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Abstract—Boson Samplers are near-term quantum devices
based on photonic quantum technology, which can outperform
classical computing systems. This paper takes a hybrid circuit
learning approach to utilize boson samplers as a generative
model called Neural-variational Boson Sampling (NBS). NBS
introduces an optimizable parametric structure in the form of a
neural network to characterize the characteristic function of a
boson sampler and uses this model as a variational ansatz. To
simulate working with real quantum devices, we use gradient
free-optimization methods to optimize the resultant circuit. We
experiment with this framework for problems in optimization
and generative modeling.

Index Terms— hybrid quantum-classical approach, quantum
circuit learning, boson sampling, parameterized quantum circuit

I. INTRODUCTION

Quantum computing is a computational paradigm that uti-

lizes properties of quantum systems such as superposition and

entanglement for computational tasks [Nielsen and Chuang,

2002].

Research in quantum computing has led to the discovery

of quantum algorithms that achieve polynomial-time speedups

compared to classical methods on specific tasks. For example,

[Grover, 1996] described a sub-linear time algorithm for search

in an unordered database. Similarly, Shor’s algorithm [Shor,

1999] is capable of integer factorization in polynomial-time.

Quantum techniques have also been proposed for data-science

tasks such as regression fitting [Yu et al., 2019] and association

rules mining [Yu et al., 2016].

While the prospect of significant speedup over classical

computing remains the most impactful aspect of quantum com-

puting, the algorithms mentioned above remain largely out of

the reach of current quantum devices. Hence researchers have

explored options that use near-term devices and can achieve

quantum supremacy [Arute et al., 2019], [Lund et al., 2017].

Boson sampling (BS) [Aaronson and Arkhipov, 2011] is a

strong candidate for experimental demonstration of quantum

algorithmic supremacy.

However, while boson sampling (BS) provides an exponen-

tial quantum advantage and has been used for applications

such as combinatorial optimization [Arrazola and Bromley,

2018], there is some debate on its demonstrable advantage in

’realistic’ applications [Bromley et al., 2021], [Oh et al., 2021].

Our goal in this work is to provide examples of how BS can

be used in ML applications, specifically as a generative model.

One effective approach for capturing quantum advantage

is the so-called hybrid quantum-classical (HQC) approach

[McClean et al., 2016]. The HQC approach uses a combination

of both quantum and classical resources. HQC based models

have been getting recent traction and have been used for

applications like supervised regression [Schuld et al., 2020],

[Yu et al., 2016], clustering [Otterbach et al., 2017] and

combinatorial optimization [Moll et al., 2018].

This work utilizes a similar hybrid circuit approach to use

boson samplers for generative models. W use the technique

of [Conti, 2021], to parameterize the characteristic funtion of

Gaussian states propagating through an interferometer. This

problem corresponds to the Gaussian Boson sampling [Hamil-

ton et al., 2017], [Quesada et al., 2018], whose theory relies on

phase-space methods [Kruse et al., 2019]. Since computing the

exact sampling distribution of a BS is intractable [Aaronson

and Arkhipov, 2011] we propose a specific parameterization

for the characteristic function of the system using a neural

networks. We then train networks following this design for

a specific task by stochastic gradient-based minimization of

the task loss. We conduct experiments with Ising models and

image generation to evaluate the proposed scheme. The results

show that this is a promising scheme to deploy boson sampling

in practical tasks.

II. PRELIMINARIES AND RELATED WORK

A. Quantum Circuit Born Machine

A quantum circuit born machine (QCBM) uses a variational

quantum circuit (parameteried by parameters φ) to encode and

sample from the probability distribution of a classical dataset.

Given a set of D independent and identically distributed

samples tx1, ..., xDu from a target probability distribution, the

QCBM can be optimized to generate samples that approximate

the unknown target probability distribution. A QCBM takes

the product state |0y
bn

and evolves it to the output state |ψφy
by unitary transformation Upφq. Samples are by measuring

the output state |ψφy in the computational basis which will

produce them by the probability | xx|ψφy |2 To train a QCBM,

the output samples of the quantum device are evaluated against

the desired output (usually on the classical computer). The

resultant discrepancy between desired and actual output is then

used to adjust the parameters φ of the quantum device.

For machine learning applications such as classification,

the output model distribution pφpxq is then optimized to

minimize the negative log-likelihood of the observed data. The



parameters are usually tuned via gradient descent though other

methods can also be deployed [Wang et al., 2019].

B. Boson Sampling

The BosonSampling (BS) problem refers to sampling out-

comes from a linear optical network. The seminal paper of

[Aaronson and Arkhipov, 2011] demonstrates how the simula-

tion of the probability distribution of indistinguishable photons

evolving in such a circuit is classically intractable. More

specifically [Aaronson and Arkhipov, 2011] define a model

where N isolated photons are sent through a m (m ą 2N )

mode linear-optical circuit/interferometer.

In a standard version of this experiment, one considers a

many-body squeezed vacuum state propagating in an Haar

inteferometer, which distributes the photons in the output

modes.

The interferometer is described by a matrix U P Upmq,

which transforms m input modes into m output modes. An ex-

ample circuit is depicted in Figure 1. Let n̄ “ |n1, n2, . . . nmy
denote the output pattern with nj photons in output j. The

quantum state of the output photons is given by :

|ψy “ γn̄ |n1, n2, . . . nmy

γˆ̄n “
PermpUSq

?
n̂!

where n̂! “ n1!n2! . . . nm!. US is the submatrix of U obtained

by selecting the columns corresponding to input photons and

rows corresponding to output photons. The probability of a

certain output is given by

Prpn̄q “
|PermpUSq|2

n̄!

Perm here refers to the permanent of the matrix. Com-

putation of the permanent is #P-complete [Valiant, 1979],

which makes exact sampling from such a circuit intractable.

Further work [Morimae et al., 1998], [Gogolin et al., 2013],

[Bremner et al., 2011] provided further connections between

boson sampling and the polynomial hierarchy. Since a deter-

ministic source of single photons as described in [Aaronson

and Arkhipov, 2011] is physically challenging; variants such as

Lattice walk sampling (LWS) [Muraleedharan et al., 2019] and

Gaussian boson sampling (GBS) [Lund et al., 2014], [Hamil-

ton et al., 2017] have been proposed. Recently, a quantum

computing machine that uses Gaussian boson sampling was

used to demonstrate quantum supremacy and was faster than

the state-of-the-art classical supercomputers by a factor of 1014

[Zhong et al., 2020].

Recent research has also explored other applications of BS

to solve diverse problems. [Guerreschi, 2015] demonstrated

that molecular vibronic spectra could be efficiently generated

using boson sampling. [Arrazola and Bromley, 2018] showed

that boson sampling could be utilized for approximating the

densest k-subgraph problem. Recently [Huang et al., 2019]

developed a quantum symmetric encryption scheme built on

boson sampling. A quantum signature protocol using BS-based

unitary operation [Gao et al., 2018] has been demonstrated

by [Feng et al., 2020]. Bosonic techniques have also been

successfully used for graph similarity-based tasks in machine

learning [Schuld et al., 2020], [Shankar and Towsley, 2020].

The works most related to our article are those of [Banchi

et al., 2020] and [Shankar and Towsley, 2022]. [Banchi et al.,

2020] show how under certain parameterizations, the unbiased

estimates of the gradients of the parameters for a GBS device

can be obtained directly via measurements on the same device.

[Shankar and Towsley, 2022] show how parameterized boson

samplers can be used for some non-combinatorial tasks in

machine learning. Our approach is also similar in spirit to

the variational learning of a quantum Born machine [Liu and

Wang, 2018]. The major differences from [Banchi et al., 2020]

is that a) we use a universal parameterization instead of a

restricted one and b) we explore more generic applications.

Our experiments focus on the tasks explored in [Shankar and

Towsley, 2022] but our proposal is distinct in that instead of

arbitrary parametric circuits used in their work, we use GBS

[Lund et al., 2014] which is easier to realize experimentally.

Furthermore our proposal used the neural phase space param-

eterization developed by [Conti, 2021] and finds it to be more

effective at solving machine-learning tasks.

Fig. 1: Basic structure of a boson sampling scheme with

evolution matrix U

Fig. 2: A two layer neural network as representing a state with

characteristic functionχ, subject to a unitary transformation.

This is a pullback of a linear transform from the original state,

which produces a new state with characteristic function χ̃

Next, we briefly present the phase space based NBS pa-

rameterization that is both flexible and easily trainable. This

design is based on the recent work of [Conti, 2021] that can

be efficiently simulated via tensor networks.





IV. EXPERIMENTS

Next, we try the aforementioned model for two tasks.

The first task is to identify the ground states of an Ising

Hamiltonian. Our experiments show that the NBS model can

be trained to preferentially sample low-energy states from

an Ising model. For the second task, we train a classically

augmented NBS on the digits dataset [Alpaydin and Kaynak,

1998] to generate similar images. The results show that for

comparable latent dimensions the NBS scheme is as expressive

as Variational Autoencoders [Kingma and Welling, 2019].

A. Ising Model Optimization

An Ising model is essentially an energy model (or an

unnormalized distribution) for which the score function (or

the log-likelihood) is of the following form:

Hpx̄q “ ´
ÿ

i

hixi ´
ÿ

ij

Jijxixj , (11)

where x̄ “ px1, x2, . . . , xmq and xk “ 0, 1 i.e. x̄ is a binary

vector. We are interested in finding a model distribution that

samples the state with the lowest energy (also known as the

ground state) with high probability. This is a challenging task,

as finding such a state of a general Hpx̄q is NP-hard [Lucas,

2014]. While similar to sampling from an energy model, this

task is closer to optimization as we wish to find the lowest

energy state. In this experiment the NBS parameters (Ω) are

updated so that it samples the minimum energy configuration

with high probability.

We follow the procedure of [Banchi et al., 2020] and use

our NBS model for predicting cliques. Since a boson sampling

scheme produces an output with an integer number of bosons

in different modes, the output of such a scheme can be

thresholded to a vector x̄ of binary variables for input to the

Ising Hamiltonian. The training loss is given by:

LpW q “ Ex̄„PNBSp.|Ωq rHpx̄qs ”
ÿ

x̄

Hpx̄qPNBSpx̄|Ωq (12)

where PNBSpx̄|Ωq is the distribution of Equation (??).

Similar to [Banchi et al., 2020], we focus on the following

Ising hamiltonian. Given a graph G “ pV,Eq with vertex set

V and edge set E and an integer K:

HKpx̄q “ λ

˜

K ´
ÿ

vPV

xv

¸2

´
ÿ

pu,vqPE

xuxv (13)

where λ is a positive number and xv are binary variables.

It is easy to prove [Lucas, 2014] that for λ ą K the above

Hamiltonian has ground state energy E “ ´KpK´1q
2

if and

only if there is a clique of size K in the graph G. To see

this note that the second term xuxv computes the number of

edges between the set of nodes corresponding to the binary

vector x and for a clique of size K will contribute
KpK´1q

2
.

On the other hand the first term tries to keep the number of

selected nodes to K. With a large enough λ, If the number

of selected nodes becomes more than K, then the increase in

the first term is enough to compensate for the reduction in the

second term.

Following the procedure of [Banchi et al., 2020] we use

sampling to produce binary strings that corresponds to the

ground state of the aforementioned Ising Hamiltonian. For

each graph we set K as the size of the largest clique in the

graph. Furthermore we set λ “ 2∆ where ∆ is the max degree

of the graph. The success rate is estimated as the fraction of

times that the correct bit pattern is sampled by the model in

a 1000 samples, conditional on observing K output particles.

Training is done using an estimation of the gradient using the

REINFORCE algorithm [Williams, 1992], obtained with 200

samples per iteration.

We run NBS on the hamiltonian corresponding to the graphs

experimented on by [Banchi et al., 2020]. These experiment

are on the specific graphs depicted in 3 followed by a bunch

of random graphs from the Erdos-Renyi and Barabasi Albert

families (Figure 6). Figure 3(a) presents the training curve

on a simple graph on 8 nodes with a clique size of 5.

From the figure, it is clear that while the initial probability

of sampling the ground state is low; it steadily increases as

training progresses and is above 80% by the end. In Figure

3(b), a more challenging case with a degenerate ground model

is presented. The underlying graph has ten nodes and two max-

cliques of size K “ 5. One can observe from the charts for

both models NBS is able to outperform the trainable GBS

approach of [Banchi et al., 2020]. The added variability is

primarily due to sampling at each step. The figures also present

the sampling variation (p=0.1) during different trials in the run.

It is clear that the GBS curve is statistically better than the

NBS curve.

Next, the experiment is repeated with the aforementioned

families of random graphs. These results are presented in

the Appendix (Figure 6). The first row presents results on

instances of random Barabasi-Albert graphs. These graphs

have many cliques of sizes three and four, leading to multiple

local optimas. The second row illustrates the result of training

a NBS model on random Erdos-Renyi graphs with ten vertices.

We can observe that both GBS and NBS can with high prob-

ability (ą 80 ´ 90%) sample the energy minimum. However

it is also clear that the NBS trained model can sample the

configuration corresponding to largest clique in the graph with

a higher success rate than the GBS approach. The performance

curves also make it clear from these results that the NBS

behaviour performance is fundamentally distinct from the GBS

one ( e.g. see subfigures 2,5).

B. Generative Modelling/Image Generation

Next we use the NBS scheme to learn a simple generative

model. For this experiment, we used the test set of the UCI

digits dataset [Alpaydin and Kaynak, 1998]1.

The UCI DIGITS dataset consists of 1797 data observations.

Each observation is an 8 ˆ 8 image of a handwritten digit.

Since the simulation of a 64 photons BS scheme is not

feasible on classical machines, we use a low dimensional

embedding approach. The NBS model sample vectors from

1Available at https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits



Fig. 3: Success rate of sampling the ground state of the Ising model over time for NBS and GBS. A max clique of size K “ 5

is shown in red. In (a) there is a single max-clique, while in (b) there are two max-cliques. Training is done with 200 samples

per iteration.

a 5-dimensional latent space which then constructs the im-

ages through a classical conditional generator. The complete

generative model is depicted in Figure 5. In the figure, Y is

a random variable that denotes the training images, Z is a

latent variable, and PΩ is the distribution of Z parameterized

by Ω. The parameters Ψ are the parameters of the conditional

generator. z and y are used to denote samples of the variables

Z and Y respectively. We follow the same experiment design

on 5000 randomly selected samples from MNIST.

In our experiments, we model the conditional distribution

of the output Y given the latent z as a Gaussian variable.

The distribution of the latent variable z is given by the

output distribution of the Boson sampler. The combined log-

likelihood of an observation y is then given by:

Lpy;W, b,Ωq “

ż

Npy;Wz̄ ` b,ΣqPNBSpz;Ωqdz

Here Ω refers to the parameters of the NBS scheme (i.e Ω “
tθ,φ,ϕu PNBS is the induced distribution over z by Ω. z̄

refers to the normalized value of z. Since z itself is a discrete

distribution with the number of bosons in each mode being

a non-negative integer, we scale the output by its norm to

make it approximately continuous. This, in turn, determines

the mean vector of the Gaussian distribution N . Σ is assumed

to be a diagonal matrix, and W, b are parameters learned on

a classical device. Hence in this case Ψ “ tW,b,Σu We

assume that all observed images are independent draws from

the generating distribution. The total likelihood of the data is

then just the product of likelihoods for each observation.

We train the model to maximize the log-likelihood of the

data with a variant of the EM algorithm [Dempster et al.,

1977]. In the EM algorithm, each iteration consists of repeated

application of the E-step and the M-step. In the E-step, the

data log-likelihood conditioned on the observed variables is

computed. On the other hand, in the M-step, the likelihood

obtained in the E-step is maximized with respect to the

model parameters. The Monte-Carlo Expectation Maximiza-

tion (MCEM) algorithm [Wei and Tanner, 1990] is a variant

of the classic EM; often used for high-dimensional data or

when the integral required in the E-step is intractable. The key

difference between the two is that the MCEM uses a Monte-

Carlo approximation to the conditional expectation during the

E-step. Since computing the exact output distribution of the

BS scheme is generally intractable, while quantum devices can

sample from it easily, MCEM is a better choice for training

such models. Specifically the Q function for the MCEM

algorithm in our case is given by:

QpΩt|Ωt´1, yq “ Ez„PNBSpΩt´1q logNpy;Wz̄ ` b,Σq (14)

«
ÿ

zi„PNBSpΩt´1q

logNpy;Wz̄i ` b,Σq (15)

where the sum is over samples zi drawn from PNBS. This

Q function is then optimized by gradient descent to estimate

Ω. Similar to REINFORCE, monte-carlo EM adds extra vari-

ability and generally requires lower learning rate for smooth

learning. However these problems are not as significant for

these experiments as the likelihood loss is dominated by the

decoder terms instead of the prior.

We also compare our results against a VAE [Kingma and

Welling, 2019] with the same sized latent space and a linear

decoder like in the NBS model. A linear decoder was chosen

as such a model with Gaussian prior provides an exactly

computable likelihood. One can use more complex decoder

models for better sample quality, but our goal in this work

is simply a working BS based generative model. Both models

were trained with Adam optimizer with a learning rate of 5e-4.

Note that under a Gaussian prior the given generative

model corresponds exactly to the PCA decomposition of the

data, which can be analytically computed. We present this



(a) (b)

Fig. 4: Test likelihood across different training iterations trained generative model described in Section 4.2 with 5 dimensional

latent space. Left (a) presents the number on DIGITS dataset, while (b) shows results on a subset of MNIST

exact likelihood (pPCA MLE value) in Figure 4. Furthermore

given the low latent dimensionality, a generic prior and the

significantly higher contribution from the conditional model,

the learnt NBS based distribution in this case is expected to

be similar to the PCA decomposition. This can be seen from

Figure 4, where we plot the data log-likelihood as learnt by

the PCA, VAE and NBS models. We can also observe that the

NBS model improves the likelihood by around 3%

The samples from both VAE and NBS runs are presented

in Figure ??. The upper rows present samples from the NBS

model trained with MCEM. On the lower rows we have

samples from the baseline linear VAE. It is evident from

the image quality that a 5-dimensional latent space is too

small. However this is primarily a function of the decoder.

For example, MNIST has high quality reconstructions from

a two dimensional latent space with a non-linear decoder
2. On the other hand a linear decoder with (a gaussian

conditional generator) is equivalent to PCA and produces

similarly diffused images. However, even with the blurred

images, the digit-like structure of these sampler is clear. A

qualitative examination shows that both the NBS and the VAE

models produces samples of a similar nature. Combined with

the likelihood results, this experiment provides evidence that

the NBS model is at least as powerful as a VAE in this setting.

V. CONCLUSION

In this paper, we demonstrate that boson sampling can

be used to solve practical problems in machine learning

and optimization. Towards this goal, we developed a hybrid

quantum-classical variational scheme labeled Neural Boson

Sampling (NBS). NBS introduces an optimizable parametric

structure into the boson evolution operation and uses that as a

variational ansatz. We then experiment with this framework for

training NBS distributions for problems in ising optimization

and generative modelling.

For optimization, we tried an algorithm where the NBS is

used to generate samples that can be mapped to the states

2https://github.com/lttsh/VariationalAutoEncoder-MNIST

of an Ising model. We then use REINFORCE [Williams,

1992] to get stochastic gradients of the parameters device

in order to maximize the probability of sampling the ground

state of the Ising model. In generative modelling, we show

that a NBS-based scheme trained using an EM algorithm

is competitive with a VAE [Kingma and Welling, 2019] of

similar capacity. While sampling based methods do add extra

variability in learning, we do not believe this to be a major

issue as physical implementation of a NBS is extremely time-

efficient in producing samples.

Our results have shown that the NBS scheme can be used

to implement algorithms for practical problems; we hope this

sparks more research into variational boson sampling ansatz in

the future. One future research direction is formalizing cases

when a NBS-based scheme outperforms alternative algorithms

such as VQE [Wang et al., 2019] or QAOA [Farhi et al.,

2014] for standard qubit based devices. Another potential

research direction is to develop schemes to approximate the

gradients of the scheme using a quantum device. Finally

recent work [Ostaszewski et al., 2021] has used deep Q-

learning to optimize larger quantum circuits, and using such

techniques can be of potential use in improving training for

boson sampling as well.
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APPENDIX

Fig. 5: Generative Model for Digit images

A. Clique Optimization



Fig. 6: Success rate over time as the training progresses, as in Figure 3, Graphs (a),(b),(c) are random Barabasi-Albert graphs

with ten vertices, built starting from a clique of five vertices and attaching new vertices, each connected to three random nodes.

Graphs (d),(e),(f) are random Erdos-Renyi graphs with ten vertices and probability p “ 0.5 of adding an edge between pairs

of vertices.


