a repr. trick layer, and our novel Koopman module.

2013; 2014). In practice, several methods have been devised to approximate the Koopman operator,
of which, the dynamic mode decomposition (DMD) (Schmid, 2010) is perhaps the most well-known
technique (Rowley et al., 2009). In this context, our work employs a learnable module akin to DMD
in the model prior of our KoVAE as detailed below. In general, our approach can be viewed as
treating the input data as states x1:T , whereas the learnable linear dynamics we compute in KoVAE
are parametrized by the latent observable functional space F .

Sequential VAEs. We denote by x1:T a TS input x1:T = x1, . . . , xT , where xt ∈ Rd for all t.
Below, we focus on a general approach (Girin et al., 2021), where the joint distribution is given by

p(x1:T , z1:T ) = p(z1:T )p(x1:T |z1:T ) =
T∏

t=1

p(zt|z<t) ·
T∏

t=1

p(xt|zt) , (1)

where zt is the prior latent code associated with xt, it depends on all past variables z<t, and given
zt, one can recover xt via a neural decoder p(xt|zt). The approximate posterior is modeled by

q(z1:T |x1:T ) =

T∏
t=1

q(zt|z<t, x≤t) , (2)

namely, zt is the posterior latent code, it is generated using the learned encoder q(zt|z<t, x≤t), and
the dynamic VAE loss is composed of reconstruction and regularization terms and it reads

LVAE = Ez1:T∼q[log p(x1:T |z1:T )]− KL[q(z1:T |x1:T ) ∥ p(z1:T )] . (3)

4 KOOPMAN VARIATIONAL AUTOENCODERS (KOVAE)

To describe our generative model, we detail its sequential posterior in Sec. 4.1, its novel linear
Koopman-based prior in Sec. 4.2, and its support for incorporating domain knowledge in Sec. 4.3.

4.1 A VARIATIONAL SEQUENTIAL POSTERIOR

To realize Eq. 2, our approximate posterior (Fig. 1A) is composed of embedding, encoder, sam-
pling, and decoder modules. Given the irregular TS xt1:tN , an NCDE embedding layer extracts
a regularly-sampled TS x̃1:T , followed by an encoder module consisting of a gated recurrent unit
(GRU) layer (Cho et al., 2014) and batch normalization (BN) layer that learn the dynamics and
output the latent representation z̃1:T . Then, two linear layers produce the posterior mean µ(z̃t)
and variance σ2(z̃t) for every t, allowing to employ the re-parameterization trick to generate the
posterior series z1:T via

zt ∼ N (µ(z̃t), σ
2(z̃t)) . (4)

We feed the sampled code to the decoder that includes another GRU, a linear layer, and a sigmoid
activation function. Note that the embedding NCDE layer is not used in the regular setting, i.e.,
when the input TS x1:T is regularly sampled.
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4.2 A NOVEL LINEAR VARIATIONAL SEQUENTIAL PRIOR

In general, one of the fundamental tasks in variational autoencoders’ design and modeling is the
choice of prior distribution. For instance, static VAEs define it to be a normal Gaussian distribution,
i.e., p(z) = N (0, I), among other choices, e.g., (Huszár, 2017). In the sequential setting, a common
choice for the prior is a sequence of Gaussians (Chung et al., 2015) given by

p(zt|z<t) = N (µ(z<t; θ), σ
2(z<t; θ)) , (5)

where the mean and variance are learned with a NN, and z1:T represents the latent sequence.
Now, the question arises whether one can model the prior of generative TS models p(z1:T ) =∏T

t=1 p(zt|z<t) in Eq. 1 so that it associates better with the underlying dynamics. In what follows,
we propose a novel inductive bias leading to a new VAE modeling paradigm.

Prior modeling. In this work, instead of considering a nonlinear sequence of Gaussian as in Eq. 5,
nonlinear prior linear prior

t1

t2
...

p(zt|z<t)

we assume that there exists a learnable nonlinear coordinate
transformation mapping inputs to a linear latent space. That
is, the inputs xt1:tN are transformed to z1:T whose dynamics
are governed by a linear sequence of Gaussians, see inset for
an illustration. Formally, the forward propagation in time of zt
is governed by a matrix, i.e.,

zt := EA∼A [Azt−1] , (6)

for every t, where A ∈ Rk×k is sampled from a space of linear
operators A. In practice, we implement the prior (Fig. 1B) and
produce z1:T using a gated recurrent unit (GRU) layer, a sampling component, and a Koopman
module (Takeishi et al., 2017). Given z̃0 := 0⃗, the GRU yields z̃1:T that is fed to two linear layers
which produce the mean µ(z̃t) and variance σ2(z̃t) for every t, allowing to sample z̄t from z̃1:T
via Eq. 5. To compute A, we construct two matrices Z̄0, Z̄ with z̄0:T−1 and z̄1:T in their columns,
respectively, where z̄0 ∼ N (µ(0; θ), σ2(0; θ)). Then, we solve the linear system for the best A such
that AZ̄0 = Z̄, similar to DMD (Schmid, 2010). Finally, zt is defined to be zt := Az̄t−1.

Training objective. Effectively, it may be that A induces some error, i.e., zt ̸= z̄t for some t ∈
[1, . . . , T ]. Thus, we introduce an additional predictive loss term that promotes linearity in the prior
latent variables by matching between z̄1:T and z1:T , namely,

Lpred(z1:T , z̄1:T ) = Ez̄1:T∼p[log p(z1:T |z̄1:T )] . (7)

Combining the penalties from Sec. 3 and the loss Eq. 7, we arrive at the following training objective
which includes a reconstruction term, a prediction term, and a regularization term,

L = Ez1:T∼q[log p(xt1:tN |z1:T )] + αLpred(z1:T , z̄1:T )− βKL[q(z1:T |xt1:tN ) ∥ p(z1:T )] , (8)

where α, β ∈ R+ are user weights, similar to (Higgins et al., 2016). In App. C, we provide technical
details on L, and in App. D, we show that our objective is a penalized evidence lower bound (ELBO).

4.3 PHYSICS-CONSTRAINED GENERATION AND ANALYSIS

The matrix A computed in Sec. 4.2 encodes the latent dynamics in a linear form. Thus, it can
be constrained and evaluated using spectral tools from dynamical systems theory (Strogatz, 2018).
For instance, the eigenvalues λj ∈ C, j = 1, . . . , k, are associated with growth (|λj | > 1) and
decay (|λj | < 1), whereas the eigenvectors ϕj ∈ Ck encode the dominant modes. Our constrained
generation and interpretability results are based on the relation between A and dynamical systems.

Often, prior knowledge of the problem can be utilized in the generation of time series information,
see e.g., the example in Sec. 5. Our framework allows us to directly incorporate such knowledge
by constraining the eigenvalues of the system, as was recently proposed in (Berman et al., 2023).
Specifically, we denote by c1, . . . , cr ⊂ C with r ≤ k several known constant values, and we define
the following penalty we add to the optimization that yields A whose eigenvalues are denoted by λj ,

Leig =

r∑
j=1

||λj | − cj |2 , (9)
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where |λj | is the modulus of a complex number. The loss term 9 can be used during training
or inference, or both. For instance, stable dynamical systems as we consider in Sec. 5.2, have
Koopman operators with eigenvalues on the unit circle, i.e., |λj | = 1. Thus, when constraining the
dynamics, we can fix some c1, . . . , cr = 1, and leave the rest to be unconstrained. In addition to
constraining the spectrum, we can also analyze the spectrum to study the stability behavior of the
system, similarly to (Erichson et al., 2019; Naiman & Azencot, 2023), see also Sec. 5.2.

5 EXPERIMENTS

In this section, we detail the results of our extensive experiments. Details related to datasets and
baselines are provided in App. E. Our code is available at GitHub.

5.1 GENERATIVE TIME SERIES RESULTS

In what follows, we demonstrate our model’s generation capabilities empirically, and we evaluate
our method both quantitatively and qualitatively in the tests we describe below.

Quantitative evaluation. Yoon et al. (2019) suggested two tasks for evaluating generative time
series models: the discriminative task and the predictive task. In the discriminative test, we measure
the similarity between real and artificial samples. First, we generate a collection of artificial samples
{yj1:T }Nj=1 and we label them as ‘fake’. Second, we train a classifier to discriminate between the
fake and the real dataset {xj

1:T }Nj=1. Finally, we report the value | 12 −acc|, where acc is the accuracy
of the discriminator on a held-out set. Thus, a lower discriminative score implies better generated
data as it fools the discriminator. The predictive task is based on the “train on synthetic, test on
real” protocol. We we train a predictor on the generated artificial samples. Then, the predictor is
evaluated on the real data. A lower mean absolute error (MAE) indicates improved predictions.

We consider the discriminative and predictive tasks in two evaluation cases: regular, where we use
the entire dataset; and irregular, where we omit a portion of the dataset. Specifically, in the irregular
setting, we follow Jeon et al. (2022), and we randomly omit 30%, 50%, and 70% of the observations.
We show in Tab. 1 and Tab. 2 the discriminative and predictive scores, respectively. Tab. 1 lists at
the bottom the relative improvement (RI) of the best score s1 with respect to the second best score
s2, i.e., |s2 − s1|/s2. Tab. 2 details the predictive scores obtained when the real data is used in the
task (original). Both tables highlight the best scores. The results show that our approach (KoVAE)
attains the best scores on both tasks. In particular, KoVAE demonstrates significant improvements
on the discriminative tasks, yielding a remarkable average RI of 58%. In Tab. 3, we detail the
discriminative and predictive scores for the irregular setting. Similarly to the regular case, KoVAE
presents the best measures, except for predictive Stocks 50% and discriminative Energy 70%. Still,
our average RIs are significant: 48%, 55%, and 43% for the three different irregular settings.

Qualitative evaluation. Next, we use qualitative metrics to examine the similarity of the generated
sequences to the real data. We consider two visualization techniques: (i) we project the real and

Table 1: Regular TS, discriminative task

Method Sines Stocks Energy MuJoCo

KoVAE (Ours) 0.005 0.009 0.143 0.076

GT-GAN 0.012 0.077 0.221 0.245
TimeVAE 0.016 0.036 0.323 0.224
TimeGAN 0.011 0.102 0.236 0.409
CR-VAE 0.342 0.320 0.475 0.464
RCGAN 0.022 0.196 0.336 0.436

C-RNN-GAN 0.229 0.399 0.499 0.412
T-Forcing 0.495 0.226 0.483 0.499
P-Forcing 0.430 0.257 0.412 0.500
WaveNet 0.158 0.232 0.397 0.385

WaveGAN 0.277 0.217 0.363 0.357

RI 54.54% 75.00% 35.29% 66.07%

Table 2: Regular TS, predictive task

Method Sines Stocks Energy MuJoCo

KoVAE (Ours) 0.093 0.037 0.251 0.038

GT-GAN 0.097 0.040 0.312 0.055
TimeVAE 0.093 0.037 0.254 0.039
TimeGAN 0.093 0.038 0.273 0.082
CR-VAE 0.143 0.076 0.277 0.050
RCGAN 0.097 0.040 0.292 0.081

C-RNN-GAN 0.127 0.038 0.483 0.055
T-Forcing 0.150 0.038 0.315 0.142
P-Forcing 0.116 0.043 0.303 0.102
WaveNet 0.117 0.042 0.311 0.333

WaveGAN 0.134 0.041 0.307 0.324

Original 0.094 0.036 0.250 0.031
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Table 3: Irregular time series (30%, 50% and 70% of observations are dropped)

30% 50% 70%
Sines Stocks Energy MuJoCo Sines Stocks Energy MuJoCo Sines Stocks Energy MuJoCo

D
is

cr
im

in
at

iv
e

Sc
or

e

KoVAE (Ours) 0.035 0.162 0.280 0.123 0.030 0.092 0.298 0.117 0.065 0.101 0.392 0.119
GT-GAN 0.363 0.251 0.333 0.249 0.372 0.265 0.317 0.270 0.278 0.230 0.325 0.275

TimeGAN-△t 0.494 0.463 0.448 0.471 0.496 0.487 0.479 0.483 0.500 0.488 0.496 0.494
RCGAN-△t 0.499 0.436 0.500 0.500 0.406 0.478 0.500 0.500 0.433 0.381 0.500 0.500

C-RNN-GAN-△t 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
T-Forcing -△t 0.395 0.305 0.477 0.348 0.408 0.308 0.478 0.486 0.374 0.365 0.468 0.428
P-Forcing-△t 0.344 0.341 0.500 0.493 0.428 0.388 0.498 0.491 0.288 0.317 0.500 0.498
TimeGAN-D 0.496 0.411 0.479 0.463 0.500 0.477 0.473 0.500 0.498 0.485 0.500 0.492
RCGAN-D 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

C-RNN-GAN-D 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
T-Forcing-D 0.408 0.409 0.347 0.494 0.430 0.407 0.376 0.498 0.436 0.404 0.336 0.493
P-Forcing-D 0.500 0.480 0.491 0.500 0.499 0.500 0.500 0.500 0.500 0.449 0.494 0.499

Pr
ed

ic
tiv

e
Sc

or
e

KoVAE (Ours) 0.074 0.019 0.049 0.043 0.072 0.019 0.049 0.042 0.076 0.012 0.052 0.044
GT-GAN 0.099 0.021 0.066 0.048 0.101 0.018 0.064 0.056 0.088 0.020 0.076 0.051

TimeGAN-△t 0.145 0.087 0.375 0.118 0.123 0.058 0.501 0.402 0.734 0.072 0.496 0.442
RCGAN-△t 0.144 0.181 0.351 0.433 0.142 0.094 0.391 0.277 0.218 0.155 0.498 0.222

C-RNN-GAN-△t 0.754 0.091 0.500 0.447 0.741 0.089 0.500 0.448 0.751 0.084 0.500 0.448
T-Forcing-△t 0.116 0.070 0.251 0.056 0.379 0.075 0.251 0.069 0.113 0.070 0.251 0.053
P-Forcing-△t 0.102 0.083 0.255 0.089 0.120 0.067 0.263 0.189 0.123 0.050 0.285 0.117
TimeGAN-D 0.192 0.105 0.248 0.098 0.169 0.254 0.339 0.375 0.752 0.228 0.443 0.372
RCGAN-D 0.388 0.523 0.409 0.361 0.519 0.333 0.250 0.314 0.404 0.441 0.349 0.420

C-RNN-GAN-D 0.664 0.345 0.440 0.457 0.754 0.273 0.438 0.479 0.632 0.281 0.436 0.479
T-Forcing-D 0.100 0.027 0.090 0.100 0.104 0.038 0.090 0.113 0.102 0.031 0.091 0.114
P-Forcing-D 0.154 0.079 0.147 0.173 0.190 0.089 0.198 0.207 0.278 0.107 0.193 0.191

Original 0.071 0.011 0.045 0.041 0.071 0.011 0.045 0.041 0.071 0.011 0.045 0.041

synthetic data into a two-dimensional space using t-SNE (Van der Maaten & Hinton, 2008); and
(ii) we perform kernel density estimation by visualizing the probability density functions (PDF). In
Fig. 2, we visualize the synthetic and real two-dimensional point clouds in the irregular 50% setting
for all datasets via t-SNE (top row), and additionally, we visualize their corresponding probability
density functions (bottom row). Further, we also show the PDF of GT-GAN (Jeon et al., 2022) in
dashed-black curves at the bottom row. Overall, our approach displays strong correspondences in

Figure 2: We qualitatively evaluate our approach with two-dimensional t-SNE plots of the synthetic
and real data (top row). In addition, we show the probability density functions of the real data, and
for KoVAE and GT-GAN synthetic distributions (bottom row).
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Figure 3: On the left, we show the spectrum of the approximate Koopman operator without con-
straints during the training. On the right, we show the spectrum of the approximate Koopman
operator for the model that is trained with stability constraints. We can see that, indeed, the absolute
value of two eigenvalues is approximately 1.

both visualizations, where in Fig. 2 (top row), we observe a high overlap between real and synthetic
samples, and in Fig. 2 (bottom row), the PDFs show a similar trend and behavior. On Stocks 50%,
we identify lower variability in KoVAE in comparison to the real data that present a larger variance.
In App. H, we provide additional results for the regular and irregular 30%, and 70% cases.

5.2 PHYSICS-CONSTRAINED GENERATION

In this section, we demonstrate how to incorporate prior knowledge of the problem when generating
time series information. While we could study the Sines dataset, we opted for a more challenging
test case, and thus, we focus on the nonlinear pendulum system. Let l = 1 and g = 9.8 denote
the length and gravity, respectively. Then, we consider the following ordinary differential equation
(ODE) that describes the evolution of the angular displacement from an equilibrium θ,

d2 θ

d t2
+

g

l
sin θ = 0 , θ(0) = 0 , θ̇(0) = 0 . (10)

To generate N different sequences, we uniformly sample θj(0) ∼ U(0.5, 2.7) for j = 1, . . . , N
over the time interval t = [0, 17], where the time step is defined by ∆t = 0.1. This results in a set
{xj

1:T }Nj=1 with T = 170 and each time sample is two-dimensional, i.e., xt ∈ R2. To simulate real-
world noisy sensors, we incorporate additive Gaussian noise to each sample. Namely, we sample
ρ ∼ N (0, 1), and we define the train set samples via x̄t := xt + 0.08 ρ.

We evaluate the nonlinear pendulum on three different models: (i) a KoVAE with α = 0; (ii) a
KoVAE; and (iii) a KoVAE with an eigenvalue constraint as described in Sec. 4.3. Specifically,
we train all models with a fixed latent size κ of zt to be κ = 4. For the constrained version, we
additionally add Leig:

Leig = ||λp| − cp|2 + ||λq| − cq|2 , (11)

where cp = 1, cq = 1 and λp and λq are the largest eigenvalues during training. We define this con-
straint since the nonlinear pendulum is a stable dynamical system that is governed by two modes.
The rest of the eigenvalues, λi, where i ̸= p, q could be additionally constrained to be equal to zero.
However, we observe that when we leave the rest of the eigenvalues to be unconstrained, we get a
similar behavior. Fig. 3 shows the spectra of the linear operators associated with KoVAE and con-
strained KoVAE. We can analyze and interpret the learned dynamics by investigating the spectrum.
Specifically, if |λj | < 1, it is associated with exponentially decaying modes since limt→∞ |λt

j | = 0.
When |λj | = 1, the associated mode has infinite memory, whereas |λj | > 1 is associated with un-
stable behavior of the dynamics since limt→∞ |λt

j | = ∞. In Fig. 3, we observe that training without
the constraint results in decaying dynamics where all eigenvalues ≪ 1 (yellow). In contrast, analyz-
ing our approximate operator reveals that as expected, |λp| and |λq| (purple) are approximately one,
indicating stable dynamics and the rest (yellow) are approximately zero, as desired. Finally, we also
compute the spectra associated with the computed operators in the regular setting and discussed the
results in App. F.
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real KoVAE, = 0 KoVAE constrained KoVAE

A B C D

Figure 4: The t-SNE plots of KoVAE with α = 0 (A), KoVAE (B), and constrained KoVAE (C),
and their probability density functions (D) are compared to the true nonlinear pendulum data.

In addition to analyzing the spectrum, we visualize in Fig. 4 the t-SNE plots of the real data in
comparison to the data generated using the three trained models, KoVAE with α = 0 in Fig. 4A,
KoVAE in Fig. 4B, and constrained KoVAE in Fig. 4C. Further, we also plot the probability density
functions of the three models in Fig. 4D. The results clearly show that the synthetic samples gener-
ated with the constrained KoVAE (red) better match the distribution and PDF of the true process in
comparison to KoVAE (green) and KoVAE with α = 0 (gray).

5.3 ABLATION STUDY

We ablate our approach on the discriminative task in the regular and 30% and 50% irregular settings.
We eliminate the linear prior by fixing α = 0, and we also train another baseline without the linear
prior and without the recurrent (GRU) component. Tab. 4 details our ablation results, and we observe
that KoVAE outperforms all other regular ablation baselines and the majority of irregular baselines.
We conclude that by introducing a novel linear dynamical prior, KoVAE improves generative results.

Table 4: Discriminative ablation results with regular and irregular 30% and 50% data on our method
(KoVAE), without the linear prior (α = 0), and also without the RNN (α = 0, no GRU).

regular 30% 50%
Sines Stocks Energy MuJoCo Sines Stocks Energy MuJoCo Sines Stocks Energy MuJoCo

KoVAE 0.005 0.009 0.143 0.076 0.035 0.162 0.280 0.123 0.030 0.092 0.298 0.117
α = 0 0.006 0.023 0.155 0.087 0.038 0.172 0.295 0.131 0.040 0.181 0.306 0.108

α = 0, no GRU - - - - 0.268 0.272 0.436 0.267 0.275 0.225 0.444 0.305

6 CONCLUSION

Generative modeling of time series data is often modeled with GANs which are unstable to train
and exhibit mode collapse. In contrast, VAEs are more robust to such issues, however, current
generative time series approaches employ non-sequential prior models. Further, introducing con-
straints that impose domain knowledge is challenging in these frameworks. We propose Koopman
VAE (KoVAE), a new variational autoencoder that is based on a novel dynamical linear prior. Our
method enjoys the benefits of VAEs, it supports regular and irregular time series data, and it fa-
cilitates the incorporation of physics-constraints, and analysis through the lens of linear dynamical
systems theory. We extensively evaluate our approach on generative benchmarks in comparison to
strong baselines, and we show that KoVAE significantly outperforms existing work on several quan-
titative and qualitative metrics. We also demonstrate on a real-world challenging climate dataset that
KoVAE approximates well the associated density distribution and it generates accurate temperature
long-term signals. Future work will explore the utility of KoVAE for scientific and engineering
problems in more depth.
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A STATIC VARIATIONAL AUTOENCODERS.

We recall a few governing equations from (Kingma & Welling, 2014; Doersch, 2016). In genera-
tive modeling, we want to compute the probability density function (PDF) P (x) using a maximum
likelihood framework. The density P (x) reads

P (x) =

∫
p(x|z; θ)p(z) d z , (12)

where z is a latent representation associated with x. The model p(x|z; θ) ideally approaches x
for some z. In variational inference, we typically have that p(x|z; θ) = N (x|f(z; θ), σ2I), i.e., a
Gaussian distribution where the mean is generated with a neural network f . However, two issues
arise with the above PDF: 1) how to define z; and 2) how to integrate over z.

VAEs provide a solution for both issues. The first issue is resolved by assuming that z is drawn
from a predefined distribution, e.g., N (0, I). The second issue can be potentially solved by approx-
imating Eq. 12 with a sum, i.e., P (x) ≈ 1

n

∑
i p(x|zi). A challenge, however, is that n needs to

be huge in high-dimensions. Instead, we observe that for most z, the term p(x|z) will be nearly
zero, and thus we can focus on sampling z that are likely to produce x. Consequently, we need an
approximate posterior q(z|x) which allows to compute Ez∼qp(x|z), where z is obtained using the
re-parametrization trick.

To guide training so that the prior and approximate posterior match, we employ the Kullback–Liebler
Divergence KL[· ∥ ·] between q(z) and p(z|x). The model is trained using the evidence lower bound
(ELBO) loss Ez∼q[log p(x|z)] − KL[q(z|x) ∥ p(z)], which is one of the core equations of VAE.
Notice that the objective takes the form of reconstruction and regularization penalties, respectively.

B NEURAL CONTROLLED DIFFERENTIAL EQUATIONS

Irregularly sampled TS information xt1:tN for, e.g., tj ∈ [1, . . . , T ] cannot be modeled directly
with discrete-time architectures such as recurrent neural networks (RNN). Therefore, the contin-
uous analog of RNN is considered for xt1:tN based on neural controlled differential equations
(NCDE) (Kidger et al., 2020) that are given by

h(ti+1) = h(ti) +

∫ ti+1

ti

f(h(t) ; θf ) dX(t) , (13)

where h(ti) is the hidden code associated with xti , X(t) is a continuous-time trajectory generated
from xt1:tN via an interpolation method with X(ti) := xti , and f is a neural network parametrized
by θf whose role is to learn the latent infinitesimal factor.

C LOSS FUNCTION EVALUATION

Our model is trained using the objective function L, defined in Eq. 8, and repeated below,

L = Ez1:T∼q[log p(xt1:tN |z1:T )] + αLpred(z1:T , z̄1:T )− βKL[q(z1:T |xt1:tN ) ∥ p(z1:T )] ,

where the first addend is the reconstruction term, the second addend is the predictive loss term, and
the last addend is the KL regularization term. To evaluate L in practice, we make a few standard
assumptions, followed by straightforward computations. First, we assume that p(x1:T |z1:T ) follows
a Gaussian distribution whose mean is the output of the model and its variance is some constant.
Namely, p(x1:T |z1:T ) = N

(
x1:T ; x̃1:T (z1:T , θ), σ

2
)
, where x̃1:T (z1:T ) denotes the output of the

decoder whose learnable parameters are given by θ. This is a common probabilistic assumption
(Goodfellow et al., 2016), under which the term Ez1:T∼q[log p(x1:T |z1:T )] becomes a simple mean
squared error (MSE) between x1:T and x̃1:T . Second, a similar reasoning is applied to Lpred, yielding
an MSE evaluation between z1:T and z̄1:T . Finally, the regularization term involves the distribution
p(z1:T ) := δ(z1:T − Az̄1:T )p(z̄1:T ), where δ(·) is the Dirac delta distribution. However, the KL
divergence is always evaluated in our framework on batches z1:T computed from z̄1:T . Therefore,
we approximate δ(z1:T −Az̄1:T ) by 1, leading to p(z1:T ) ≈ p(z̄1:T ). Then, we can compute the KL
term using a closed-form formulation given the mean and variance of two distributions.
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D VARIATIONAL PENALIZED EVIDENCE LOWER BOUND

In what follows, we present the derivation of the variational penalized evidence lower bound for
our method. Our objective is to minimize KL[q(z≤T |x≤T )||p(z≤T |x≤T )] under the Koopman con-
straint Lpred(z≤T , z̄≤T ) = Ez̄≤T∼p[log p(z≤T |z̄≤T )].

KL[q(z≤T |x≤T )||p(z≤T |x≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

=

∫
q(z≤T |x≤T ) log

q(z≤T |x≤T )

p(z≤T |x≤T )
dz≤T + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

=

∫
q(z≤T |x≤T ) log

q(z≤T |x≤T )p(x≤T )

p(z≤T , x≤T )
dz≤T + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

=

∫
q(z≤T |x≤T )[log p(x≤T ) + log

q(z≤T |x≤T )

p(z≤T , x≤T )
]dz≤T + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

= log p(x≤T ) +

∫
q(z≤T |x≤T ) log

q(z≤T |x≤T )

p(z≤T , x≤T )
dz≤T + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

= log p(x≤T ) +

∫
q(z≤T |x≤T ) log

q(z≤T |x≤T )

p(z≤T )p(x≤T |z≤T )
dz≤T + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

= log p(x≤T ) +

∫
q(z≤T |x≤T )[log

q(z≤T |x≤T )

p(z≤T )
− log p(x≤T |z≤T )]dz≤T + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

= log p(x≤T ) + Ez≤T∼q(z≤T |x≤T )[log
q(z≤T |x≤T )

p(z≤T )
− log p(x≤T |z≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

= log p(x≤T ) +KL[q(z≤T |x≤T )||p(z≤T )]− Ez≤T∼q(z≤T |x≤T )[log p(x≤T |z≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

Thus we have the following:

KL[q(z≤T |x≤T )||p(z≤T |x≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )] =

log p(x≤T ) +KL[q(z≤T |x≤T )||p(z≤T )]− Ez≤T∼q(z≤T |x≤T )[log p(x≤T |z≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

Now, rearranging the equation, we yield:

log p(x≤T )−KL[q(z≤T |x≤T )||p(z≤T |x≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )] =

− Ez≤T∼q(z≤T |x≤T )[log p(x≤T |z≤T )] +KL[q(z≤T |x≤T )||p(z≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )]

Thus finally:

log p(x≤T ) + Ez̄≤T∼p[log p(z≤T |z̄≤T )] ≤ (14)

− Ez≤T∼q(z≤T |x≤T )[log p(x≤T |z≤T )] +KL[q(z≤T |x≤T )||p(z≤T )] + Ez̄≤T∼p[log p(z≤T |z̄≤T )]
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E DATASETS AND BASELINE METHODS

We consider four synthetic and real-world datasets with different characteristic properties and statis-
tical features, following challenging benchmarks on generative time series (Yoon et al., 2019; Jeon
et al., 2022). Sines, is a multivariate simulated data, where each sample xi

t(j) := sin(2πηt + θ),
with η ∼ U [0, 1], θ ∼ U [−π, π], and channel j ∈ {1, ..., 5} for every i in the dataset. This dataset
is characterized by its continuity and periodic properties. Stocks, consists of the daily historical
Google stocks data from 2004 to 2019 and has six channels including high, low, opening, closing,
and adjusted closing prices and the volume. In contrast to Sines, Stocks is assumed to include ran-
dom walk patterns and it is generally aperiodic. Energy, is a multivariate UCI appliance energy
prediction dataset (Candanedo, 2017), with 28 channels, correlated features, and it is characterized
by noisy periodicity and continuous-valued measurements. Finally, MuJoCo (Multi-Joint dynam-
ics with Contact) (Todorov et al., 2012), is a general-purpose physics generator, which we use to
simulate time series data with 14 channels.

We compare our method with several state-of-the-art (SOTA) generative time series models, such
as TimeGAN (Yoon et al., 2019), RCGAN (Esteban et al., 2017), C-RNN-GAN (Mogren, 2016),
WaveGAN (Donahue et al., 2019), WaveNet (van den Oord et al., 2016), T-Forcing (Graves, 2013),
P-Forcing (Goyal et al., 2016), TimeVAE (Desai et al., 2021), CR-VAE (Li et al., 2023), and the
recent irregular method GT-GAN (Jeon et al., 2022). All the methods, except for GT-GAN, are not
designed to handle missing observations; thus, we follow GT-GAN and compare them with their
re-designed versions. Specifically, extending regular approaches to support irregular TS requires the
conversion of a dynamical module to its time-continuous version. For instance, we converted GRU
layers to GRU-∆t and GRU-D to exploit the time difference between observations and to learn the
exponential decay between samples, respectively. We denote the re-designed methods by adding ∆t
or D postfix to their name, such as TimeGAN-∆t and TimeGAN-D.

F CONSTRAINED GENERATION AND ANALYSIS

In addition to the analysis of the constrained system in Eq. 10, we also compute the approximate
Koopman operators for all the regular systems we consider in the main text. Specifically, we show in
Fig. 5 four panels, corresponding to the spectral eigenvalue plots for Sines (left), Stocks (middle left),
Energy (middle right), and MuJoCo (right). Green eigenvalues are within the unit circle, whereas red
eigenvalues are located outside the unit circle. Noticeably, the learned dynamics for Sines, Stocks
and MuJoCo are stable, i.e., their corresponding eigenvalues are within the unit circle, and thus,
their training, inference and overall long-term behavior is expected to be numerically stable and not
produce values that present large deviations. In contrast, the spectrum associated with the model
learned for the Energy dataset reveals unstable dynamics where the largest λi ≫ 1. We hypothesize
that we can benefit from incorporating spectral constraints to regularize the dynamics and achieve
stable dynamics. In the future, we will investigate whether spectral constraints can enhance the
generation results and overall behavior of such models.

Figure 5: The spectral distribution of the approximate Koopman operator of the prior for each dataset
in the regular setting.
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Points of interest
Monitoring stations

Figure 6: Comparison of the temporally-averaged temperature distribution of the generated signals
and ground truth data in California region. left: California region map. middle: ground truth
average. right: generated average.

G CONDITIONAL GENERATION FOR WEATHER DATA

Accurate weather data is essential for various applications, such as agriculture, water resource man-
agement, and disaster early warning. However, due to the limited availability of weather stations,
scientists are faced with the challenge of the inherent sparsity of observational weather data, espe-
cially in specific geographical areas of interest. Generative models can produce synthetic weather
data to supplement sparse or incomplete observational datasets. In this paper, we explore the poten-
tial of our KoVAE model for modeling temperature dynamics based on sparse measurement data.
Our objective is to generate the temperature data at any location within a specific region of interest.
Hence, the proposed KoVAE model here is conditioned on the geospatial coordinates of the spe-
cific region. By leveraging conditional generative models, we hope to provide valuable insights into
weather dynamics in specific regions and enhance the decision-making processes that are reliant on
accurate weather information. Our model is trained with geospatial coordinates as conditional vari-
ables. To support the conditional training and generation, we made two simple modifications: (i) we
add a very simple MLP to support spatial embeddings s; and (ii) we augment the decoder and prior
to support conditional generation: p(xt1:tN |z1:T , s) and p(x1:T , z1:T , s) = p(z1:T |s)p(x1:T |z1:T , s).
We focus on two representative regions in the United States: California and Central America areas.
California has diverse and non-stationary weather changes due to the complex interactions between
seas, lands, and mountains. Central America areas present more stable and relatively easier tem-
perature dynamics compared with the California region. Both of these regions include a grid of
80× 80, which means we have 6400 time series samples in total. Moreover, the dataset in this task
comprises temperature at 2-meter height above the surface from ERA5 reanalysis dataset (Hersbach
et al., 2020). We select 4-month observation data within the specific area for training and evaluat-
ing our VAE model. It contains 120 time steps for each time series sample. We split the train and
test sets with a ratio of 80% and 20%. The generated time series samples are shown in Fig. 9 and
Fig. 10. We can see that our KoVAE model can accurately capture the underlying dynamics of tem-
perature data in both California and Central America regions. Furthermore, Fig. 6 and Fig. 7 exhibit
the comparisons of the temporally-averaged temperature distribution between the generations and
ground truth in California and Central America regions. The left panels in these figures show the
points of interest with respect to the given monitoring stations, which can be used to condition our
model. The temperature distribution patterns of the generations align well with those of the ground
truth in the entire domain. Similarly, we also observe that the generation and ground truth match
well when comparing minimum and maximum values over time, as shown in Fig. 8. Nevertheless,
the fine-scale spatial details are lacking in our generation due to the absence of spatial constraints.
In the future, we will enhance our conditional KoVAE model by incorporating spatial continuity and
prior knowledge for spatiotemporal generation.
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Points of interest
Monitoring stations

Figure 7: Comparison of the temporally-averaged temperature distribution between the generations
and ground truth in Central America region. left: Central America region map. middle: ground truth
average. right: generated average.

H ADDITIONAL GENERATION RESULTS

For brevity, in the main text, we provided tables without standard deviation (std). In this section, we
provide extended tables that include the std for each metric. Tab. 6 and Tab. 7 present the results for
the regular observed data of discriminative and predictive scores, respectively. In Tab. 8, Tab. 9, and
Tab. 10 we show the results for the irregular sampled of 30%, 50%, and 70% missing observation,
respectively. Each table includes both discriminative and predictive scores. Furthermore, we pro-
vide qualitative results to compare our model with GT-GAN, the second-best generation model for
both regularly and irregularly sampled data. In Fig. 11 Fig. 12, Fig. 13, we visualize the t-SNE pro-
jection of both ground truth data and generated data (first row) and the PDF of ground truth data vs.
generated data (second row). We perform the visualization for all regularly and irregularly sampled
datasets.

A B E F

C D G H

Figure 8: The maximum and minimum plots for both California and Central America regions. (A)
The maximum value over time of the ground truth in the California region. (B) The maximum
value over time of the generation in the California region. (C) The maximum value over time of the
ground truth in the Central America region. (D) The maximum value over time of the generation in
the Central America region. (E) The minimum value over time of the ground truth in the California
region. (F) The minimum value over time of the generation in the California region. (G) The
minimum value over time of the ground truth in the Central America region. (H) The minimum
value over time of the generation in the Central America region.
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Figure 9: The representative generations in the California area.

I COMPUTATIONAL RESOURCES

Here we compare the model complexity (number of parameters), and the wall clock time mea-
surement with GT-GAN. We present the details in Tab. 5. Both models were trained on the same
software and hardware for fair comparison. The software environments we use are: CentOS Linux
7 (Core) and PYTHON 3.9.16, and the hardware is: NVIDIA RTX 3090. We observe that we use
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Figure 10: The representative generations in the Central America area.

more parameters on the Energy and MuJoCo datasets, but the training time is significantly faster on
the same software and hardware.
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Method Copm. Sines Stocks Energy MuJoCo

KoVAE (Ours) # Parameters 32,929 33,410 230,860 195,902
Wall Clock Time 2h 49m 2h 49m 5h 16m 3h 46m

GT-GAN # Parameters 41,913 41,776 57,104 47,346
Wall Clock Time 10h 12m 12h 20m 10h 39m 13h 12m

Table 5: Comparison of number (#) of parameters and wall clock time.

Figure 11: We qualitatively evaluate our approach on regularly sampled data with two-dimensional
t-SNE plots of the synthetic and real data (top row). In addition, we show the probability density
functions of the real data, and for KoVAE and GT-GAN synthetic distributions (bottom row).

J HYPERPARAMETERS ROBUSTNESS

We also explore how stable our model is to hyperparameter choice. To this end, we perform an
extensive grid search over the following space for:

α, β ∈{1.0, 0.9, 0.7, 0.5, 0.3, 0.1, 0.09, 0.07, 0.05, 0.03, 0.01,
0.009, 0.007, 0.005, 0.003, 0.001, 0.0009, 0.0007, 0.0005}2

for the stocks dataset. Fig. 14 shows the discriminative score for each combination of α and β. Most
of the values are lower than the second-best model for this task.

K RECONSTRUCTION RESULTS

In addition to studying the generative capabilities of KoVAE, we also investigate its reconstruction
and inference features below. We show in Fig. 15 the reconstructed signals in the regular setting.
Each subplot represent a separate feature, where for datasets with more than five channels, we plot
the first five features. Solid lines represent ground-truth data, whereas dashed lines are the recon-
structions our model outputs. For simplicity, we omitted axis labels. For all subplots, the x-axis
represents time, and the y-axis is the feature values. Moreover, we also plot in Fig. 16 the inferred
signals in the irregular 50% setting. In this case, half of the signal is removed during training, and
thus, the reconstructions present the inference capabilities of our model. Our results indicate that
KoVAE is able to successfully reconstruct and infer the data.
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Figure 12: We qualitatively evaluate our approach on 30% irregularly sampled data with two-
dimensional t-SNE plots of the synthetic and real data (top row). In addition, we show the probability
density functions of the real data, and for KoVAE and GT-GAN synthetic distributions (bottom row).

Figure 13: We qualitatively evaluate our approach on 70% irregularly sampled data with two-
dimensional t-SNE plots of the synthetic and real data (top row). In addition, we show the probability
density functions of the real data, and for KoVAE and GT-GAN synthetic distributions (bottom row).
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Figure 14: Each point in this plot represents the discriminative score for stocks regularly sampled
data set when trained with specific α and β values. The star marker denotes the best discriminative
score for some α = 9e−3, β = 9e−4 values. In addition, most of the values in the figure present
better performance than the second-best method.

Table 6: Regular TS, discriminative task

Method Sines Stocks Energy MuJoCo

KoVAE (Ours) .005±.003 .009±.006 .143±.011 .076±.017
GT-GAN .012±.014 .077±.031 .221±.068 .245±.029

TimeGAN .011±.008 .102±.021 .236±.012 .409±.028
TimeVAE .016±.010 .036±.033 .323±.029 .224±.026
CR-VAE .342±.157 .320±.095 .475±.054 .464±.012
RCGAN .022±.008 .196±.027 .336±.017 .436±.012

C-RNN-GAN .229±.040 .399±.028 .499±.001 .412±.095
T-Forcing .495±.001 .226±.035 .483±.004 .499±.000
P-Forcing .430±.227 .257±.026 .412±.006 .500±.000
WaveNet .158±.011 .232±.028 .397±.010 .385±.025

WaveGAN .277±.013 .217±.022 .363±.012 .357±.017

RI 54.54% 75.00% 35.29% 66.07%

Table 7: Regular TS, predictive task

Method Sines Stocks Energy MuJoCo

KoVAE (Ours) .093±.000 .037±.000 .251±.000 .038±.002
GT-GAN .097±.000 .040±.000 .312±.002 .055±.000
TimeVAE .093±.000 .037±.033 .254±.000 .039±.002
TimeGAN .093±.019 .038±.001 .273±.004 .082±.006
CR-VAE .143±.002 .076±.013 .277±.001 .050±.000
RCGAN .097±.001 .040±.001 .292±.005 .081±.003

C-RNN-GAN .127±.004 .038±.000 .483±.005 .055±.004
T-Forcing .150±.022 .038±.001 .315±.005 .142±.014
P-Forcing .116±.004 .043±.001 .303±.006 .102±.013
WaveNet .117±.008 .042±.001 .311±.005 .333±.004

WaveGAN .134±.013 .041±.001 .307±.007 .324±.006

Original 0.094 0.036 0.250 0.031
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Table 8: Irregular time series (30% dropped)

Method Sines Stocks Energy MuJoCo

D
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VKAE (Ours) .035±.023 .162±.068 .280±.018 .123±.018
GT-GAN .363±.063 .251±.097 .333±.063 .249±.035

TimeGAN-△t .494±.012 .463±.020 .448±.027 .471±.016
RCGAN-△t .499±.000 .436±.064 .500±.000 .500±.000

C-RNN-GAN -△t .500±.000 .500±.001 .500±.000 .500±.000
T-Forcing-△t .395±.063 .305±.002 .477±.011 .348±.041
P-Forcing-△t .344±.127 .341±.035 .500±.000 .493±.010
TimeGAN-D .496±.008 .411±.040 .479±.010 .463±.025
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .408±.087 .409±.051 .347±.046 .494±.004
P-Forcing-D .500±.000 .480±.060 .491±.020 .500±.000

Pr
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e

KoVAE (Ours) .074±.005 .019±.001 .049±.002 .043±.000
GT-GAN .099±.004 .021±.003 .066±.001 .048±.001

TimeGAN-△t .145±.025 .087±.001 .375±.011 .118±.032
RCGAN-△t .144±.028 .181±.014 .351±.056 .433±.021

C-RNN-GAN-△t .754±.000 .091±.007 .500±.000 .447±.000
T-Forcing-△t .116±.002 .070±.013 .251±.000 .056±.001
P-Forcing-△t .102±.002 .083±.018 .255±.001 .089±.011
TimeGAN-D .192±.082 .105±.053 .248±.024 .098±.006
RCGAN-D .388±.113 .523±.020 .409±.020 .361±.073

C-RNN-GAN-D .664±.001 .345±.002 .440±.000 .457±.001
T-Forcing-D .100±.002 .027±.002 .090±.001 .100±.001
P-Forcing-D .154±.004 .079±.008 .147±.001 .173±.002
Original** .071±.004 .011±.002 .045±.001 .041±.002

Table 9: Irregular time series (50% dropped)

Method Sines Stocks Energy MuJoCo
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KoVAE (Ours) .030±.017 .092±.075 .298±.013 .117±.019
GT-GAN .372±.128 .265±.073 .317±.010 .270±.016

TimeGAN-△t .496±.008 .487±.019 .479±.020 .483±.023
RCGAN-△t .406±.165 .478±.049 .500±.000 .500±.000

C-RNN-GAN-△t .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing -△t .408±.137 .308±.010 .478±.011 .486±.005
P-Forcing-△t .428±.044 .388±.026 .498±.005 .491±.012
TimeGAN-D .500±.000 .477±.021 .473±.015 .500±.000
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .430±.101 .407±.034 .376±.046 .498±.001
P-Forcing-D .499±.000 .500±.000 .500±.000 .500±.000
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KoVAE (Ours) .072±.002 .019±.001 .049±.001 .042±.001
GT-GAN .101±.010 .018±.002 .064±.001 .056±.003

TimeGAN-△t .123±.040 .058±.003 .501±.008 .402 ±.021
RCGAN-△t .142±.005 .094±.013 .391±.014 .277±.061

C-RNN-GAN-△t .741±.026 .089±.001 .500±.000 .448±.001
T-Forcing-△t .379±.029 .075±.032 .251±.000 .069±.002
P-Forcing-△t .120±.005 .067±.014 .263±.003 .189±.026
TimeGAN-D .169±.074 .254±.047 .339±.029 .375±.011
RCGAN-D .519±.046 .333±.044 .250±.010 .314±.023

C-RNN-GAN-D .754±.000 .273±.000 .438±.000 .479±.000
T-Forcing-D .104±.001 .038±.003 .090±.000 .113±.001
P-Forcing-D .190±.002 .089±.010 .198±.005 .207±.008

Original .071±.004 .011±.002 .045±.001 .041±.002
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Table 10: Irregular time series (70% dropped)

Method Sines Stocks Energy MuJoCo
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KoVAE (Ours) .065±.012 .101±.040 .392±.004 .119±.014
GT-GAN .278±.022 .230±.053 .325±.047 .275±.023

TimeGAN-△t .500±.000 .488±.009 .496±.008 .494±.009
RCGAN-△t .433±.142 .381±.086 .500±.000 .500±.000

C-RNN-GAN-△t .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-△t .374±.087 .365±.027 .468±.008 .428±.022
P-Forcing-△t .288±.047 .317±.019 .500±.000 .498±.003
TimeGAN-D .498±.006 .485±.022 .500±.000 .492±.009
RCGAN-D .500±.000 .500±.000 .500±.000 .500±.000

C-RNN-GAN-D .500±.000 .500±.000 .500±.000 .500±.000
T-Forcing-D .436±.067 .404±.068 .336±.032 .493±.005
P-Forcing-D .500±.000 .449±.150 .494±.011 .499±.000
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KoVAE (Ours) .076±.004 .012±.000 .052±.001 .044±.001
GT-GAN .088±.005 .020±.005 .076±.001 .051±.001

TimeGAN-△t .734±.000 .072±.000 .496±.000 .442±.000
RCGAN-△t .218±.072 .155±.009 .498±.000 .222±.041

C-RNN-GAN-△t .751±.014 .084±.002 .500±.000 .448±.001
T-Forcing-△t .113±.001 .070±.022 .251±.000 .053±.002
P-Forcing-△t .123±.004 .050±.002 .285±.006 .117±.034
TimeGAN-D .752±.001 .228±.000 .443±.000 .372±.089
RCGAN-D .404±.034 .441±.045 .349±.027 .420±.056

C-RNN-GAN-D .632±.001 .281±.019 .436±.000 .479±.001
T-Forcing-D .102±.001 .031±.002 .091±.000 .114±.003
P-Forcing-D .278±.045 .107±.009 .193±.006 .191±.005

Original .071±.004 .011±.002 .045±.001 .041±.002
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Figure 15: We plot the original signals (solid lines) vs. reconstructed signals (dashed lines) for Sine,
Stock, Energy, and Mujoco in the regular setting. Overall, our model matches the data well.
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Figure 16: We plot the original signals (solid lines) vs. inferred signals (dashed lines) for Sine,
Stock, Energy, and Mujoco in the irregular 50% case. Overall, our model recovers the data well,
except for stock, where the output signal represents the average.
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