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1 Introduction
In this supplementary material, we first elaborate on the mathe-
matical notations, dataset details, and necessary derivations for the
main paper. In addition, to further validate the effectiveness of our
VITAL, we conduct some additional experiments.

2 Notations
We present the primary mathematical symbols and their descrip-
tions from the main paper in Table 1.

3 Datasets
Eight widely used multi-view datasets were used to validate the
effectiveness of VITAL in both partially and fully aligned scenarios.
Their details are as follows:

• CUB [17]: This dataset consists of various categories of birds
and we utilized the first 10 categories. Deep visual features
from GoogLeNet and text features using doc2vec [12] were
employed as two views.

• Scene-15 [4]: This dataset consists of 4485 indoor and out-
door images, with a total of 15 categories. We extracted GIST
and PHOG features as two views.

• Wiki [2]: This dataset consists of 2866 image-text pairs se-
lected from Wikipedia articles, with a median text length of
200 words, covering 10 different categories.

• NUS-WIDE [1]: This dataset consists of approximately 270,000
images, divided into 81 categories based on labels. We only
selected images from the top ten largest categories for ex-
periments, resulting in 9000 image-text pairs used in the
experiments.

• Deep Animal [11]: This dataset consists of 10,158 images
from 50 categories. We ultimately utilized two deep image
features extracted from DECAF [10] and VGG19 [15] as two
views.

• Deep Caltech-101 [3]: This dataset consists of 101 categories
and 1 background scene category, with each category having
40 to 800 images, totaling 9146 images. We selected 8677
images excluding the background scene category, and similar
to the processing of the Deep Animal dataset, we extracted
two deep image features using DECAF [10] and VGG19 [15]
as two views.
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Table 1: The primary set of mathematical symbols used in
the main paper.

Symbol Description

X Multi-view dataset
𝑋𝑘 The sample set of the 𝑘-th view

𝒙𝑘
𝑖
/𝒛𝑘
𝑖

The 𝑖-th sample/latent variable of the 𝑘-th view
𝑁 Total number of instances
𝑉 Total number of views

𝑇𝑖𝑛𝑡𝑒𝑟 /𝑇𝑖𝑛𝑡𝑟𝑎 Ground truth of inter-/intra- view
𝑝Θ True posterior distribution
𝑞𝜙 Recognition model (probabilistic encoder)
𝑞𝜃 Generative model (probabilistic decoder)
H Cross-entropy loss
𝐼 Identity matrix
𝛼 Sensitive parameter
𝑙 Pair loss
𝑤 Soft label of pair
𝐵 Batch size
𝛾𝑘 Mixture coefficient of the 𝑘-th component
𝜙𝑘 Probability density of the 𝑘-th component
𝑑 Confidence (distance between two components)
𝑄𝑑 Quantile

𝑀𝐺𝑀𝑀 Positive set obtained by GMM model
𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 Positive set obtained by𝑀𝐺𝑀𝑀 and 𝑄𝑑

𝑀 Confidence mask
𝐶 Common representations
Σ Specific representations

• MNIST-USPS [14]: This dataset consists of two datasets,
MNIST [13] and USPS [7]. We treated them as two views
and randomly selected 5000 pairs for experiments.

• NoisyMNIST [18]: This dataset was derived fromMNIST [13]
by randomly rotating and adding random noise, resulting
in a total of 70,000 clean/noisy sample pairs. Considering
the large size of this dataset and that some baselines may
consume too much time, we randomly selected 30,000 pairs
of samples for experiments.
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4 Derivation Details
In this section, we will elaborate on the detailed derivation of the
evidence lower bound (ELBO) function L𝐸𝐿𝐵𝑂 and the Kullback-
Leibler (KL) divergence loss L𝐾𝐿 , corresponding to Equations (2),
(3) and (4) in the main paper. Additionally, we provide detailed
explanations of the optimization processes for L𝑖𝑛𝑡𝑟𝑎 and L𝑖𝑛𝑡𝑒𝑟 .

4.1 Derivation of L𝐸𝐿𝐵𝑂

Since in multi-view datasets, various views of an instance may serve
as mutual priors, the objective is to minimize the Kullback-Leibler
(KL) divergence between the approximate and true posterior across
all views:
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

𝐷𝐾𝐿 (𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) | |𝑝Θ (𝒛𝑖 |𝒙𝑛𝑖 ))

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
𝑝Θ (𝒛𝑖 |𝒙𝑛𝑖 )

d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )𝑝Θ (𝒙𝑛𝑖 )

𝑝Θ (𝒛𝑖 , 𝒙𝑛𝑖 )
d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
[
log

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
𝑝Θ (𝒛𝑖 , 𝒙𝑛𝑖 )

+ log𝑝Θ (𝒙𝑛𝑖 )
]
d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log𝑝Θ (𝒙𝑛𝑖 )d𝒛

+
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
𝑝Θ (𝒛𝑖 , 𝒙𝑛𝑖 )

d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

log 𝑝Θ (𝒙𝑛𝑖 ) +
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )

𝑝Θ (𝒙𝑛𝑖 |𝒛𝑖 )𝑝Θ (𝒛𝑖 )
d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

log𝑝Θ (𝒙𝑛𝑖 )

+
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑧

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
[
log

𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )
𝑝Θ (𝒛𝑖 )

− log𝑝Θ (𝒙𝑛𝑖 |𝒛𝑖 )
]
d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

log 𝑝Θ (𝒙𝑛𝑖 ) +
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

𝐷𝐾𝐿 (𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) | |𝑝Θ (𝒛𝑖 ))

−
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1
E𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) [log𝑝Θ (𝒙𝑛𝑖 |𝒛𝑖 )]

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

log𝑝Θ (𝒙𝑛𝑖 ) + L𝐸𝐿𝐵𝑂 ,

(1)

which finishes the derivation of Equation (2) to Equation (3) in the
main paper. It is worth noting that Equation (1) is a multi-view
version of the ELBO function, which is different from that in [9],
as the latter can only handle single-view data.

4.2 Derivation of L𝐾𝐿

The KL divergence loss is used to minimize the distance between
the standard Gaussian distribution 𝑝Θ (𝒛𝑖 ) ∼ N (𝒛𝑖 ; 0, 𝐼 ) and the

approximate posterior 𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) ∼ N (𝒛𝑖 ; 𝝁𝑚𝑖 , (𝝈
𝑚
𝑖
)2𝐼 ). Followed

by [9], L𝐾𝐿 can be computed as follows:

L𝐾𝐿 =

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

𝐷𝐾𝐿 (𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) | |𝑝Θ (𝒛𝑖 ))

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log

(
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖
𝑝Θ (𝒛𝑖 )

)
d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log


1√

2𝜋 (𝝈𝑚
𝑖
)2
𝑒
−

(𝒛𝑖 −𝝁𝑚𝑖 )2

2(𝝈𝑚
𝑖

)2

1√
2𝜋

𝑒−
𝒛2
𝑖
2


d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) log{ 1√︃

(𝝈𝑚
𝑖
)2
𝑒

1
2

[
𝒛2𝑖 −

(𝒛𝑖 −𝝁𝑚𝑖 )2

(𝝈𝑚
𝑖

)2

]
}d𝒛

=

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

∫
𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 )

[
− log(𝝈𝑚𝑖 )2 + 𝒛2𝑖 −

(𝒛𝑖 − 𝝁𝑚
𝑖
)2

(𝝈𝑚
𝑖
)2

]
d𝒛.

(2)

According to the first moment of the Gaussian distribution, E(𝒛𝑖 ) =
𝝁𝑚
𝑖
, and the second moment, E(𝒛2

𝑖
) = (𝝁𝑚

𝑖
)2 + (𝝈𝑚

𝑖
)2, Equation (2)

can be finally simplified as:

L𝐾𝐿 =

𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1

1
2
(− log(𝝈𝑚𝑖 )2 + (𝝁𝑚𝑖 )2 + (𝝈𝑚𝑖 )2 − 1), (3)

which finishes the derivation of Equation (4) in the main paper.

4.3 Optimization processes of L𝑖𝑛𝑡𝑟𝑎 and L𝑖𝑛𝑡𝑒𝑟
According to the second term in L𝐸𝐿𝐵𝑂 , we can obtain the expec-
tation forms regarding intra- and inter- view as follows:

−
𝑉∑︁
𝑚=1

𝑉∑︁
𝑛=1
E𝑞𝜙 (𝒛𝑖 |𝒙𝑚𝑖 ) [log 𝑝Θ (𝒙𝑛𝑖 |𝒛𝑖 )]

=−
𝑉∑︁
𝑘=1
E
𝑞𝜙 (𝒛𝑘

𝑖
|𝒙𝑘

𝑖
) [log 𝑝Θ (𝒙

𝑘
𝑖 |𝒛

𝑘
𝑖 )]︸                                      ︷︷                                      ︸

L′ intra

−
𝑉∑︁
𝑚≠𝑛

E𝑞𝜙 (𝒛𝑚
𝑖
|𝒙𝑚

𝑖
) [log𝑝Θ (𝒙𝑛𝑖 |𝒛

𝑛
𝑖 )]︸                                        ︷︷                                        ︸

L′
inter

.

(4)
In the optimization process of the two terms mentioned above, due
to the typically high variance exhibited by the naive Monte Carlo
gradient estimator, we follow the approach in VAE [9] and use a
Stochastic Gradient Variational Bayes (SGVB) estimator instead:

L′
𝑖𝑛𝑡𝑟𝑎 ≃ − 1

𝐿

𝐿∑︁
𝑙=1

𝑉∑︁
𝑘=1

log𝑝Θ (𝒙𝑘𝑖 |𝒛
𝑘
(𝑖,𝑙 ) ), (5)

and

L′
𝑖𝑛𝑡𝑒𝑟 ≃ − 1

𝐿

𝐿∑︁
𝑙=1

𝑉∑︁
𝑚≠𝑛

log𝑝Θ (𝒙𝑚𝑖 |𝒛𝑛(𝑖,𝑙 ) ), (6)

where 𝐿 is the number of Monte Carlo samples in the SGVB estima-
tor and is set to 1 in our experiment, 𝒛𝑘(𝑖,𝑙 ) and 𝒛

𝑛
(𝑖,𝑙 ) are the results
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Algorithm 1 Robust Variational Contrastive Learning for Partially
View-unaligned Clustering

1: Input: partially view-unaligned dataset {𝑋𝑘 }2
𝑘=1;𝑉𝐶𝐿 𝑒𝑝𝑜𝑐ℎ =

100; 𝑚𝑎𝑥 𝑒𝑝𝑜𝑐ℎ = 110; the recognition model {𝑞𝑘
𝜙
}2
𝑘=1; the

generative model {𝑞𝑘
𝜃
}2
𝑘=1.

2: for 𝑒𝑝𝑜𝑐ℎ = 1 to𝑚𝑎𝑥 𝑒𝑝𝑜𝑐ℎ do
3: for sampled batch 𝒙 do
4: if 𝑒𝑝𝑜𝑐ℎ ≤ 𝑉𝐶𝐿 𝑒𝑝𝑜𝑐ℎ then
5: Compute the overall lossL = L𝑖𝑛𝑡𝑒𝑟 +L𝑖𝑛𝑡𝑟𝑎+L𝐾𝐿

by Equation (10), Equation (8), Equation (4) in the main paper,
respectively.

6: else
7: Compute the L𝑖𝑛𝑡𝑒𝑟 by the vanilla contrastive loss.
8: Fit the loss value set through a two-component

Gaussian Mixture model.
9: Compute the confidence quantile 𝑄𝑑 by Equation

(15) in the main paper.
10: Filter the confidence subset of GMM output by 𝑄𝑑 .
11: Compute the L = L𝑖𝑛𝑡𝑒𝑟−𝐷𝑅 + L𝑖𝑛𝑡𝑟𝑎 + L𝐾𝐿 by

Equation (17), Equation (8), Equation (4), respectively.
12: end if
13: Update {𝑞𝑘

𝜙
}2
𝑘=1 and {𝑞𝑘

𝜃
}2
𝑘=1.

14: end for
15: end for ⊲ Training
16: for sampled batch 𝒙 do
17: Forward 𝒙 through the recognition model {𝑞𝑘

𝜙
}2
𝑘=1 and

obtain {𝑪𝑘 }2
𝑘=1 and {𝚺𝑘 }2

𝑘=1.
18: Compute the cross-view Euclidean distance matrix 𝐷 of

{𝑪𝑘 }2
𝑘=1.

19: for 𝒙1
𝑖
in 𝒙 do

20: Realign it with its category-level counterpart 𝒙2
𝑗

through 𝑗 = argmin𝑗≠𝑖𝐷𝑖 𝑗 .
21: end for
22: end for ⊲ Inference
23: Output: Apply k-means on the fused results [𝑪𝑘 + 𝚺

𝑘 ]2
𝑘=1.

obtained through the reparameterization trick [9]:

𝒛𝑘(𝑖,𝑙 ) = 𝝁𝑘𝑖 + 𝝈𝑘𝑖 × 𝜖𝑘
𝑙
, 𝜖𝑘

𝑙
∼ N(0, 𝐼 )

𝒛𝑛(𝑖,𝑙 ) = 𝝁𝑛𝑖 + 𝝈𝑛𝑖 × 𝜖𝑛
𝑙
, 𝜖𝑛

𝑙
∼ N(0, 𝐼 ),

(7)

where × denotes the element-wise product. The purpose of trans-
forming the process of computing expectations into a sampling
process is to enable gradient descent updates on the parameters. So
Equation (5) finally exhibits a typical cross-entropy form:

L𝑖𝑛𝑡𝑟𝑎 =

𝑉∑︁
𝑘=1

H(𝑇𝑖𝑛𝑡𝑟𝑎, 𝑝 (𝒙𝑘𝑖 , 𝒙̂
𝑘
𝑖 )), (8)

where 𝒙̂𝑘𝑖 = 𝑞𝜃 (𝒛𝑘(𝑖,𝑙 ) ),H denotes cross-entropy, 𝑇𝑖𝑛𝑡𝑟𝑎 represents
the intra-view ground truth, and 𝑝 (·, ·) is the likelihood between
two points and can be computed according to Equation (9) in the
main paper.

However, for Equation (6), directly computing the expectation
through sampling is not feasible due to the inconsistency of cross-
view variables. On the other hand, we observe that since the vari-
ance of each view is modeled as specific information, the variances
of different views are independent of each other. Take another look
at 𝑞𝜙 (𝒛𝑚𝑖 |𝒙𝑚

𝑖
) ∼ N (𝝁𝑚

𝑖
, (𝝈𝑚

𝑖
)2𝐼 ) and 𝑞𝜙 (𝒛𝑛𝑖 |𝒙

𝑛
𝑖
) ∼ N (𝝁𝑛

𝑖
, (𝝈𝑛

𝑖
)2𝐼 ),

as both 𝝁𝑚
𝑖
and 𝝁𝑛

𝑖
respectively represent the location of 𝒙𝑚

𝑖
and

𝒙𝑛
𝑖
in the semantic space, L′

𝑖𝑛𝑡𝑒𝑟 can be relaxed to an optimization
form that only involves the means:

L𝑖𝑛𝑡𝑒𝑟 =
𝑉∑︁
𝑚≠𝑛

H(𝑇𝑖𝑛𝑡𝑒𝑟 , 𝑝 (𝝁𝑚𝑖 , 𝝁
𝑛
𝑖 )), (9)

where 𝑇𝑖𝑛𝑡𝑒𝑟 represents the inter-view ground truth. Based on the
method proposed in [5], both terms in Equation (8) and Equation (9)
can be regarded as contrastive loss, which is essentially a contrastive
learning process. Significantly, for L𝑖𝑛𝑡𝑟𝑎 , we adhere to the calcula-
tion format of contrastive loss because it encapsulates the semantics
within the view, thus effectively serving as a reconstruction term.
However, for L𝑖𝑛𝑡𝑒𝑟 , due to the generation of a large number of
FNPs in the category-level contrast process, we have accordingly
modified it. The specific process is detailed in section 3.4 of the
main paper.

5 Additional Experiments
5.1 Network Architecture
For the probability encoder, we employed a four-layer fully con-
nected network (FCN) followed by a batch normalization layer [8]
and a rectified linear unit (ReLU) activation function at the end of
each layer. To prevent overfitting, we also added a Dropout layer
[16] after the activation function with a probability value set to 0.2
to enhance generalization. As for the probability decoder, we em-
ployed a symmetric four-layer fully connected network (FCN), with
each layer followed by a ReLU activation function. Additionally,
since we preprocessed the raw data with min-max normalization
before feeding all data into the neural network, we used a Sigmoid
activation function in the adaptation layer of the decoder to normal-
ize the decoder output to the range of 0 to 1, corresponding to the
calculation of L𝑖𝑛𝑡𝑟𝑎 . We applied this architecture to all datasets,
and the overall architecture is illustrated in Table 2.

Table 2: The architecture of the probabilistic encoder/decoder.
dim(𝑘 ) denotes the dimension of input data of the 𝑘-th view.

Encoder

Linear(dim(𝑘 ) , 1024), BatchNorm, ReLU, Dropout(0.2)
Linear(1024, 1024), BatchNorm, ReLU, Dropout(0.2)
Linear(1024, 1024), BatchNorm, ReLU, Dropout(0.2)

Linear(1024, 256)

Decoder

Linear(128, 1024), ReLU
Linear(1024, 1024), ReLU
Linear(1024, 1024), ReLU

Linear(1024, dim(𝑘 ) ), Sigmoid
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Table 3: Ablation studies on L𝑉𝐶𝐿 ."denotes the adoption of the component, while%indicates its exclusion. The best results
are indicated in bold.

Aligned L𝑖𝑛𝑡𝑒𝑟 L𝑖𝑛𝑡𝑟𝑎 L𝐾𝐿
CUB NUS-WIDE Deep Animal Deep Caltech-101

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Partially
" % % 67.43 60.95 48.36 58.49 44.93 37.64 38.70 47.08 25.57 36.30 62.61 23.67
" " % 75.53 70.05 59.85 58.52 45.11 37.88 41.80 48.17 27.45 41.79 66.55 26.87
" " " 77.83 74.40 64.25 59.77 45.58 38.60 42.99 48.01 28.42 45.09 70.17 31.62

fully
" % % 71.50 64.31 52.18 52.28 42.40 29.83 45.94 57.15 34.32 43.04 70.65 28.8
" " % 79.23 72.53 62.10 59.69 48.34 40.15 47.87 58.69 36.25 47.98 74.15 31.87
" " " 84.70 79.34 71.72 63.04 51.42 43.90 54.02 62.58 42.28 54.06 78.46 36.84

5.2 Algorithm
The training phase of our algorithm consists of two steps: i) train-
ing using the variational contrastive learning loss L𝑉𝐶𝐿 , and ii)
dynamic training using the dynamic rectification version of the
variational contrastive learning loss L𝑉𝐶𝐿−𝐷𝑅 . In the inference
phase, we first forward the test data through the probabilistic en-
coder to obtain the common representations {𝑪𝑘 }𝑉

𝑘=1 and specific
representations {𝚺𝑘 }𝑉

𝑘=1. Then, we realign the embedding features
through {𝑪𝑘 }𝑉

𝑘=1, and finally [𝑪𝑘 + 𝚺
𝑘 ]𝑉
𝑘=1 are served as the fused

results. The overall algorithm is depicted in Algorithm 1.

5.3 Category-level Alignment Rate
In addition to the three widely used metrics in the main paper,
namely ACC, NMI, and ARI, we introduce another metric called
Category-level Alignment Rate (CAR) [19] to quantify the perfor-
mance of realignment, which can be computed as follows:

𝐶𝐴𝑅 =
1
𝑁

𝑁∑︁
𝑖=1

𝛿

(
𝐶 (𝒙𝑘1

𝑖
, 𝒙̂𝑘2
𝑖
)
)
, (10)

where 𝛿 is the Dirichlet function, 𝒙̂𝑘2
𝑖

is the realigned counterpart of
𝒙𝑘1
𝑖
, and 𝐶 (𝑎, 𝑏) is an indicator function evaluating to 1 i.f.f. 𝑎 and

𝑏 belong to the same category. We present the CAR performance
of VITAL and SURE (the state-of-the-art method for addressing
PVP) on all datasets in Figure 1. Intuitively, for a given cross-view
pair, the random probability of correctly aligning at category-level
is 1
𝐶
, where 𝐶 is the number of categories. When there are too

many categories, this makes category-level alignment challenging
[19, 20]. However, from Figure 1, we observe that on the Deep Ani-
mal dataset (which contains 50 categories) and the Deep Caltech-101
dataset (which contains 101 categories), VITAL outperforms SURE
by 127.30% and 100.64% respectively. This is because SURE utilizes
cross-modal reconstruction to retain intrinsic semantics in the com-
mon representation, which may disrupt common information and
affect alignment effectiveness. In contrast to SURE, VITAL explic-
itly separates common information and specific information in its
modeling, which results in a better capture of category attributes
compared to SURE, thus enhancing category-level alignment rate.

Figure 1: CAR performance of SURE and VITAL on eight
widely used datasets in partially aligned (50%) scenario.

5.4 Ablation Studies
The ablation studies are conducted on L𝑉𝐶𝐿 to reveal the effec-
tiveness of its components. To be specific, L𝑉𝐶𝐿 can be written as
follows according to the main paper:

L𝑉𝐶𝐿 = L𝑖𝑛𝑡𝑒𝑟 + L𝑖𝑛𝑡𝑟𝑎 + L𝐾𝐿 . (11)

We present the ablation studies for the four datasets (CUB, NUS-
WIDE, Deep Animal, Deep Caltech-101) in partially aligned (50%)
and fully aligned scenarios in Table 3. According to the table, we ob-
serve that in the partially aligned scenario, removing the component
L𝐾𝐿 , which means imposing no constraints on the approximate
posterior and true posterior, results in an average decrease of 2.01%,
2.07%, and 2.71% in ACC, NMI, and ARI, respectively. This phe-
nomenon is more pronounced in the fully aligned scenario. On the
other hand, removing the component L𝑖𝑛𝑡𝑟𝑎 , which means retain-
ing no view-specific information, leads to an average decrease of
4.18%, 3.58%, and 4.20% in ACC, NMI, and ARI, respectively. These
results demonstrate the significant contribution of each component
to the final results, validating the effectiveness of each component
in variational contrastive learning.
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Figure 2: From top to bottom, each row represents the rectification visualization for NUS-WIDE, Deep Animal, MNIST-USPS,
and NoisyMNIST, respectively. (a) Loss density plot of positive and negative pairs after training with L𝑉𝐶𝐿 . (b) Loss density
plot of positive and negative pairs after rectification using𝑀𝐺𝑀𝑀 directly (threshold 0.5). (c) Loss density plot of positive and
negative pairs after rectification using the confidence subset𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 of𝑀𝐺𝑀𝑀 . (d) Variation of FNP rectification accuracy
during the rectification process using𝑀𝐺𝑀𝑀 and𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 .

5.5 Rectification Visualization
In the partially aligned scenario (50%), we present rectification
visualizations for four additional datasets, as shown in Figure 2.
Similar to Figure 2 in the main paper, (a) demonstrates that con-
siderable overlap still exists between positive and negative pairs
in the loss density plot after training with L𝑉𝐶𝐿 . A direct solution
is to fit the loss with a two-component Gaussian mixture model

and then separate positive and negative pairs by setting a threshold
on the posterior probability for each component (usually 0.5 [6]).
However, the overlap between the two components may contain
a large number of confounding pairs that cannot be correctly as-
signed. To address this issue, we propose a confidence computation
method specific to each fitting result, rather than directly using the
fitting result. Detailed computational procedures are provided in
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the main paper. Utilizing the confidence subset of𝑀𝐺𝑀𝑀 , denoted
as 𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 , can make the partition result cleaner to some ex-
tent, thus reducing the occurrence of False Negative Pairs (FNPs).
This can be verified by the results in (d), which show that the FNP
rectification accuracy of 𝑀𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 is consistently higher than
that of the original partition result𝑀𝐺𝑀𝑀 .
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