
A Alchemy mechanics
A.1 The chemistry
We consider three perceptual features along which stones can vary: size, color, and shape. Potions
are able to change stone perceptual features, but how a specific potion can affect a particular stone’s
appearance is determined by the stone’s (unobserved) latent state c. Each potion deterministically
transforms stones according to a hidden, underlying transition graph sampled from the set of all
connected graphs formed by the edges of a cube (see Figure 7a). The corners of the cube represent
different latent states, defined by a 3-dimensional coordinate c ∈ {−1, 1}3. Potion effects align with
one axis and direction of the cube, such that one of the coordinates c is modified from -1 to 1 or 1 to
-1. In equations:

c = c + 2p1(c,c+2p)∈G(c) (1)

where p ∈ P is the potion effect P := {e(0), e(1), e(2),−e(0),−e(1),−e(2)} where e(i) is the ith basis
vector and G is the set of edges which can be traversed in the graph.

The latent state of the stone also determines its reward value R ∈ {−3,−1, 1, 15}, which can be
observed via the brightness of the reward indicator (square light) on the stone:

R(c) =
{
15, if

∑
i ci = 3∑

i ci, else.
(2)

The agent only receives a reward for a stone if that stone is successfully placed within the cauldron
by the end of the trial, which removes the stone from the game.

The latent coordinates c are mapped into the stone perceptual feature space to determine the
appearance of the stone. We call this linear mapping the stone map or S and define it as
S : {−1, 1}3 → {−1, 0, 1}3:

S(c) = SrotateSreflectc (3)

where Srotate denotes possible rotation around 1 axis and rescaling. Formally: Srotate ∼
U({I3, Rx(45◦), Ry(45◦), Rz(45◦)}), where I is the identity matrix, and Ri(θ) denotes an anti-
clockwise rotation transform around axis i by θ = 45◦, followed by scaling by

√
2
2 on all other axes,

in order to normalize values to be in {−1, 0, 1}. Sreflect denotes reflection in the x, y and z axes:
Sreflect = diag(s) for s ∼ U({−1, 1}3).
The potion effect p is mapped to a potion color by first applying a linear mapping and then using a
fixed look-up table to find the color. We call this linear mapping the potion map P : P → P .

P (p) = PreflectPpermutep (4)

where Preflect is drawn from the same distribution as Sreflect and Ppermute is a 3x3 permutation matrix
i.e. a matrix of the form [e(π(0)), e(π(1)), e(π(2))]T , π ∼ U(Sym({0, 1, 2})) where Sym({0, 1, 2}) is
the set of permutations of {0, 1, 2}.
The directly observable potion colors are then assigned according to:

Pcolor =


(e(0),−e(0))→ (green, red)
(e(1),−e(1))→ (yellow, orange)
(e(2),−e(2))→ (turquoise, pink)

(5)

Note that this implies that potion colors come in pairs so that, for example, the red potion always has
the opposite effect to the green potion, though that effect may be on color, size, or shape, depending
on the particular chemistry of that episode. It can also have an effect on two of those three perceptual
features simultaneously in the case where Srotate 6= I3. This color pairing of potions is consistent
across all samples of the task, constituting a feature of Alchemy which can be meta-learned over

16



many episodes. Importantly, due to the potion map P , the potion effects p in each episode must be
discovered by experimentation.

G is determined by sampling a graph topology (Figure 7d), which determines which potion effects
are possible. Potions only have effects if certain preconditions on the stone latent state are met, which
constitute ‘bottlenecks’ (darker edges in Figure 7d). Each graph consists of the edges of the cube
which meet the graph’s set of preconditions. Each precondition says that an edge parallel to axis
i exists only if its value on axis j is a where j 6= i and a ∈ {−1, 1}. The more preconditions, the
fewer edges the graph has.

Only sets of preconditions which generate a connected graph are allowed. We denote the set of
connected graphs with preconditions of this form G. Note that this is smaller than the set of all
connected graphs, as a single precondition can rule out 1 or 2 edges of the cube. As with the potion
color pairs, this structure is consistent across all samples and may be meta-learned.

We find that the maximum number of preconditions for any graph G ∈ G is 3. We define Gn :=
{G ∈ G|N(G) = n} where N(G) is the number of preconditions in G. The sampling distribution is
n ∼ U(0, 3), G ∼ U(Gn). Of course, there is only one graph with 0 preconditions and many graphs
with 1, 2, or 3 preconditions so the graph with 0 preconditions is the most common and is sampled
25% of the time.

A ‘chemistry’ is a random sampling of all variables {G, Ppermute, Preflect, Sreflect, Srotate} (subject
to the constraint rules described above), which is held constant for an episode (Figure 6). Given
all of the possible permutations, we calculate that there are 167,424 total chemistries that can be
sampled.

Ppermute Pre�ect Sre�ect Srotate

G

Chemistry
NEpisode

Ntrial

Constraint rules PcolorR(c)

Stones

Potions

Placement

Lighting

3

12

Figure 6: The generative process for sampling a new task, in plate notation. Constraint rules G, Pcolor,
and R(c) are fixed for all episodes (see Section A.1). Every episode, a set {G, Ppermute, Preflect, Sreflect,
Srotate} is sampled to form a new chemistry. Conditioned on this chemistry, for each of Ntrial = 10
trials, Ns = 3 stones and Np = 12 potions are sampled, as well as random placement and lighting
conditions, to form the perceptual observation for the agent. For clarity, the above visualization omits
parameters for normal or uniform distributions over variables (such as lighting and placement of
stones/potions on the table).

17



Figure 7: a) Depiction of an example chemistry sampled from Alchemy, in which the perceptual
features happen to be axis-aligned with the latent feature coordinates (listed beside the stones). Stones
transform according to a hidden transition structure, with edges corresponding to the application of
corresponding potions, as seen in b). c) For example, applying the green potion to the large purple
stone transforms it into a large blue stone, and also increases its value (indicated by the square in
center of stone becoming white). d) The possible graph topologies for stone transformation. Darker
edges indicate ‘bottlenecks’, which are transitions that are only possible from certain stone latent
states. In topologies with bottlenecks, more potions are often required to reach the highest value
stone. If the criteria for stone states are not met, then the potion will have no effect (e.g. if topology
(v) has been sampled, the yellow potion in the example given in (a) will have no effect on the small
purple round stone). Note that we can apply reflections and rotations on these topologies, yielding a
total of 109 configurations.

A.2 Episode structure
Episodes end at the end of 10 trials, with a fixed number of steps per trial. There are 20 steps per trial
for symbolic Alchemy (200 for the entire episode), and 1800 frames (18000 for the entire episode, at
a frame rate of 30 fps) for 3D Alchemy.

The chemistry is procedurally generated at the beginning of every episode, and held constant for the
entire episode. Conditioned on this chemistry, stones and potions are sampled at the beginning of
every trial, with different placement and lighting (in 3D Alchemy).

18



B Training details
B.1 Compute and hyperparameters
For each experiment running VMPO on the symbolic Alchemy environment we used 460 TPUv2
core hours and 1.4 million CPU core hours at 2.4GHz. For each experiment running VMPO on the
full 3d Alchemy environment we used 2500 TPUv3 core hours and 1.7 million CPU core hours at
2.4GHz. For each experiment running IMPALA on the full 3d Alchemy environment we used 560
TPUv3 core hours and 200 thousand CPU core hours at 2.4GHz. However, please note that VMPO
and IMPALA are general purpose deep RL agents designed for completely different tasks, and so it is
not surprising that they are not efficient at Alchemy. We expect that new agents designed to solve the
meta-learning challenge proposed by Alchemy would be able to be much more data efficient.

Coarse hyperparameter searches were conducted in order to balance resource constraints against the
complexity of the task, doing sweeps (2-3 values) over learning rate and agent-specific hyperparame-
ters such as the epsilon temperature and target update period for VMPO. Default hyperparameters
were taken either from the original VMPO [46, 55] and Impala [16] papers, or swept in consultation
with the authors, based on their best estimate of what could work for Alchemy.

19



Table 2: Architecture and hyperparameters for VMPO.

SETTING VALUE

IMAGE RESOLUTION: 96X72X3
NUMBER OF ACTION REPEATS: 4
AGENT DISCOUNT: 0.99
RESNET NUM CHANNELS: 64, 128, 128
TRXL MLP SIZE: 256
TRXL NUMBER OF LAYERS: 6
TRXL NUMBER OF HEADS: 8
TRXL KEY/VALUE SIZE: 32
εη : 0.5
εα: 0.001
TTARGET : 100
βπ : 1.0
βV : 1.0
βPIXEL CONTROL : 0.001
βKICKSTARTING : 10.0
βSTONE : 2.4
βPOTION : 0.6
βCHEMISTRY : 10.0

Table 3: Architecture and hyperparameters for Impala.

SETTING VALUE

IMAGE RESOLUTION: 96X72X3
NUMBER OF ACTION REPEATS: 4
AGENT DISCOUNT: 0.99
LEARNING RATE: 0.00033
RESNET NUM CHANNELS: 16, 32, 32
LSTM HIDDEN UNITS: 256
βπ : 1.0
βV : 0.5
βENTROPY : 0.001
βPIXEL CONTROL : 0.2
βKICKSTARTING : 8.0

20



Algorithm 1 Ideal Observer

Input: stones s, potions p, belief state b
Initialise rewards = {}
for all si ∈ s do

for all pj ∈ p do
sposs, pposs, bposs, bprobs = simulate use potion(s, p, si, pj , b)
r = 0
for all s′, p′, b′, prob ∈ sposs, pposs, bposs, bprobs do
r = r + prob * Ideal Observer(s′, p′, b′)

end for
rewards[si, pj] = r

end for
s′, r = simulate use cauldron(s, si)
rewards[si, cauldron] = r + Ideal Observer(s′, p, b)

end for
return argmax(rewards)

Algorithm 2 Oracle

Input: stones s, potions p, chemistry c
Initialise rewards = {}
for all si ∈ s do

for all pj ∈ p do
s′, p′ = simulate use potion(s, p, si, pj , c)
rewards[si, pj] = Oracle(s′, p′, c)

end for
s′, r = simulate use cauldron(s, si)
rewards[si, cauldron] = r + Oracle(s′, p, c)

end for
return argmax(rewards)

B.2 Auxiliary task losses
Auxiliary prediction tasks include: 1) predicting the number of stones currently present that possess
each possible perceptual feature (e.g. small size, blue color etc), 2) predicting the number of potions
of each color, or 3) predicting the ground truth chemistry. Auxiliary tasks contribute additional
losses which are summed with the standard RL losses, weighted by coefficients (βstone = 2.4,
βpotion = 0.6, βchem = 10.0). These hyperparameters were determined by roughly balancing the
gradient norms of variables which contributed to all losses. All prediction tasks use an MLP head,
(1) and (2) use an L2 regression loss while (3) uses a cross entropy loss. Prediction tasks (1) and (2)
were always done in conjunction and are collectively referred to as ‘Predict: Features’, while (3) is
referred to as ‘Predict: Chemistry’ in the results.

The MLP for 1) has 128x128x13 units where the final layer represents 3 predictions for each
perceptual feature value e.g. the number of small stones, medium stones, large stones and 4 predictions
for the brightness of the reward indicator. The MLP for 2) has 128x128x6 units where the final layer
represents 1 prediction for the number of potions of each possible color. 3) is predicted with an MLP
with a sigmoid cross entropy loss and has size 256x128x28 where the final layer represents predictions
of the symbolic representations of the graph and mappings (Srotate,Sreflect,Preflect,Ppermute, G). More
precisely, Srotate is represented by a 4 dimensional 1-hot, Sreflect and Preflect are represented by 3
dimensional vectors with a 1 in the ith element denoting reflection in axis i, Ppermute is represented by
a 6 dimensional 1-hot and G is represented by a 12-dimensional vector for the 12 edges of the cube
with a 1 if the corresponding edge exists and a 0 otherwise.

21



Algorithm 3 Random heuristic

Input: stones s, potions p, threshold t
si = random choice(s)
if reward(si) > t or (reward(si) > 0 and empty(p)) then

return si, cauldron
end if
pi = random choice(p)
return si, pi

C Additional results
Training curves show that VMPO agents train faster in the symbolic version of Alchemy vs the 3D
version (Figures 8 and 9), even though agents are kickstarted in 3D.

As seen in Figure 9, the auxiliary task of predicting features appears much more beneficial than
predicting the ground truth chemistry, the latter leading to slower training and more variability across
seeds. We hypothesize that this is because predicting the underlying chemistry is possibly as difficult
as simply performing well on the task, while predicting simple feature statistics is tractable, useful,
and leads to more generalizable knowledge.

Baseline

Ground truth (GT)Belief state (BS)

GT + predict

Only predict feature

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Ep
is

od
e 

re
w

ar
d

2G 4G 6G 8G 10G 12G 14G 16G 18G 20G
Training step

BS + predict

Ideal observer score

Random strategy score

Figure 8: 3D with symbolic input training. Data are smoothed by bucketing and averaging over 2M
steps per bucket (for a total of 1000 points). Thin lines indicate individual replicas (5 per condition).

Predict chemistry

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

2G 4G 6G 8G 10G 12G 14G 16G 18G 20G

Baseline

Ground truth (GT)

Ep
is

od
e 

re
w

ar
d

Training step

Ideal observer score

Random strategy score

Belief state (BS)

Predict feature

Figure 9: Symbolic alchemy training. Data are smoothed by bucketing and averaging over 2M steps
per bucket (for a total of 1000 points). Thin lines indicate individual replicas (5 per condition).

22



First trial Last trial
Ideal observer

Baseline agent

Input: Ground truth

Input: Belief state + Predict: Features

First trial Last trial

First trial Last trial

First trial Last trial

Action type
apply potion: worsen stone
apply potion: no effect
apply potion: improve stone
cache stone: -3 reward
cache stone: -1 reward
cache stone: +1 reward
cache stone: +15 reward

a)

b)

c)

d)

Figure 10: Comparing action types throughout trial in 3D alchemy, for a) ideal observer, b) baseline
agent, c) agent with ground truth information as input, and d) agent with belief state as input and
feature prediction auxiliary task. All agents include the symbolic observations as input. The ideal
strategy is to in trial 1 perform a lot of exploratory actions (yielding actions that lead to no effect
on the stone), but then in later trials perform only actions that change the value of the stone. Unlike
the ideal observer, the baseline agent (b) and agent with ground truth input (c) display no change
between the first and last trials, indicating an inability to adapt strategies (exploration vs exploitation)
throughout the course of the episode.

D Licenses and documentation
The Alchemy environment and analysis tools can be found at https://github.com/deepmind/
dm_alchemy and are released under the Apache License 2.0. Further licensing details and all
documentation, including a colab tutorial, can be found at this repository.

Code will be updated and maintained by a subset of the authors with support from DeepMind and
contributions from the community.

23

https://github.com/deepmind/dm_alchemy
https://github.com/deepmind/dm_alchemy

	Introduction
	Related work
	The Alchemy environment
	Observations, actions, and task logic
	The chemistry
	Symbolic version
	Ideal-observer reference agent

	Experiments
	Agent architectures and training
	Agent performance and diagnostic analyses
	Augmentation studies

	Discussion
	Alchemy mechanics
	The chemistry
	Episode structure

	Training details
	Compute and hyperparameters
	Auxiliary task losses

	Additional results
	Licenses and documentation

