556

557
558
559
560
561
562
563

564
565
566

568
569
570
571
572
573

574
575

577
578
579
580
581
582
583

584
585
586
587
588
589
590
591

593

594
595
596
597
598
599

600
601
602
603

605
606

A Further Exposition on Usage of AGTRs

We will use this first section of our appendix to provide further exposition as to how we envision
AGTRs to be used, as well as their constraints. To be clear, our proposed AGTR does not alleviate the
need for labeled data, or avoid all possible biases. Indeed by constructing a mechanism that produces
AGTRs, assuming it does not produce a complete graph, there must necessarily be some form of
bias that exists via the selection of the AGTR production itself. Not only is labeled data needed to
produce the initial model being evaluated, but labeled data is necessary to produce the estimate of the
error rate € of the AGTR construction. These are important nuances to keep in mind through usage.

Our belief is that there are many domains where constructing an AGTR, with confidently small ¢, is
possible. Our example application has been for malware analysis as it is the area of our expertise.
For example we see potential application areas in chemistry, physics, optics, and others where
obtained experimental ground truth results is highly expensive and time consuming, but sophisticated
simulations may be able to group different scenarios together with high fidelity. That is that the
simulation’s result may not produce the exactly correct prediction, but could be used to group different
scenarios being evaluated into groups highly probably to have outcomes of the same fundamental
nature. This is extrapolation on our part since we do not have the requisite background to delve
deeply into these other arcas, but captures our primary hypothesis: many domains have significant
domain knowledge that could produce viable AGTRs.

Once an AGTR is produced, it provides a valuable means of improving bench-marking, confidence in
results, and testing of nuanced changes. Designing good benchmarks if of critical importance, and
an AGTR can be an effective litmus test for any benchmark creation. It allows one to cheaply use a
much larger set of unlabeled data to determine if the benchmark itself has become the subject of over-
fitting. We provided an example of this with the AVClass tool in our paper, where our bounds indicate
AVClass’s day may be over-fit because their empirical recall is higher than our upper bounded recall.
This does not necessarily mean the results are actually over-fit, because the datasets evaluated are
not the same (in AVClass’ cases, not available to us). But it does provide a strong indicator that
something is amiss, and provides the created of a benchmark the signal needed to more thoroughly
and rigorously investigate their data.

This utility of AGTRs in benchmarking is simultaneously macro and micro in nature. THe prior
paragraph has described the macro nature, that we can perform litmus testing against a created
benchmark to detect overfitting against a larger unlabeled corpus. The next level down that one would
natural want to pursue is to compare two different models using an AGTR, but we must caution
the reader into doing such a comparison. When two models are being evaluated and of different
mechanical natures, they will naturally correlate to different degrees with the biases of the AGTR
construction itself. This means one method could appear to have better predicted bounds by our AGTR
by only being successful on the data for which the AGTR itself is able to operate, while potentially
being errant on all other data and would not be realized. Any other more reasonable model, that
simply lacks the bias to the AGTR in use, would then appear worse when it may in fact be superior.

This is the reason why we recommend to only use AGTR to compare models that are fundamentally
very similar, like changing small parameters of a single approach. This is reasonable because the
underlying mechanism of prediction remains the same, and allows us to better quantify the impacts
of minute changes that would be difficult to estimate on small static corpora. This assumes that the
parameters themselves do not have an out-sized impact on the fundamental nature, which we believe
is reasonable but should be made explicit.

This highlights another limitation of our approach, which is the number of epistemic uncertainties
involved in its use. It will depend on the beliefs and confidence of the domain experts that the models
being compared are “similar enough” that using an AGTR to compare changes is valid, and that the
error rate bound € is sufficient. While more concrete answers to these are desirable, we recognize
them as important items of future work. As we have developed the AGTR approach thus far, it
provides a powerful means of better leveraging unlabelled data in the evaluation of a ML model,
which we aruge is aditive to the tools in use today.

13

607

608
609
610
611
612
613
614
615

617
618

619
620

621
622

623

624

625
626

627
628

630
631

633
634
635
636
637
638
639

641
642
643

644
645
646
647
648

649
650
651

653
654

B Applications of Approximate Ground Truth Refinements

As long as an AGTR can be constructed from a dataset, that dataset can be used for partial evaluation
of a clustering algorithm or multiclass classifier - even if the dataset does not have reference labels.
This is notable because it allows larger, more representative datasets without reference labels to be
used during the evaluation process. The ability to compute bounds on precision, recall, and accuracy
without reference labels is valuable in its own right, but we have found two additional ways in which
AGTRs can be used to great effect. First, the bounds from an AGTR can be used as a litmus test for
detecting biased evaluation results produced using a substandard reference dataset. Second, AGTRs
can be used for evaluating modifications to a clustering algorithm or multiclass clasifier.

B.1 Testing Suspect Evaluation Results

We have found that AGTRs can be used to detect misleading results produced from low quality
reference datasets. The following five steps describe how to test suspect evaluation results:

1. Compute the precision, recall, and/or accuracy of a clustering algorithm or a multiclass
classifier using a substandard reference dataset.

2. Obtain C by applying the clustering algorithm or multiclass classifier to a large, diverse
dataset.

3. Construct an AGTR R from the dataset in step 2.
4. Select a value of € that is believed to be greater than the number of errors in R.

5. Compute Precision(C, R) — % and Recall(C, R) + ﬁ Test whether all bounds hold for the
evaluation results found during step 1.

Note that if testing a multiclass classifier, C'is obtained during step 2 by using the classifier to predict
the class label for each data point in the dataset and then clustering all data points that share the same
predicted class label. Subsection 2.4 describes the qualities an ideal AGTR should possess for best
evaluation results. Refer to subsection 2.5 for discussion about how to select an appropriate value of
€ during step 4.

Because the dataset used to construct the AGTR during step 3 is larger and more diverse than the
reference dataset from step 1, we assume that the AGTR dataset is a better exemplar of the overall
problem space. Although the metric bounds found using the AGTR dataset do not necessarily hold
for the reference dataset, it would still be irregular for any evaluation results from the reference

dataset to violate them. Therefore, if Precision(C, R) — % is greater than the precision computed
using the reference dataset, or if Recall(C, R)+ i is less than the recall or accuracy computed using

the reference dataset, it is reasonable to conclude that the evaluation results found using the reference
dataset are misleading.

B.2 Comparing Similar Models

An important component of cluster and classifier evaluation is the ability to compare models against
each other. Suppose we wish to determine which of two clustering algorithms has a higher precision,
but we do not have access to a satisfactory reference dataset. We use the two models to predict
clusterings C; and C5 from an unlabeled dataset and we construct an AGTR R from the same dataset.
The precision lower bounds of the two clustering algorithms are given by Precision(C1, R) — %
and Precision(Cly, R) — % Although we can apply Theorem 5 to show Precision(C1, R) - % <

Precision(C4, D) and Precision(Cl, R) — % < Precision(Cs, D), we cannot prove any relationship
between Precision(C4, D) and Precision(Cs, D).

Unfortunately, evaluation metric bounds cannot be used to provably determine whether one clustering
algorithm or multiclass classifier has a higher precision, recall, or accuracy than another. However, in
specific cases higher evaluation metric bounds may indicate that one model has a higher performance
than another. Two conditions must be met in order for this approach to be used. First, the clustering
algorithms or classifiers being compared must be intrinsically similar, such as two different versions
of the same classifier. Second, one of the clustering algorithms or classifiers must be tested to ensure

14

655
656

657
658

659

660

661

662
663

664
665
666
667
668
669
670
671
672
673
674

675

676
677
678
679
680

682
683

685
686
687
688
689
690
691

692
693
694
695
696
697
698
699
700

701
702
703
704

that changes in performance are strongly correlated to changes in evaluation metric bounds. The
steps of the test are as follows:

1. Obtain C by applying the clustering algorithm or multiclass classifier to a large, diverse
dataset.

Construct an AGTR R from the dataset in step 1.

Incrementally shuffle the cluster membership of each data point in C.

Compute Precision(C, R) — % and Recall(C, R) + % at regular intervals of the shuffle.

Compute correlation between shuffle percentage and the evaluation metric bounds. Test that
a strong negative correlation between the two exists.

A

Step 3 is performed randomly sampling a data point in C' with no replacement, randomly selecting a
cluster in C' weighted by the original distribution of cluster sizes, and then assigning the data point
to that cluster. The process repeats m times, where m is the number of points in the dataset, after
which the entire clustering has been shuffled. Because the dataset has high diversity, the probability
that a datapoint is randomly assigned to an incorrect cluster is far greater the probability that it is
randomly assigned the correct one. Therefore, shuffling C' with this strategy is very likely to produce
predicted clusterings that are sequentially worse. Step 5 is performed by computing the Pearson
correlation between the shuffle percentage and the evaluation metric bounds. If a very strong negative
correlation exists between the two, we conclude that small modifications to a clustering algorithm or
classifier that improve its performance will be reflected by a higher evaluation metric bounds, and
modifications that lower its performance will be reflected by lower bounds.

C Malware Label and Dataset Challenges

The task of labeling malware data is expensive and error prone, more so than most standard ML
applications areas. This forces datasets to be either small and thus non-representative of the large
and diverse malware ecosystem, or large but noisily labeled or biased which again limits conclusions.
Because of these issues, we believe that malware family classification is an ideal problem space for
demonstrating the AGTR evaluation framework. We will quickly review the challenges in labeling
malware and how it has caused a lack of quality datasets.

Ideally a malware reference dataset would be constructed using manual labeling to determine the
malware family of each file. Manual analysis is not perfectly accurate, but the error rate is considered
negligible enough that labels obtained via manual analysis are considered to have ground truth
confidence [13]. A professional analyst can take a 10 hours or more to fully analyze a single
file [14, 15]. This level of analysis is not always needed to determine the family of a malware sample,
but it exemplifies the high human cost of manual labeling that prevents its use in all but very small
datasets [1]. One approach to mitigate this is cluster labeling, where the dataset is clustered and an
exemplar from each cluster is manually labeled. This strategy is highly reliant on the precision of the
algorithm used to cluster the reference dataset, which is often custom-made [16, 17]. Furthermore,
the scalability of cluster labeling is still limited due to the requirement of manual analysis.

For these reasons larger malware reference datasets tend to use antivirus labeling, where an antivirus
engine is used to label a corpus. This is easy to implement at scale, but has significant quality
issues [18]. Antivirus labels are frequently incomplete, inconsistent or incorrect [19, 20]. Antivirus
signatures do not always contain family information [13], and different antivirus engines disagree on
the names of malware families [9]. Labels from an antivirus engine can take almost a year to stabilize
[18], creating a necessary lag time between data occurrence and label inference. These issues can be
partially mitigated by using antivirus majority voting, but aggregating the results of multiple antivirus
engines produces unlabeled files due to lack of consensus. This then biases the final dataset to only
the “easy” samples that are the least interesting and already known by current tools [2].

The aforementioned labeling issues have a significant impact on the datasets that are available. The
largest datasets used in malware classifier and clustering research range from a hundred thousand
[13, 16] up to one million samples[21], but are private corpora held by corporations that can afford
the construction cost and do not want to give away a competitive advantage'. Since the data is private

!"There are also legal concerns for sharing benign applications, but our discussion is focused solely on
malware.

15

705
706
707
708
709
710
71
712
713

714
715
716

7
718
719
720
721

722
723
724
725

726
727
728
729
730

731

732

733

734

the validation of the labeling can not be replicated or investigated, and in most cases the number
of families is not fully specified[13, 16]. The vast majority of publicly available datasets that have
been used are less than 12,000 samples in size[17, 22-26]. Of these MalGenome is the only fully
manually labeled corpus, but also the smallest with only 49 families and 1,260 files[27, 28]. The
small size and low diversity of these corpora makes it difficult to make generalizable conclusions
about the quality of a malware clustering algorithm or classifier. The largest reference dataset in
general use is VX Heavens with 271,092 samples, but it contains very old malware, is labeled using
only a single antivirus engine, and the history and composition of the dataset is poorly documented
[29]. Additional statistics about notable malware reference datasets are listed in Appendix E.

Given the issues in curating these datasets, we have identified three common three common traits
that negatively impact evaluation. All of the datasets we just referenced possess one or more of these
undesirable traits.

1) Reference labels without ground truth confidence: Because producing ground truth reference labels
for a large corpus of malware samples is infeasible, it is common practice to use malware reference
labels without ground truth confidence [1]. Many prior malware classifiers have been evaluated using
non-ground truth reference labels without the quality of those labels having been assessed [9], which
may result in overoptimistic or misleading results [2].

2) Insufficient size or diversity: Due to the enormous number of families in existence, malware
reference datasets must be both large and diverse in order to be representative of the malware
ecosystem. Using a reference dataset with a small number, or imbalanced set, of families lowers the
significance of evaluation results [2].

3) Outdated malware samples: The ecosystem of malware is constantly changing as categories of
malware, malware families, and other tradecraft rise to prominence or fall out of favor. Evaluating a
clustering algorithm or multiclass classifier using a dataset of outdated malware may produce results
that do not translate to present day malware. All of the discussed datasets contain malware samples
from 2015 and earlier, failing to represent the last half decade of malware development.

D Proof Details

Theorem 1. Precision(C, R) < Precision(C, D)

Proof of Theorem 1. Suppose some ¢ s.t. 1 < ¢ < ¢. Since R is a refinement of D, 3D; € D s.t.

Ry € Dj. Because Ry (;y € Dy, it must be that [C; N Ry ()| < [C; N Dy|. By definition, f(i) =

argmax |C; N Dy|. Therefore, |C; N Ry < |C; N Dj| < |C; N Dy(;y|. We can simply sum over
¢ : .

this inequality to obtain:

1 « 1 o
NN Ry < =S |CN Dy
—> | ol < —> | 701

i=1 i=1
By Definition 1, Precision(C, R) < Precision(C, D). |
Theorem 2. Recall(C, R) > Recall(C, D)

Proof of Theorem 2. Suppose some j s.t. 1 < j < d. Because R is a refinement of D, 3Q); =
qj qj
{Qje}1<e<q; st Qe € Rand D;j = U Qj¢. We can say that |[D;| = E |Qj¢| and furthermore

that |Cy(;y N D;| = Z |Cy(s) N Qje|. We know that VQ, € Q;, IR, € Rs.t. Qj = Q. By
definition ¢’'(k) = argmax|C N Ri|, and Ry, = Qj¢, 50 [Cyriy N Ry| > |Cy(jy N Qjel. Since by

Property 1 the sets Ry, are in bijection with the sets ()¢, we can sum over this inequality to obtain:

_Z|CG (k) N Rye| > _ZZ|C(J(J) N Qjel

j=1/¢=1

16

735

736

737
738

739
740

741

742
743

744

745

746
747

748

749

751

752

754

755
756
757
758
759

760

761
762
763
764
765

766

1 d qj 1 d
— Y D 1C) N Qiel = =D |Cy N D;
m :12:1| 70 de mj*1| 70 J|

J
By Definition 2, Recall(C, R) > Recall(C, D). O

Corollary 2.1. Recall(C, R) > Accuracy(C, D)

Proof of Corollary 2.1. Using Theorem 2, Recall(C, R) > Recall(C, D). It must be the case that
Recall(C, D) where g(j) = argmax |C; N D;| > Recall(C, D) where g is the identity function. Using

Definition 3, Recall(C, D) = Accuracy(C, D) when g is the identity function. Therefore, Recall(C, R)
> Accuracy(C, D). O

Theorem 3. |Precision(C, S) — Precision(C, §)| <

1
m

Proof of Theorem 3. Let S = {S:}1<¢<s be an arbitrary partition of M. Let the label translation
function f : {1...c} — {1...s} be defined as f(i) = argmtax|Ci N S¢|. Suppose some M,, € M,
some S, € Ss.t. M, € S,, and some S, st. S, € SorS, = {@}. Furthermore, suppose
some C,,Cy € O st. M, € Cyand b = f(y). Let § = {S;}, ;. be a clustering identical to
S except for one cluster label change, which is given by S, = S, — {M,,} and S‘U =S, U{M,}.
Let the function f : {1..c} — {1..5} be defined as f(i) = argmﬁaX|C’i N Sa|. At minimum

|Cy N S’f(a)| = |Ca N S§(qy| — 1 and at maximum Sf'(a)' = |Ca N S§(ayl|. Similarly, at minimum
|Cy N gf(b)| = |Cy N S§(| and at maximum |C, N gf(b)| = |Cy N S| + 1. Finally, because

all elements in M are unique and C' partitions M, VC; € C's.t. i Zaand i # b, |C; N Sf(i)| =

|Ci NS¢yl Therefore, Y- [Cyry NSt =1 < 37 [Cyp ns; <y |Cq(¢y N S¢| + 1. By Definition
=1 -1 t=1

1, Precision(C, S) — % < Precision(C, S) < Precision(C, S) + % We write this as |Precision(C, S)
— Precision(C, §)| < % O

Corollary 3.1. |Precision(C, R) — Precision(C, R)| <

£
m

Proof of Corollary 3.1. By Theorem 3, | Precision(C, S) — Precision(C, S)| < % for some arbitrary
clustering S and a second clustering S that is equivalent to S but with a single data point belonging
to a different cluster. Given a GTR R and a corresponding AGTR R, we can sequentially change the
cluster membership of € data points in R to obtain R. Ateach step the precision value can change by
at most j:%. Therefore, |Precision(C, R) — Precision(C, R)| < % O

Corollary 3.2. |Precision(C, D) — Precision(C, R)| <

5

Proof of Corollary 3.2. By Theorem 3, | Precision(C, S) — Precision(C, S)| < L for some arbitrary
clustering S and a second clustering S that is equivalent to .S but with a single data point belonging
to a different cluster. Given a ground truth reference clustering D and a corresponding AGTR R, we
can sequentially change the cluster membership of ¢ data points in D to obtain R. Ateach step the
precision value can change by at most :t%. Therefore, |Precision(C, D) — Precision(C, R)| < %. O

Theorem 4. |Recall(C, S) — Recall(C, §)| <

1
m

17

767
768

769

770
771

772

773

774

775

776

77

778

779

781
782

783

784

785
786

787
788

789

790

791

792

793

794

795

796
797

798

800
801

Proof of Theorem 4. Let S = {S;}1<i<s be an arbitrary partition of M. Let the label translation
function g : {1...s} — {l...c} be defined as g(t) = argmax |C; N S¢|. Suppose some M,, € M,

some S, € Sst. M, € S,, and some S, s.t. S, € SorS, = {@}. Let S = {S’f}lgfgg be a
clustering identical to S except for one cluster label change, which is given by S,y =8, — {M,} and
S, =S, U{M,}. Let the function g : {1...3} = {1...c} be defined as §(f) = argmax |C; N S;|. At
minimum |Cj) N S,| = |Cy(az) N Se| — 1 and at maximum |Cy(zy N S| = |Cy(z) N Sz|. Similarly,
at minimum |Cy,) ns,| = |Cy(yy N Sy| and at maximum |CA (v) NS, = 1Cy(y) ﬂS’ y| + 1. Because

each other clusters in S identical to some cluster in S, Z |Cgty N S| =1 < Z 1Cy5 N S;] <

Z |Cy(ty N S| + 1. Using Definition 2, we obtain Recall(C, S) — E < Recall(C, S) < Recall(C, S)
t=1
+ % We write this as |Recall(C, S) — Recall(C, S’)| < % O

Corollary 4.1. |Recall(C, R) — Recall(C, R)| < <

Proof of Corollary 4.1. By Theorem 4, |Recall(C, S) — Recall(C, S)| < # for some arbitrary
clustering S and a second clustering S that is equivalent to .S but with a single data point belonging
to a different cluster. Given a GTR R and a corresponding AGTR R, we can sequentially change the
cluster membership of € data points in R to obtain R. At each step the recall value can change by at
most -+ L . Therefore, [Recall(C, R) — Recall(C, R)| < <. O

Corollary 4.2. |Recall(C, D) — Recall(C, R)| < &

Proof of Corollary 4.2. By Theorem 4, Recall(C, S) — % < Recall(C, S‘) < Recall(C, S) + %

for some arbitrary clustering S and a second clustering S that is equivalent to S but with a single
data point belonging to a different cluster. Given a ground truth reference label clustering D and a

corresponding AGTR R,we can sequentially change the cluster membership of € data points in D
to obtain R. At each step the recall value can change by at most j:%. Therefore, |Recall(C, D) —

Recall(C, R)] < 2. O

Theorem 5. Ifé > e then Precision(C, R) — % < Precision(C, D)

Proof of Theorem 5. By Corollary 3.1, |Precision(C, R) — Precision(C, R)| < % This can be
written as Precision(C, R) — % < Precision(C, R). By applying Theorem 1, Precision(C, R) — % <

Precision(C, R) — = < Precision(C, R) < Precision(C, D). O

Theorem 6. If ¢ > e then Recall(C, R) + £ > Recall(C, D)

Proof of Theorem 6. By Corollary 4.1, |Recall(C, R) — Recall(C, R)\ <= ThlS can be written as

Recall(C, R) + < > Recall(C, R). Therefore, by Theorem 2, Recall(C, R) + & > Recall(C, R) +
< > Recall(C, R) > Recall(C, D). O

Corollary 6.1. If é > e then Recall(C, R) + % > Accuracy(C, D)

Proof of Corollary 6.1. By Corollary 4.1, |Recall(C, R) — Recall(C, R)| < . This can be written

as Recall(C, R) + = > Recall(C, R). Using Corollary 2.1, Recall(C, R) + = > Recall(C, R) + =
> Recall(C, R) > Accuracy(C D). O

18

s E Dataset Tables

Table 5: Notable Private Malware Reference Datasets

Name Samples Families Platform Collection Period
Malsign 142,513 ? Windows 2012 - 2014
MaLabel 115,157 ? Windows Apr 2015 or earlier
MitNet 1.3 million 98 Windows Jun 2016 or earlier
Table 6: Notable Public Malware Reference Datasets
Name Samples Families Platform Collection Period
VX Heavens 271,092 137 Windows ?
Malheur 3,133 24 Windows 2006 - 2009
MalGenome 1,260 49 Android Aug 2010 - Oct 2011
Drebin 5,560 179 Android Aug 2010 - Oct 2012
Malicia 11,363 55 Windows Mar 2012 - Mar 2013
Kaggle 10,868 9 Windows Feb 2015 or earlier

19

