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1 PROOF LEMMA 3.1

Let us first consider the number of paths of length [ from node £ to the sink. We define the path length
as the number of nodes in the path. In a randomly wired network with n architecture nodes, we have
that the first node of all the paths is node &k and the last one is node n (i.e., the sink node). Therefore,
the minimum path length is 2. If [ > 2, the number of all possible paths of length | between node &

and the sink is ( P 2 ) Since in a path of length [ there are [ — 1 edges and each edge has probability

p of being generated by the Erds-Renyi model, each one of the paths of length [ has probability p'~*
of being present in the network. Thus, the expected number of paths with length [ between node k

and the sink is E[N"] = ("% )Pt If we set k = 1, we obtain the average number of paths of
length [ from source to sink E[N;] = (?:22) p'~1. We can now compute the average total number of
paths E[N(¥)] as follows

E[N®] =n§1 (n ;52_1)#1 Z( ) F —pZ( )p = p(1+p)" = p(1+p)" 1,

=2 =0

where 7 = n — k — 1,1 = | — 2 and the fourth equality follows from the binomial theorem. If we set
k = 1, we obtain the average total number of paths from source to sink E[N,,] = p(1 + p)"~2.

2 PROOF LEMMA 3.3

From Lemma 3.1, we can compute the average length of the paths from node & to the sink as follows

n—k+l k n—k+1 (k) n—k+1 (n—k—1y, |—1
l(k) Z IE {J\Zf\ik } o 2al=2 ZE[NZ ]: 1=2 ( 1—2 )P 17 0

E[N®)] p(1+p)n—F-t
where we have neglected the higher order terms (Elandt-Johnson & Johnson, [1980). The numerator
in (I) can be computed as follows
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where o = n — k — 1, = [ — 2 and the fourth equality is obtained differentiating with respect to p
the binomial theorem. Then, we obtain

E[I®] =

!

P n—k—1)+2.
+p

If we consider k = 1, i.e. the sink, we obtain E[l] = - (n — 2) + 2.
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3 PROOF LEMMA 3.4

From Lemma 3.3, we can compute the average length of the paths going through the edge {4, j} as

follows

Ell;] = EI" " + V] & 1 ip(” —(j—1i)—3)+4

4 MONTECARLO DROPPATH REGULARIZATION

Let us consider two paths p; and p, with at least one common edge, we can compute the covariance
between these two paths as follows:

COV(/\;Dl ) >‘;D2> = ]E[)‘IH /\Pz] - EP‘PJEP‘PQ]

= I wi JI wiE I = 1II =
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where Z(p1,p2) = EP* N EP2, D(p1,p2) = (EP* UEP2) — (EP NEP2), Apy = [y, jyep, #iiWis»
Ap, =11 (irj}eps Zi3Wigs Zij ™ Bernoulli(1 — parop), and we have assumed all w;; deterministic.

5 EXPERIMENTAL DETAILS

Table 1 shows the chosen hyperparameters for the various experiments. The number of parameters
refers to one realization of the random architecture graph. The values of the hyperparameters that do
not depend on the random architecture are the same for the baseline architectures.

Training has been performed on a workstation with an AMD Ryzen 3700X CPU, 64 GB of RAM
and a Titan RTX GPU. Training times can vary run-to-run due to the convergence criterion of no
improvement over the validation loss after reaching the minimum learning rate. Training the random
architecture is roughly 5% slower than training the baseline.

6 EXPERIMENTAL RECEPTIVE FIELD RADIUS

Table 2 shows the average radius of the receptive field obtained in the experiments. In particular, we
compare its value at initialization and the value after training. We remark that the average receptive
field radius is computed as:

5= 27:2 lpi
n
21:2 Pl
We can notice how the CLUSTER experiment clearly favours larger receptive fields, already opti-
mizing a larger radius even without the sequential path. We can also see how the sequential path

promotes a further increases the optimal radius. We remark that the baseline ResNets have a fixed
radius equal to 17.

7 ADDITIONAL RESULTS

Table 3| reports the results on the ENZYMES dataset, a historically relevant dataset. As it can be
noticed and reported in recent literature, this dataset is inaquate to assess relative performance of
graph neural network architectures. The large standard deviations due to small dataset size and
train/test splits do not allow to infer any meaningful ranking of the proposed method with respect to
the ResNet baseline.

Finally, Table ] reports the results for L = 4 layers, used in the paper to compute the average gains
when capacity is increased.
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Table 2: Experimental average receptive field radius

R-GatedGCN + Sequential + DropPath + Sequential

+ DropPath

Init Optimized Init Optimized Init Optimized Init  Optimized

ZINC 9.26 9.80 12.57 13.28 - - - -
CLUSTER 9.26 10.44 12.57 14.87 - - 12.58 14.89
CIFAR10 9.26 9.93 - - 9.21 9.94 - -

Table 3: ENZYMES Accuracy.

L=8 L=16 L=32
GCN 63.461481 64757640 65.50%6-10
R-GCN  66.67%7-32 66.7117-3 68.17%0-34
GIN 65.0416-35 63771596 §1,17%6-06
R-GIN  67.88%6:27 3755573 §3.00%846
GatedGCN ~ 68.04%6-58 ¢8.67%6-70 9.33%7-64
R-GatedGCN 68.03%%%9 67.33%5:04 g, 17+4:96
GraphSage  68.04%°47 69.08%°17 68.50%5-84
R-GraphSage 68.33%4°1 69.13%5:32 ¢6.17%342
GAT 69.63%521 68.83%4:06 g 7+6-06
R-GAT  66.67T%33 $5.33%3:96 64,0029

Table 4: L = 4 performance.
L=4
ZINC CLUSTER CIFAR
GCN 0.46970-002 48 68+347 54 9g+0-35
R-GCN  0.509%0-015 50.82%5:37 55 31+0-25
GIN 0.418%0-002 49 35+6-10 4g G4+2:29
R-GIN  0.411%79009 45 04395 46.68%0-14
GatedGCN  0.368%0-007 48.96%6-00 g9 26+0-36
R-GatedGCN 0.36470-007 51,18%8:27 ¢8.55+0-03
GraphSage 0.428%0-007 47.17%6-78 ¢6,14%0-21
R-GraphSage 0.42970-010 47 86+5:63 g5,02%0-47
GAT 0.46470-005 59 gg+1.74 g5 79+0-54
R-GAT  0.502%0-019 53 57167 g5 39+0.79
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