
Under review as a conference paper at ICLR 2022

VIVIT: CURVATURE ACCESS THROUGH THE GENERAL-
IZED GAUSS-NEWTON’S LOW-RANK STRUCTURE

SUPPLEMENTARY MATERIAL

A Mathematical details 12

A.1 Reducing the GGN eigenvalue problem to the Gram matrix 12

A.2 Relation between GGN and Gram matrix eigenvectors 12

B Experimental details 13

B.1 Performance evaluation . 13

B.2 Noise analysis during training . 15

B.3 Bootstrap damping for second-order methods . 19

B.4 Derivation of noisy quadratic model . 19

B.5 Experiment on noisy quadratic . 23

C Implementation details 23

C.1 Optimized Gram matrix computation for linear layers 24

C.2 Implicit multiplication with the inverse (block-diagonal) GGN 24

A MATHEMATICAL DETAILS

A.1 REDUCING THE GGN EIGENVALUE PROBLEM TO THE GRAM MATRIX

For Equation (4), consider the left hand side of the GGN’s characteristic polynomial det(G−λID) =
0. Inserting the VIVIT factorization (Equation (3)) and using the matrix determinant lemma yields

det(−λID +G) = det
(
−λID + V V >

)
(Low-rank structure (3))

= det
(
INC + V >(−λID)−1V

)
det(−λID) (Matrix determinant lemma)

= det

(
INC −

1

λ
V >V

)
(−λ)D

=

(
− 1

λ

)NC
det
(
V >V − λINC

)
(−λ)D

= (−λ)D−NC det
(
G̃− λINC

)
. (Gram matrix)

Setting the above expression to zero reveals that the GGN’s spectrum decomposes into D −NC
zero eigenvalues and the Gram matrix spectrum obtained from det(G̃− λINC) = 0.

A.2 RELATION BETWEEN GGN AND GRAM MATRIX EIGENVECTORS

Assume the nontrivial Gram matrix spectrum S̃+ = {(λk, ẽk) | λk 6= 0, G̃ẽk = λkẽk}Kk=1 with
orthonormal eigenvectors ẽ>j ẽk = δjk (δ represents the Kronecker delta) and K = rank(G). We
now show that ek = 1/

√
λkV ẽk are normalized eigenvectors ofG and inherit orthogonality from ẽk.

12

Under review as a conference paper at ICLR 2022

To see the first, consider right-multiplication of the GGN with ek, then expand the low-rank structure,

Gek =
1√
λk
V V >V ẽk (Equation (3) and definition of ek)

=
1√
λk
V G̃ẽk (Gram matrix)

= λk
1√
λk
V ẽk (Eigenvector property of ẽk)

= λkek .

Orthonormality of the ek results from the Gram matrix eigenvector orthonormality,

e>j ek =

(
1√
λj

ẽ>j V
>

)(
1√
λk
V ẽk

)
(Definition of ej , ek)

=
1√
λjλk

ẽ>j G̃ẽk (Gram matrix)

=
λk√
λjλk

ẽ>j ẽk (Eigenvector property of ẽk)

= δjk . (Orthonormality)

B EXPERIMENTAL DETAILS

B.1 PERFORMANCE EVALUATION

Hardware information: Results presented in this section, as well as Section 2, were generated on
a workstation with the following hardware:

• CPU: Intel Core i7-8700K CPU @ 3.70 GHz × 12 (32 GB)
• GPU: NVIDIA GeForce RTX 2080 Ti (11 GB)

We will use their shorthands to indicate the device that executed the computation.

Settings: Performance is evaluated with different GGN approximations, parameterized by the used
mini-batch samples (full, frac), and the backpropagated loss Hessian representation (exact, MC):

• exact, full: Backpropagate the exact loss Hessian representation for all mini-batch samples
(NC vectors).

• MC, full: Backpropagate an MC approximation of the loss Hessian (using a single MC
sample) for all mini-batch samples (N vectors).

• exact, frac: Backpropagate the exact loss Hessian representation for a fraction (1/8, as in
Zhang et al. (2017)) of mini-batch samples (N/8C vectors).

• exact, MC: Backpropagate an MC approximation of the loss Hessian (using a single MC
sample) for a fraction (1/8, as in Zhang et al. (2017)) of mini-batch samples (N/8 vectors).

In addition to computing the target quantity (GGN spectrum, damped Newton step) with BACKPACK,
a standard gradient backpropagation on the full mini-batch is always performed in PYTORCH’s
backward pass. Performance is evaluated on convolutional neural nets from DEEPOBS (Schneider
et al., 2019): 3C3D on CIFAR-10, 2C2D on FASHION-MNIST, and ALL-CNN-C on CIFAR-100.

GGN spectra: To obtain the spectra of Figure 1, Figure S.4, and Figure S.5, we initialize the
respective architecture, then draw a mini-batch and evaluate the GGN eigenvalues under the described
approximations, clipping the Gram matrix eigenvalues at 10−4. Mini-batch sizes correspond to the
default value for training where possible (CIFAR-10 3C3D: N = 128, FASHION-MNIST 2C2D:
N = 128). Only on CIFAR-100 ALL-CNN-C (trained with N = 256), we reduce the batch size to
N = 64 to fit the exact computation on the full mini-batch, used as baseline, into memory.

13

Under review as a conference paper at ICLR 2022

(a)

10−3 10−1 101

10−6

10−5

10−4

Eigenvalues

D
en

si
ty

exact, full

10−3 10−1 101

Eigenvalues

exact, frac

10−3 10−1 101

Eigenvalues

MC, full (b)
Ncrit (eigenvalues)

GGN
Batch full frac

exact 76 207
MC 718 1740

(c)
Ncrit (block Newton)

GGN
Batch full frac

exact 68 159
MC 368 528

Figure S.4: Scalability evaluation on FASHION-MNIST 2C2D (D = 3,274,634, C = 10). (a)
GGN eigenvalue distribution with different costs on a mini-batch of size N = 128. From left to
right: Exact GGN on the full batch, exact GGN on a batch fraction (1/8, as in Zhang et al. (2017)),
MC-approximation of the GGN on the full batch. (b) Maximum batch size Ncrit (GPU) for a standard
gradient computation and the GGN spectrum and (c) computing exact Newton steps with layer-wise
parameter groups.

(a)

10−3 10−1 101
10−6

10−5

10−4

10−3

Eigenvalues

D
en

si
ty

exact, full

10−3 10−1 101

Eigenvalues

exact, frac

10−3 10−1 101

Eigenvalues

MC, full (b)
Ncrit (eigenvalues)

GGN
Batch full frac

exact 35 140
MC 1280 1952

(c)
Ncrit (block Newton)

GGN
Batch full frac

exact 35 135
MC 1079 1536

Figure S.5: Scalability evaluation on CIFAR-100 ALL-CNN-C (D = 1,387,108, C = 100). (a)
GGN eigenvalue distribution with different costs on a mini-batch of size N = 64. From left to
right: Exact GGN on the full batch, exact GGN on a batch fraction (1/8, as in Zhang et al. (2017)),
MC-approximation of the GGN on the full batch. (b) Maximum batch size Ncrit (GPU) for a standard
gradient computation and the GGN spectrum and (c) computing exact Newton steps with layer-wise
parameter groups.

Critical batch sizes: Similar to the GGN spectra, we repeat their computation and vary the mini-
batch size until the device runs out of memory. The largest mini-batch size that can be handled is
denoted as Ncrit, the critical batch size. Figure 1b, Figure S.4b, Figure S.5b, and Table S.1a present
additional results.

The critical batch sizes in Figure 1c, Figure S.4c, Figure S.5b, and Table S.1b, employ a block-
diagonal GGN approximation with groups consisting of weights and bias terms in each layer (see
Appendix C). For each block we compute a damped Newton step (first term in Equation (9), using
Gram matrix eigenvalues larger than 10−4) with constant damping δ = 1.

As explained in Section 2, the GGN eigenvalues only require the Gram matrix. Newton steps from a
block-diagonal approximation additionally require the directional derivatives (Equation (8)), which
involve individual gradients. Second-order directional derivatives λnk (Equation (8b)) are evaluated
on the same samples as the GGN eigenvectors, but we always use all mini-batch samples to compute
the directional gradients γnk (Equation (8a)). As gradients are cheaper to compute, this suggests

14

Under review as a conference paper at ICLR 2022

Table S.1: Critical batch sizes for eigenvalues and Newton steps with different approximations.
Additional results that complement Figure 1b,c, Figure S.4b,c, and Figure S.5 are shown column-
wise for each architecture. From top to bottom, we report the critical batch sizes for computing
(a) the GGN eigenvalue spectrum on CPU, (b) damped Newton steps with a block-diagonal GGN
approximation corresponding to individual layers on CPU, and (c,d) damped Newton steps with the
full GGN matrix on CPU and GPU. Interpretations and procedure details are provided in the text.

CIFAR-10 3C3D FASHION-MNIST 2C2D CIFAR-100 ALL-CNN-C
(a)

Ncrit (eigenvalues, CPU)

GGN
Batch full frac

exact 1166 3004
MC 8430 14908

Ncrit (eigenvalues, CPU)

GGN
Batch full frac

exact 231 615
MC 2208 5495

Ncrit (eigenvalues, CPU)

GGN
Batch full frac

exact 94 519
MC 3984 5859

(b)
Ncrit (block Newton, CPU)

GGN
Batch full frac

exact 1046 2423
MC 4997 6838

Ncrit (block Newton, CPU)

GGN
Batch full frac

exact 210 487
MC 1137 1643

Ncrit (block Newton, CPU)

GGN
Batch full frac

exact 95 504
MC 3360 3920

(c)
Ncrit (full Newton, CPU)

GGN
Batch full frac

exact 667 2215
MC 3473 5632

Ncrit (full Newton, CPU)

GGN
Batch full frac

exact 202 487
MC 1107 1639

Ncrit (full Newton, CPU)

GGN
Batch full frac

exact 43 309
MC 2015 2865

(d)
Ncrit (full Newton, GPU)

GGN
Batch full frac

exact 208 727
MC 1055 1816

Ncrit (full Newton, GPU)

GGN
Batch full frac

exact 66 159
MC 362 528

Ncrit (full Newton, GPU)

GGN
Batch full frac

exact 13 87
MC 640 959

evaluating them on more samples compared to curvature, see e.g. Zhang et al. (2017). The overhead
thus leads to smaller critical batch sizes in comparison to computing the GGN spectrum.

For completeness, Table S.1c,d shows critical batch sizes when the block-diagonal GGN is replaced
by its full representation (full Newton). In contrast to Newton steps with a block-diagonal matrix
that can discard the stage-wise matrices V (i) during backpropagation, V must now be stored until
all parameters have been traversed. This leads to higher memory consumption, and hence smaller
critical batch sizes, but avoids multiple Gram matrix inversions (one per parameter group).

In summary, we find that there always exists a combination of approximations which allows for
critical batch sizes larger than the traditional size used for training (some architectures even permit
exact computation). Different accuracy-cost trade-offs may be preferred, depending on the application
and the computational budget. By the presented approximations, VIVIT’s representation is capable
to adapt over a wide range.

B.2 NOISE ANALYSIS DURING TRAINING

Procedure: We train the following DEEPOBS (Schneider et al., 2019) architectures with SGD and
ADAM: 3C3D on CIFAR-10 (N = 128), 2C2D on FASHION-MNIST (N = 128), and ALL-CNN-C
on CIFAR-100 (N = 256). To assert successful training, we use the hyperparameters from Dangel

15

Under review as a conference paper at ICLR 2022

Table S.2: Hyperparameter settings for training runs to analyze noise. For both SGD and
ADAM, we report their learning rates α (taken from the baselines in Dangel et al. (2020)) and link to
their visualization. Momentum for SGD was fixed to 0.9, and ADAM uses the default parameters
(β1, β2) = (0.99, 0.999).

Problem SGD ADAM

CIFAR-10 3C3D α ≈ 3.79 · 10−3 (Figure 2) α ≈ 2.98 · 10−4 (Figure S.6)
FASHION-MNIST 2C2D α ≈ 2.07 · 10−2 (Figure S.7) α ≈ 1.27 · 10−4 (Figure S.8)
CIFAR-100 ALL-CNN-C α ≈ 4.83 · 10−1 (Figure S.9) α ≈ 6.95 · 10−4 (Figure S.10)

(a)

10−6

10−3

100

|γ
k
|

Loss: 2.326 (K = 1152) Loss: 1.026 (K = 1064) Loss: 0.297 (K = 472)

(b)

10−6

10−3

100

γ
2 k
/
‖g

‖2

(c)

10−2

10−1

100

S
N
R
(λ

k
)

(d)

10−4 10−2 100 102

10−5

10−3

10−1

λk

S
N
R
(γ

k
)

10−4 10−2 100 102

λk

10−4 10−2 100 102

λk

Figure S.6: Gradient, curvature and noise during training of CIFAR-10 3C3D with ADAM.
Individual columns show the architecture’s state at initialization (left), an early (epoch 5, center),
and advanced (epoch 68, right) stage of training. For each direction k, characterized by its curvature
λk, we monitor (a) the directional gradient magnitude; (b) gradient-eigenvector alignment; (c,d)
signal-to-noise ratios of curvatures and gradients.

et al. (2020) (see Table S.2), but turn off regularization as it would alter gradients and curvature, and
their respective noise.

Metrics are computed on a single held-out mini-batch during training, using the same batch size if
possible (3C3D on CIFAR-10: N = 128, 2C2D FASHION-MNIST: N = 128), or a smaller value
to fit the computation into memory (ALL-CNN-C on CIFAR-100: N = 64). We focus on the exact
GGN without further approximations and use the full mini-batch for the directional derivatives.

Signal-to-noise ratios: From the empirical mini-batch distributions {γnk} , {λnk} we compute

SNR(χk) =
E [χk]

2

Var [χk]
=

E [χk]
2

E [χ2
k]− E [χk]

2 with E [χk] =
1

N

N∑
n=1

χnk for χ ∈ {λ, γ} .

Summary: All analyzed runs exhibit similar behaviors as described in Section 4.1.

16

Under review as a conference paper at ICLR 2022

(a)

10−6

10−3

100

|γ
k
|

Loss: 2.344 (K = 1152) Loss: 2.344 (K = 711) Loss: 0.083 (K = 55)

(b)

10−6

10−3

100

γ
2 k
/
‖g

‖2

(c)

10−2

10−1

100
101

S
N
R
(λ

k
)

(d)

10−410−310−210−1 100 101
10−6

10−3

100

λk

S
N
R
(γ

k
)

10−410−310−210−1 100 101

λk

10−410−310−210−1 100 101

λk

Figure S.7: Gradient, curvature and noise during training of FASHION-MNIST 2C2D with
SGD. Individual columns show the architecture’s state at initialization (left), an early (after 100 steps,
center), and advanced (epoch 57, right) stage of training. For each direction k, characterized by its
curvature λk, we monitor (a) the directional gradient magnitude; (b) gradient-eigenvector alignment;
(c,d) signal-to-noise ratios of curvatures and gradients.

(a)

10−5

100

|γ
k
|

Loss: 2.344 (K = 1152) Loss: 2.344 (K = 746) Loss: 0.062 (K = 118)

(b)

10−6

10−3

100

γ
2 k
/
‖g

‖2

(c)

10−2

10−1

100
101

S
N
R
(λ

k
)

(d)

10−4 10−2 100 102
10−6

10−3

100

λk

S
N
R
(γ

k
)

10−4 10−2 100 102

λk

10−4 10−2 100 102

λk

Figure S.8: Gradient, curvature and noise during training of FASHION-MNIST 2C2D with
ADAM. Individual columns show the architecture’s state at initialization (left), an early (after 100
steps, center), and advanced (epoch 57, right) stage of training. For each direction k, characterized
by its curvature λk, we monitor (a) the directional gradient magnitude; (b) gradient-eigenvector
alignment; (c,d) signal-to-noise ratios of curvatures and gradients.

17

Under review as a conference paper at ICLR 2022

(a)

10−7

10−4

10−1
|γ

k
|

Loss: 4.622 (K = 4376) Loss: 3.939 (K = 4387) Loss: 1.478 (K = 3731)

(b)

10−6

10−3

100

γ
2 k
/
‖g

‖2

(c)

10−2

100

102

S
N
R
(λ

k
)

(d)

10−4 10−2 100 102
10−6

10−3

100

λk

S
N
R
(γ

k
)

10−4 10−2 100 102

λk

10−4 10−2 100 102

λk

Figure S.9: Gradient, curvature and noise during training of CIFAR-100 ALL-CNN-C with
SGD. Individual columns show the architecture’s state at initialization (left), an early (epoch 5,
center), and advanced (epoch 311, right) stage of training. For each direction k, characterized by its
curvature λk, we monitor (a) the directional gradient magnitude; (b) gradient-eigenvector alignment;
(c,d) signal-to-noise ratios of curvatures and gradients.

(a)

10−5

100

|γ
k
|

Loss: 4.622 (K = 4376) Loss: 3.626 (K = 5060) Loss: 0.867 (K = 2830)

(b)

10−6

10−3

100

γ
2 k
/
‖g

‖2

(c)

100

102

S
N
R
(λ

k
)

(d)

10−4 10−2 100 102
10−6

10−3

100

λk

S
N
R
(γ

k
)

10−4 10−2 100 102

λk

10−4 10−2 100 102

λk

Figure S.10: Gradient, curvature and noise during training of CIFAR-100 ALL-CNN-C with
ADAM. Individual columns show the architecture’s state at initialization (left), an early (epoch 5,
center), and advanced (epoch 311, right) stage of training. For each direction k, characterized by its
curvature λk, we monitor (a) the directional gradient magnitude; (b) gradient-eigenvector alignment;
(c,d) signal-to-noise ratios of curvatures and gradients.

18

Under review as a conference paper at ICLR 2022

B.3 BOOTSTRAP DAMPING FOR SECOND-ORDER METHODS

Bootstrap damping: The starting point for our directional bootstrap damping is Equation (10),

R(δk) = q(θ)− q(θ + skek) = −sk
(

1
N

∑N
n=1 γnk

)
− 1

2s
2
k

(
1
N

∑N
n=1 λnk

)
.

It describes the reduction of the quadratic mini-batch model q when taking a step sk = − γk
λk+δk

∈ R
in direction ek. Since our ultimate goal is to minimize the training loss, we would like to choose a
damping such that its corresponding update not only reduces q, but consistently decreases the loss
over all other mini-batch models as well.

One way to assess the step sk in this regard is the non-parametric bootstrap (Efron, 1979). The general
idea is that we can simulate additional samples for the derivatives in direction ek on other batches
by resampling from the data {γnk}Nn=1, {λnk}Nn=1. First, we draw N indices i1, ..., iN ∈ {1, ..., N}
with replacement. By taking the mean of γi1k, ..., γiNk, we can simulate the first directional derivative
of an alternative, equally valid quadratic model (and similarly for the second directional derivative
by taking the mean of λi1k, ..., λiNk). Replacing the directional derivatives 1/N

∑N
n=1 γnk and

1/N
∑N
n=1 λnk in the equation above by these new averages 1/N

∑N
j=1 γijk and 1/N

∑N
j=1 λijk

yields a new sample forRk(δk). This allows to create an arbitrary number of samples for any δk.

For a given damping δk, such samples indicate what reduction in training loss to expect with the
respective update sk. Taking the 5% percentile of the bootstrap-generated samples, we obtain a
confident lower bound to this reduction. We then choose the δk that maximizes this lower bound from
candidates on a discrete grid. This approach is repeated for all non-trivial directions.

B.4 DERIVATION OF NOISY QUADRATIC MODEL

Here, we reverse-engineer a noisy quadratic model used by the optimizer to minimize an inaccessible
objective function such that we have full control over the directional noisy first- and second-order
derivatives observed by the optimizer through automatic differentiation (directions themselves are
not subject to noise). Not only do we formulate the optimization problem mathematically, but also
derive an equivalent BACKPACK-compatible neural network training procedure, such that we can
use VIVIT to compute directional derivatives during a backward pass.

One-dimensional case: Consider a one-dimensional objective function f : R → R, ϑ 7→ f(ϑ)
which we want to optimize,

min
ϑ
f(ϑ) .

At the current iterate ϑ0 ∈ R, an optimizer constructs a local model of f to update its solution.

We choose the family of local models to be convex quadratics. Let ϕtrue : R → R, ϑ 7→ ϕtrue(ϑ)
denote one instance of a model, defined by its local curvature λtrue(ϑ0) ∈ R+, gradient γtrue(ϑ0) ∈ R,
and function value ϕtrue(ϑ0) ∈ R,

ϕtrue(ϑ) =
1

2
λtrue(ϑ0)(ϑ− ϑ0)2 + γtrue(ϑ0)(ϑ− ϑ0) + ϕtrue(ϑ0) . (S.11)

By construction, ∇ϑϕtrue(ϑ0) = γtrue(ϑ0) and ∇2
ϑϕtrue(ϑ0) = λtrue(ϑ0). For a ‘good’ local descrip-

tion of f , those values should be representative of ∇ϑf(ϑ0),∇2
ϑf(ϑ0), but may sometimes deviate

to guarantee model properties such as convexity.

Both the objective f and its local model ϕtrue, assumed by the optimizer, are inaccessible in practice.
A noisy version ϕ : R → R, ϑ 7→ ϕ(ϑ) of Equation (S.11) substitutes true curvature (λtrue(ϑ0) →
λ(ϑ0)) and gradient (γtrue(ϑ0) → γ(ϑ0)) with random variables (the offset ϕtrue(ϑ0) is not crucial
for optimization, and will thus not be perturbed with noise in this presentation),

ϕ(ϑ) =
1

2
λ(ϑ0)(ϑ− ϑ0)2 + γ(ϑ0)(ϑ− ϑ0) + ϕtrue(ϑ0) . (S.12)

To observe ϕ(ϑ) multiple times, Equation (S.12) is evaluated on samples {(λn(ϑ0), γn(ϑ0)) ∈
R+ × R}Nn=1 drawn from the joint distribution of (λ(ϑ0), γ(ϑ0)). Neglecting the offset, sample n
gives rise to

ϕn(ϑ) =
1

2
λn(ϑ0)(ϑ− ϑ0)2 + γn(ϑ0)(ϑ− ϑ0) . (S.13a)

19

Under review as a conference paper at ICLR 2022

It is common to batch-process multiple samples, compute the average

ϕ(ϑ) =
1

N

N∑
n=1

ϕn(ϑ) , (S.13b)

and use automatic differentiation to compute the quantities employed by an optimizer. Recap
that Equation (S.13b) produces the correct noisy first- and second-order partial derivatives, i.e.
∇ϑϕn(ϑ0) = γn(ϑ0) and ∇2

ϑϕn(ϑ0) = λn(ϑ0). Because our work not only relies on automatic
differentiation, but computes directional derivatives through VIVIT, we translate Equation (S.13b)
into the training procedure of a sequential neural network with specifically engineered labeled data.

BACKPACK-compatible one-dimensional formulation: To reformulate Equation (S.13) as train
loss of a sequential neural net, we complete the square in Equation (S.12),

ϕ(ϑ) =
1

2
λ(ϑ0)

(
ϑ− ϑ0 +

γ(ϑ0)

λ(ϑ0)

)2

− 1

2

γ(ϑ0)2

λ(ϑ0)
+ ϕtrue(ϑ0)

=

(√
λ(ϑ0)

2
(ϑ− ϑ0) +

γ(ϑ0)√
2λ(ϑ0)

)2

− 1

2

γ(ϑ0)2

λ(ϑ0)
+ ϕtrue(ϑ0)

=

(√
λ(ϑ0)

2
ϑ−

(√
λ(ϑ0)

2
ϑ0 −

γ(ϑ0)√
2λ(ϑ0)

))2

− 1

2

γ(ϑ0)2

λ(ϑ0)
+ ϕtrue(ϑ0)

= (xϑ− y)
2

+ const.

(S.14a)

with

x =

√
λ(ϑ0)

2
∈ R , (S.14b)

y =

√
λ(ϑ0)

2
ϑ0 −

γ(ϑ0)√
2λ(ϑ0)

∈ R , (S.14c)

const. = −1

2

γ(ϑ0)2

λ(ϑ0)
+ ϕtrue(ϑ0) ∈ R . (S.14d)

Note that the data, in which the noisy observations are embedded, must depend on the current location
ϑ0. Such a dependence is not common in practical tasks. But it is a consequence of the design,
because we want to achieve full control of gradient and curvature noise that the optimizer is exposed
to at any time during optimization.

With that, we conclude that minimizing Equation (S.12) through noisy observations of the form
Equation (S.13) is equivalent to the following neural network training: Assume the optimizer’s
current iterate to be ϑ0. Then, the following steps define a training iteration:

1. Generate data
(a) Draw curvature and gradient samples {(λn(ϑ0), γn(ϑ0)}Nn=1

(b) Compute inputs {xn =
√
λn(ϑ0)/2}Nn=1 and labels {yn =

√
λn(ϑ0)/2ϑ0 −

γn(ϑ0)/
√

2λn(ϑ0)}Nn=1}
2. Forward pass

(a) Feed {xn}Nn=1 through a linear layer (R→ R, no bias) with trainable weight ϑ ∈ R,
set to ϑ0

(b) Feed the output {xnϑ}Nn=1 through the mean-squared error (MSE) with labels
{yn}Nn=1,

MSE({xnϑ}, {yn}) =
1

N

N∑
n=1

(xnϑ− yn)
2

= ϕ(ϑ)

3. Backward pass: Compute the first- and second-order directional derivatives {γn(ϑ0)}Nn=1
and {λn(ϑ0)}Nn=1 with VIVIT during a backward pass. By construction, this reproduces
the sampled gradients and curvatures from Item 1a

4. Optimizer step: Update the value of ϑ using {γn(ϑ0)}Nn=1 and {λn(ϑ0)}Nn=1, set ϑ0 to ϑ’s
new value

20

Under review as a conference paper at ICLR 2022

Multi-dimensional case: Next, we extend the one-dimensional case to multiple dimensions. Con-
sider a multi-dimensional objective function F : RD → R,θ 7→ F (θ) which we want to optimize,

min
θ
F (θ) .

The local model of F at θ0 ∈ RD, employed by the optimizer, is a convex D-dimensional quadratic.
Let φtrue : RD → R,θ 7→ φtrue(θ) denote one instance of a model, defined by its local Hessian spec-
trum {(λd,true(θ0), ed(θ0))}Dd=1 with local curvatures {λd,true(θ0) ∈ R+}Dd=1 such that the Hessian is
∇2
θφ(θ0) =

∑D
d=1 λd,true(θ0)ed(θ0)ed(θ0)>. It also requires local gradients {γd,true(θ0) ∈ R}Dd=1

along the directions {ed(θ0) ∈ RD}Dd=1, such that ∇θφ(θ0) =
∑D
d=1 γd,true(θ0)ed(θ0), and the

local function value at θ0 ∈ RD,

φtrue(θ) =
1

2
(θ − θ0)>∇2

θφ(θ0)(θ − θ0) + (θ − θ0)>∇θφ(θ0) + φtrue(θ0)

=

[
D∑
d=1

1

2
λd,true(θ0)

(
ed(θ0)>(θ − θ0)

)2
+ γd,true(θ0)ed(θ0)>(θ − θ0)

]
+ φtrue(θ0) .

(S.15)

Note that expanding θ =
∑D
d=1 ϑded(θ0) and θ0 =

∑D
d=1 ϑd,0ed(θ0) in terms of scalar coordinates

ϑd = ed(θ0)>θ and ϑd,0 = ed(θ0)>θ0 decouples Equation (S.15) into one-dimensional quadratics,

φtrue(θ) =

[
D∑
d=1

1

2
λd,true(θ0) (ϑd − ϑd,0)

2
+ γd,true(θ0) (ϑd − ϑd,0)

]
+ φtrue(θ0)

=

D∑
d=1

ϕd,true(ϑd) + φtrue(θ0) ,

(S.16)

which is (up to constant offsets that are negligible for optimization) the sum of D one-dimensional
quadratic functions of the form Equation (S.11), with ϕd,true defined by (λd,true(θ0), γd,true(θ0), ϑd,0)
along each direction.

A noisy version φ : RD → R,θ 7→ φ(θ) of Equation (S.15) replaces the true curvatures
({λd,true(θ0)}Dd=1 → {λd(θ0)}Dd=1) and local gradients ({γd,true(θ0)}Dd=1 → {γd(θ0)}Dd=1) at θ0
with random variables (the offset φtrue(θ0) is not crucial for optimization, and will thus not be
perturbed),

φ(θ) =

[
D∑
d=1

1

2
λd(θ0)

(
ed(θ0)>(θ − θ0)

)2
+ γd(θ0)ed(θ0)>(θ − θ0)

]
+ φtrue(θ0) . (S.17)

The optimizer observes φ(θ) through N samples {(λnd(θ0), γnd(θ0)) ∈ R+ × R}N,Dn=1,d=1

drawn from the joint distribution of (λd(θ0), γd(θ0)). Neglecting the offset, sample
{(λnd(θ0), γnd(θ0))}Dd=1 gives rise to

φn(θ) =

D∑
d=1

1

2
λnd(θ0)

(
ed(θ0)>(θ − θ0)

)2
+ γnd(θ0)ed(θ0)>(θ − θ0) . (S.18a)

It is common to batch-process multiple samples and compute the average

φ(θ) =
1

N

N∑
n=1

φn(θ), (S.18b)

which will give the correct first- and second-order directional derivatives in an automatic differentia-
tion engine, i.e. ed(θ0)>∇θφn(θ0) = γnd(θ0) and ed(θ0)>∇2

θφn(θ0)ed(θ0) = λnd(θ0). We now
phrase minimizing φ(θ) by observing φ̄(θ) as neural network training.

21

Under review as a conference paper at ICLR 2022

BACKPACK-compatible multi-dimensional formulation: Completing the square in Equa-
tion (S.15), and in analogy to Equation (S.14), gives

φ(θ) =

[
D∑
d=1

1

2
λd(θ0)

(
ed(θ0)>(θ − θ0) +

γd(θ0)

λd(θ0)

)2

− 1

2

γd(θ0)2

λd(θ0)

]
+ φtrue(θ0)

=

 D∑
d=1

(√
λd(θ0)

2
ed(θ0)>(θ − θ0) +

γd(θ0)√
2λd(θ0)

)2

− 1

2

γd(θ0)2

λ(θ0)

+ φtrue(θ0)

=

 D∑
d=1

(√
λd(θ0)

2
ed(θ0)>θ −

(√
λd(θ0)

2
ed(θ0)>θ0 −

γd(θ0)√
2λd(θ0)

))2

−1

2

γd(θ0)2

λd(θ0)

]
+ φtrue(θ0)

=
1

D

 D∑
d=1

(√
λd(θ0)D

2
ed(θ0)>θ −

(√
λd(θ0)D

2
ed(θ0)>θ0 −

√
D

2λd(θ0)
γd(θ0)

))2

−1

2

Dγd(θ0)2

λd(θ0)

]
+ φtrue(θ0)

=
1

D
‖Xθ − y‖2 + const.

(S.19a)
with

X =

√
D

2


√
λ1e1(θ0)>

...√
λDeD(θ0)>

 ∈ RD×D , (S.19b)

y =

√
D

2


√
λ1(θ0)e1(θ0)>θ0 − γ1(θ0)√

λ1(θ0)

...√
λD(θ0)eD(θ0)>θ0 − γD(θ0)√

λD(θ0)

 ∈ RD , (S.19c)

const. =

(
D∑
d=1

−1

2

γd(θ0)2

λd(θ0)

)
+ φtrue(θ0) ∈ R . (S.19d)

Note that we extracted a fraction 1/D. This is due to our rephrasing goal as neural network training.

With that, we conclude that minimizing Equation (S.17) through noisy observations of the form
Equation (S.18) is equivalent to the following neural network training: Assume the optimizer’s
current iterate to be θ0. Then, the following sequence defines a training iteration:

1. Generate data
(a) Generate orthonormal eigenvectors {ed(θ0)}Dd=1 with ed(θ0)>ed′(θ0) = δdd′

(b) Draw curvature and gradient samples {(λnd(θ0), γnd(θ0)}N,Dn=1,d=1

(c) Compute inputs and labelsXn =

√
D

2


√
λn1(θ0)e1(θ0)>

...√
λnD(θ0)eD(θ0)>



N

n=1

,

yn =
D

2


√
λn1e1(θ0)>θ0 − γn1(θ0)√

λn1(θ0)

...√
λnD(θ0)eD(θ0)>θ0 − γnD(θ0)√

λnD(θ0)



N

n=1

22

Under review as a conference paper at ICLR 2022

2. Forward pass
(a) Feed {Xn} through a linear layer (R···×D → R···×1 where . . . denotes free axes

preserved by the affine transformation6) with trainable weight θ> and no bias
(b) Feed the output {Xnθ}Nn=1 through the mean-squared error (MSE) with labels
{yn}Nn=1,

MSE({Xnθ}, {yn}) =
1

N

1

D

N∑
n=1

‖Xnθ − yn‖2 =
1

N

N∑
n=1

φn(θ) = φ(θ) . (S.20)

Note that the factor 1/D is required as the MSE implementation in common machine
learning libraries averages the squared residuals over all components.7

3. Backward pass: Compute first- and second-order directional derivatives {γnd(θ0)}N,Dn=1,d=1

and {λnd(θ0)}N,Dn=1,d=1 with VIVIT during a backward pass. They are of same value as the
curvature and gradient samples defined in Item 1b

4. Optimizer step: Update the value of θ using {γnd(θ0)}N,Dn=1,d=1 and {λnd(θ0)}N,Dn=1,d=1, set
θ0 to θ’s new value

B.5 EXPERIMENT ON NOISY QUADRATIC

We consider a quadratic loss function L(θ) = θ>Gθ with Gii = i2 for i ∈ {1, ..., D = 20} and
use the noisy quadratic network from Appendix B.4 to gain full control over the directions ek as well
as directional derivative samples γnk, λnk observed by the optimizers at each step.

We set ek to the k-th unit vector for k ∈ {1, ..., D}, N = 128 and sample γnk from a Normal
distribution with mean e>k∇θL(θ) (the actual directional first derivative of L) and constant variance
5,000. Note that this variance implies a gradient SNR of at least 2 over all directions at θinit. Since
the gradient vanishes when moving towards the minimum, this SNR becomes arbitrarily low. When
sampling λnk, we have to make sure that these samples are non-negative, since they correspond to
projections of positive semi-definite matricesGn (compare Equation (8b)). This constraint can be
incorporated by sampling λnk from a Gamma distribution with mean e>k∇2

θL(θ)ek and constant
variance 50. This globally limits the curvature SNR to values above 0.02. We compare SGD
(learning rate 10−3) to the second-order optimizers with global damping δ ∈ {10−4, 10−3, ..., 102}
and directional damping δk using a log-equidistant grid from 10−4 to 102 with 200 grid points and
100 bootstrap samples. We run all optimizers for 20 steps. To obtain a reliable estimation of optimizer
stability, this procedure is repeated 100 times. The results are shown in Figure 3.

C IMPLEMENTATION DETAILS

Layer view of backpropagation: Consider a single layer T (i)

θ(i) that transforms inputs z(i−1)n ∈
Rh(i−1)

into outputs z(i)n ∈ Rh(i)

by means of a parameter θ(i) ∈ Rd(i) . During backpropagation
for V , the layer receives vectors s(i)nc = (J

z
(i)
n
fn)>snc from the previous stage (recall ∇2

f `n =∑C
c=1 sncs

>
nc). Parameter contributions v(i)nc to V are obtained by application of its Jacobian,

v(i)nc = (Jθ(i)fn)
>
snc

=
(

Jθ(i)z(i)n

)> (
J
z
(i)
n
fn

)>
snc (Chain rule)

=
(

Jθ(i)z(i)n

)>
s(i)nc . (Definition of s(i)nc) (S.21)

Consequently, the contribution of θ(i) to V , denoted by V (i) ∈ Rd(i)×NC , is

V (i) =
1√
N

(
v
(i)
11 v

(i)
12 . . . v

(i)
NC

)
with v(i)nc = (Jθ(i)fn)

>
snc . (S.22)

6This complies to the implementation in PYTORCH, see torch.nn.Linear.
7See e.g. the PYTORCH implementation of torch.nn.MSELoss.

23

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html

Under review as a conference paper at ICLR 2022

C.1 OPTIMIZED GRAM MATRIX COMPUTATION FOR LINEAR LAYERS

Our goal is to efficiently extract θ(i)’s contribution to the Gram matrix G̃, given by

G̃(i) = V (i)>V (i) ∈ RNC×NC . (S.23)

Gram matrix via expanding V (i): One way to construct G(i) is to first expand V (i) (Equa-
tion (S.22)) via the Jacobian Jθ(i)z

(i)
n , then contract it (Equation (S.23)). This can be a memory

bottleneck for large linear layers which are common in many architectures close to the network
output. However if only the Gram matrix rather than V is required, structure in the Jacobian can be
used to construct G̃(i) without expanding V (i) and thus reduce this overhead.

Optimization for linear layers: Now, let T (i)

θ(i) be a linear layer with weightsW (i) ∈ Rh(i)×h(i−1)

,

i.e. θ(i) = vec(W (i)) ∈ Rd(i)=h(i)h(i−1)

with column stacking convention for vectorization,

T
(i)

θ(i) : z(i)n = W (i)z(i−1)n .

The Jacobian is

Jθ(i)z(i)n = z(i−1)n

>
⊗ Ih(i) . (S.24)

Its structure can be used to directly compute entries of the Gram matrix without expanding V (i),[
G̃(i)

]
(nc)(n′c′)

= v(i)nc
>
v
(i)
n′c′ (Equation (S.23))

= s(i)nc
> (

Jθ(i)z(i)n

)(
Jθ(i)z

(i)
n′

)>
s
(i)
n′c′

= s(i)nc
> (
z(i−1)n

>
⊗ Ih(i)

)(
z
(i−1)
n′

>
⊗ Ih(i)

)>
s
(i)
n′c′ (Equation (S.24))

= s(i)nc
> (
z(i−1)n

>
z
(i−1)
n′ ⊗ Ih(i)

)
s
(i)
n′c′ (Equation (S.21))

= z(i−1)n

>
z
(i−1)
n′ s(i)nc

>
Ih(i)s

(i)
n′c′ (z(i−1)n

>
z
(i−1)
n′ ∈ R)

=
(
z(i−1)n

>
z
(i−1)
n′

)(
s(i)nc
>
s
(i)
n′c′

)
.

We see that the Gram matrix is built from two Gram matrices based on {z(i−1)n }Nn=1 and
{s(i)nc}N,Cn=1,c=1, that require O(N2) and O((NC)2) memory, respectively. In comparison, the naïve

approach via V (i) ∈ Rd(i)×NC scales with the number of weights, which is often comparable to D.
For instance, the 3C3D architecture on CIFAR-10 has D = 895,210 and the largest weight matrix
has d(i) = 589,824, whereas NC = 1,280 during training (Schneider et al., 2019).

C.2 IMPLICIT MULTIPLICATION WITH THE INVERSE (BLOCK-DIAGONAL) GGN

Inverse GGN-vector products: Consider the damped Newton step of Equation (9) that requires
multiplication by (G+ δID)−1.8 By means of Equation (3) and the matrix inversion lemma,

(δID +G)
−1

=
(
δID + V V >

)−1
(Equation (3))

=
1

δ

(
ID +

1

δ
V V >

)−1
=

1

δ

[
ID −

1

δ
V

(
INC + V >

1

δ
V

)−1
V >

]
(Matrix inversion lemma)

=
1

δ

[
ID − V

(
δINC + V >V

)−1
V >

]
(Gram matrix)

=
1

δ

[
ID − V

(
δINC + G̃

)−1
V >

]
. (S.25)

8δID can be replaced by other easy-to-invert matrices.

24

Under review as a conference paper at ICLR 2022

Inverse GGN-vector products require inversion of the damped Gram matrix as well as applications of
V ,V > for the transformations between Gram and parameter space.

Inverse block-diagonal GGN-vector products: Next, we replace the full GGN by its block
diagonal approximationG ≈ GBDA = diag(G(1),G(2), . . .) with

G(i) = V (i)V (i)> ∈ Rd
(i)×d(i)

and V (i) as in Equation (S.22). Then, inverse multiplication reduces to each block,

G−1BDA = diag
(
G(1)−1,G(2)−1, . . .

)
.

If again a damped Newton step is considered, we can reuse Equation (S.25) with the substitutions(
G, D,V ,V >, G̃

)
↔
(
G(i), d(i),V (i),V (i)>, G̃(i)

)
to apply the inverse and immediately discard the VIVIT factors: At backpropagation of layer T (i)

θ(i)

1. Compute V (i) using Equation (S.22).

2. Compute G̃(i) using Equation (S.23).

3. Compute
(
δINC + G̃(i)

)−1
.

4. Apply the inverse in Equation (S.25) with the above substitutions to the target vector.

5. Discard V (i), V (i)>, G̃(i), and
(
δINC + G̃(i)

)−1
. Proceed to layer i− 1.

Note that the above scheme should only be used for parameters that satisfy d(i) > NC, i.e.
dim(G(i)) > dim(G̃(i)). Low-dimensional parameters can be grouped with others to increase
their joint dimension, and to control the block structure ofGBDA.

25

