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ABSTRACT

Large-scale deep learning models with a pretraining-finetuning paradigm have led
to a surge of numerous task-specific models fine-tuned from a common pre-trained
model. Recently, several research efforts have been made on merging these large
models into a single multi-task model, particularly with simple arithmetic on pa-
rameters. Such merging methodology faces a central challenge: interference be-
tween model parameters fine-tuned on different tasks. Few recent works have fo-
cused on designing a new fine-tuning scheme that can lead to small parameter in-
terference, however at the cost of the performance of each task-specific fine-tuned
model and thereby limiting that of a merged model. To improve the performance
of a merged model, we note that a fine-tuning scheme should aim for (1) smaller
parameter interference and (2) better performance of each fine-tuned model on
the corresponding task. In this work, we aim to design a new fine-tuning objec-
tive function to work towards these two goals. In the course of this process, we
find such objective function to be strikingly similar to sharpness-aware minimiza-
tion (SAM) objective function, which aims to achieve generalization by finding
flat minima. Drawing upon our observation, we propose to fine-tune pre-trained
models via sharpness-aware minimization. The experimental and theoretical re-
sults showcase the effectiveness and orthogonality of our proposed approach, im-
proving performance upon various merging and fine-tuning methods. Our code is
available at https://github.com/baiklab/SAFT-Merge.

1 INTRODUCTION

Foundation model, a large deep learning model pre-trained on large-scale datasets, has shown great
advancement across a wide range of downstream tasks, after fine-tuning on each task (Achiam et al.,
2023; Saab et al., 2024; Ding et al., 2023). Recent successes of the pretraining-finetuning paradigm
have given rise to a burst of task-specific open-source models in communities, such as Hugging
Face. Diversity yet ready availability of large task-specific models have naturally elicited a question
from researchers: Can we combine these large models into one, while retaining the performance on
each task?

Traditionally, a single multi-task model is obtained by jointly training on data across all tasks (Caru-
ana, 1997; Crawshaw, 2020; Vandenhende et al., 2022). However, given the size of foundation
models and the number of tasks, joint training on all tasks incurs significant computational costs.
Motivated by the accessibility, variety, abundance, and common origin of task-specific models, sev-
eral research efforts have focused on merging multiple fine-tuned models into a single model via
simple arithmetic on parameters of these models, thereby removing the need for joint training (Il-
harco et al., 2023; Yadav et al., 2023; Yang et al., 2024b; Matena & Raffel, 2022; Jin et al., 2023;
Daheim et al., 2024; Li et al., 2023; Yang et al., 2024a). However, a central challenge remains:
parameters of different task-specific models interfere or conflict with each other, leading to the per-
formance degradation of a merged multi-task model on each task.

To bridge such performance gap, several works have tried to reduce the parameter interference
during the process of merging (Yadav et al., 2023; Jin et al., 2023; Yang et al., 2024b; Wang et al.,
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2024; Yu et al., 2024). Another line of works focuses on finding a new fine-tuning scheme that results
in task-specific models whose parameters have lower parameter interference (also often referred to as
better weight disentanglement with respect to model outputs) (Ortiz-Jimenez et al., 2023; Tang et al.,
2024; Jin et al., 2025) and thus less performance degradation after merging. Few studies (Wortsman
et al., 2022a; Ilharco et al., 2023; Wortsman et al., 2022b) suggest that the effectiveness of linear
arithmetic on parameters in the process of merging may be owed to the linearity of fine-tuning
process. Conversely, Ortiz-Jimenez et al. (2023) have refuted such hypothesis by showing that there
is a huge performance drop from the approximation of fine-tuned models with a linearized pre-
trained model. Another observation they make is that such post-hoc linearized models led to less
parameter interference. Based on this observation, few recent works Ortiz-Jimenez et al. (2023);
Tang et al. (2024); Jin et al. (2025) have tried to explicitly linearize fine-tuning processes in order to
induce weight disentanglement.

In this work, we note that we need to simultaneously work towards two goals for effective model
merging: (1) reducing parameter interference between fine-tuned models while (2) maintaining the
performance of task-specific fine-tuned models on respective datasets. Therefore, during fine-tuning
process, we aim to directly optimize for both performance on each task and weight disentanglement
with respect to performance. In the course of designing a fine-tuning objective function that aligns
with our goals, we find striking resemblances between our goals and sharpness-aware minimization
(SAM) (Foret et al., 2021), which aims for better generalization by finding flat minima via mini-
mization of both loss values and loss sharpness. In particular, we find the similarities between the
minimization of both loss values and loss sharpness in SAM and joint optimization for performance
and weight disentanglement of fine-tuned models in our goal.

Drawing upon our observations, we propose to obtain task-specific models from pre-trained mod-
els via sharpness-aware fine-tuning (SAFT), in order to achieve better performance on each task,
lower parameter interference, and thus better overall performance of a merged multi-task model.
Our extensive experimental results demonstrate that our proposal greatly improves the overall per-
formance of a merged model. The effectiveness of our proposed method is owed to achieving better
performance of each task-specific model and less performance gap between task-specific models
and a merged model. We further highlight the generalizability and orthogonality of our approach
by demonstrating performance improvements when applied together with various merging methods
and fine-tuning methods for model merging.

2 RELATED WORKS

Model merging. The recent emergence of large foundation models and pretraining-finetuning
paradigm has motivated researchers to explore ways of merging multiple task-specific models into
a single multi-task model without re-training. Model merging, the merging of models with sim-
ple arithmetic on parameters, has garnered a significant amount of attention for its flexibility and
simplicity. However, parameters of different task-specific models may interfere with each other dur-
ing merging process, resulting in performance degradation on each task, compared to task-specific
models. To address the parameter interference issue, researchers focus on either designing a merg-
ing process (Utans, 1996; Ilharco et al., 2023; Yadav et al., 2023) or designing a fine-tuning process
to mitigate the parameter interference. Initiated with simple averaging (Utans, 1996; Shoemake,
1985), research works on merging process focus on representing task-specific models as task vec-
tors for easier manipulation of knowledge (Ilharco et al., 2023), or weighting parameters (Matena &
Raffel, 2022; Jin et al., 2023; Yang et al., 2024b) or selecting parameters (Yadav et al., 2023; Wang
et al., 2024; Yu et al., 2024) according to the estimated importance of each parameter with respect
to given tasks. In parallel, if task-specific model parameters have less interference with each other
to begin with, the effectiveness of model merging can be amplified. As such, few recent works have
focused on designing a fine-tuning process such that resulting fine-tuned model parameters will have
less interference and result in less performance gap between a merged model and task-specific mod-
els. Ortiz-Jimenez et al. (2023) show that linearized fine-tuning (fine-tuning in the space tangent to
pre-trained initialization) leads to less interference (specifically better weight disentanglement with
respect to model outputs), aspring other linearized fine-tuning methods (Jin et al., 2025; Tang et al.,
2024).
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Sharpness-aware minimization (SAM). Foret et al. (2021) introduce a new optimization objec-
tive function that minimizes both loss and loss sharpness to seek flat loss minima that may lead
to better generalization performance. SAM defines loss sharpness as the maximum loss difference
measured at current parameters and nearby parameters (obtained by perturbing current parameters).
Several follow-up works have strived to improve SAM via improving perturbation methods (Mi
et al., 2022; Kwon et al., 2021), improving gradient (Wang et al., 2023; Zhao et al., 2022), or
combining with other flatness-aware optimizers (Cha et al., 2021; Kaddour et al., 2022) for better
generalization. While previous studies have primarily focused on single-task learning, Phan et al.
(2022) incorporate SAM into joint multi-task training as a regularization technique for multi-task
learning. We note that our method and Phan et al. (2022) target two different scenarios. Phan et al.
(2022) target a traditional multi-task learning scenario, where the training is performed on all tasks
jointly. By contrast, our work tackles multi-task model merging, where the goal is to merge different
task-specific models, each of which is independently fine-tuned from a common pre-trained model
without the knowledge of other tasks. This approach eliminates the need for joint training on all
tasks at the same time and avoids retraining from scratch when new tasks are introduced. In multi-
task model merging, the lack of knowledge of other tasks also presents several challenges, such as
parameter interference between different task-specific models that cause degradation of single-task
performance after merging.

In this work, we introduce a new objective function for single-task fine-tuning aimed for model
merging, from which we present a new insight that draws connections between the objective of
multi-task model merging and that of sharpness-aware minimization (SAM). Furthermore, we the-
oretically (in Appendix D) and empirically show that, sharpness-aware fine-tuning can reduce pa-
rameter interference, even without the knowledge of other tasks during fine-tuning.

3 BACKGROUND

Sharpness-aware minimization (SAM). To achieve better generalization, SAM (Foret et al., 2021)
seeks for wider minima by minimizing both loss value and loss sharpness during optimization,
where the loss sharpness is formulated as a difference between a loss at the current parameters and
the maximum loss value at nearby parameter values:

min
θ

[
max

ϵ:∥ϵ∥2≤ρ
L(θ + ϵ;D)− L(θ;D)︸ ︷︷ ︸

loss sharpness

]
+ L(θ;D)︸ ︷︷ ︸

loss

, (1)

where ϵ is a perturbation vector which is bounded above by a predefined ρ that controls the radius
of the neighborhood; and θ are network parameters to be optimized for a given loss function L
over a dataset D. For efficiency, Foret et al. (2021) approximate the inner maximization via Taylor
approximation. Then, along with canceling identical terms L(θ;D) with opposite signs, the original
optimization is reduced to

min
θ

L(θ + ϵ̂;D) where ϵ̂ ≜ ρ
∇θL(θ;D)

∥∇θL(θ;D)∥
. (2)

The perturbations within the same neighborhood radius for all parameters may impact each param-
eter differently, especially if their scales differ by several factors. To take such varying scales of
parameters into account, Adaptive SAM (ASAM) (Kwon et al., 2021) proposes to scale the pertur-
bation vector ϵ according to the scale of each parameter as ϵ̂ASAM ≜ ρθ2∇θL(θ;D)

∥∇θL(θ;D)∥ . Adjusting the
scale of perturbations according that of parameters can be even more effective in large foundation
models with the pretraining-finetuning paradigm, since large pre-trained models likely have a large
number of parameters of different scales after training on large-scale datasets.

Problem setting. In the pretraining-finetuning paradigm, there exists a large pre-trained model f :
X×Θ → Y , parameterized by trained parameters θ0 ∈ Θ, that is in turn fine-tuned to T downstream
tasks. Each downstream task, indexed by t, is accompanied with a dataset D(t) = {(x(t)

i , y
(t)
i )}Nt

i=1,
where x

(t)
i ∈ X(t) ⊆ X is an input with a corresponding label y(t)i ∈ Y (t) ⊆ Y . Employing a

standard loss function (e.g., cross-entropy loss for classification) and an optimizer (e.g., SGD), fine-
tuning a pre-trained model fθ0 to each downstream task t will lead to a task-specific model fθt with
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its parameters θt:
θt = argmin

θ
L(θ;D(t)). (3)

Task arithmetic. To merge models into a single model by performing an arithmetic on model
parameters, Ilharco et al. (2023) have introduced the concept of task vector, which is essentially a
vector pointing to task-specific parameters θt from pre-trained model parameters θ0, obtained by
taking a difference between them: τt = θt − θ0. Ilharco et al. (2023) note that a task vector τt
can be considered as the representation of the knowledge learned for a task t. As such, they claim
that the knowledge of each task can be manipulated by a simple arithmetic on pre-trained model
parameters: θ0 + αtθt, where αt > 0 will add the knowledge of task t while αt < 0 will result in
forgetting the knowledge of task t, while |αt| controls the extent of learning/forgetting. Using these
task vectors τt with corresponding task coefficients αt, task-specific models can be merged into a
merged multi-task model, parameterized by θmerge as follows:

θmerge = θ0 +

T∑
t=1

αtτt. (4)

4 MITIGATING PARAMETER INTERFERENCE VIA SHARPNESS-AWARE
FINE-TUNING

Since a merged model is formed by simply performing linear arithmetic on task vectors, there is a
high chance for interference among tasks (Ilharco et al., 2023). Such interference leads to the perfor-
mance degradation on downstream tasks after merging. Some works focus on reducing interference
during merging process, which is a challenging task as fine-tuned model parameters are fixed. On
the other hand, few recent works propose to modify a fine-tuning process that results in task-specific
models whose parameters have less interference with each other. In particular, they show that fine-
tuning a (partially) linearized model or only its linear layers results in less interference. However,
such linearization of fine-tuning process results in the performance degradation of each task-specific
model, limiting the overall performance of a merged model.

In this work, we claim that we need to achieve both (1) less performance gap between a merged
model and each fine-tuned model (i.e., less parameter interference) and (2) generalization per-
formance of each fine-tuned model on each respective dataset. As such, we aim to design a new
objective function for fine-tuning to achieve these two objectives:

θt = argmin
θ

L(θmerge(θ); D(t))− L(θ; D(t))︸ ︷︷ ︸
Objective (1)

+L(θ; D(t))︸ ︷︷ ︸
Objective (2)

, (5)

where θmerge(θ) is to demonstrate that θmerge changes as θ is optimized, while considering parame-
ters for other tasks to be fixed. While this objective function already looks similar to the SAM objec-
tive function in Equation 1, after some simplifications (deriviations are delineated in Appendix B),
we get the final objective function as follows:

θt = argmin
θ

L(θ +
∑
s̸=t

αsτs + (αt − 1)τ ; D(t)), (6)

where
∑

s̸=t αsτs + (αt − 1)τ represents the parameter offsets a model merging process would
introduce to the parameters of a task-specific model for a task t. Hence,

∑
s̸=t αsτs + (αt − 1)τ

can be considered as perturbations that would cause parameter interference during model merging,
from the perspective of each task-specific model. However, we do not assume access to other tasks
while fine-tuning on each task, as each task-specific model is independently trained. Since other
tasks are unknown (and thus

∑
s̸=t αsτs is unknown), we consider

∑
s̸=t αsτs + (αt − 1)τ to be

random perturbations. Furthermore, because the perturbation
∑

s̸=t αsτs + (αt − 1)τ depends on
τ = θ−θ0 and is thus varying during training, we use ASAM that models ϵ̂ as parameter-dependent
perturbation. In other words, we use ϵ̂ASAM as a surrogate of

∑
s̸=t αsτs+(αt−1)τ , approximating

our objective function for fine-tuning aimed for model merging (Equation 5) as

min
θ

L(θ + ϵ̂;D) where ϵ̂ = ρ
θ2∇θL(θ;D)

∥∇θL(θ;D)∥
. (7)
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From our perspective described above, we can consider parameter interference to be caused by pa-
rameter perturbations

∑
s ̸=t αsτs + (αt − 1)τ that would be introduced during model merging, the

information of which is however not available during fine-tuning for each task. The perturbations
will bring a model to a new location in the loss landscape, away from the found local minimum.
If the region around the local minimum is not flat enough, the new location (i.e., merged model
parameters) brought by perturbations will most likely have a higher loss, resulting in a large per-
formance gap between a merged model and a task-specific model. In other words, to minimize the
interference caused by parameter perturbations, it is essential to identify flat minima. Flat minima
can effectively prevent the loss from increasing after parameter perturbations (e.g., model merging).
Thus, we argue that finding flat minima (or equivalently, minimizing sharpness) via sharpness-aware
fine-tuning (SAFT) can greatly reduce parameter interference.

5 EMPIRICAL AND THEORETICAL ANALYSIS

Figure 1: Weight disentanglement visualization of two task-specific models across two tasks.
Each pixel in the heatmap corresponds to the weight disentanglement error ξ(α1, α2) between a
two-task-merged model, parameterized by θmerge = θ0+α1τ1+α2τ2, and two task-specific models,
parameterized by θ0 +α1τ1 and θ0 +α2τ2, evaluated on task 1 and task 2. We use CLIP ViT-B/32
on EuroSAT-SUN397, DTD-EuroSAT, GTSRB-SVHN, and DTD-MNIST task pairs to plot these
visualizations. The red box highlights the search space used to find the optimal task coefficients
{α1, α2} for task arithmetic.

In this section, we experimentally validate our argument by showing that our proposal, SAFT, leads
to better weight disentanglement (Figure 1 and Figure 2), better cross-task linearity (Figure 3),
and better joint-task loss linearity (Figure 4 and Figure 5), which are the signs of less parameter
interference. Better performance by our proposed method, compared to standard SGD and other
fine-tuning schemes specifically designed for model merging, further underlines the effectiveness of
SAFT in reducing parameter interference. Then, we also theoretically show that the capability of
SAFT to reduce the dominant Hessian eigenvalues induces joint-task loss linearity (the linearity of
loss on all joint tasks).

Weight disentanglement. Ortiz-Jimenez et al. (2023) argue that for model merging via task arith-
metic to be effective, weight disentanglement (a task vector for one task not affecting the outputs
of task-specific model on other tasks) is a necessary condition. In this work, we show that SAFT
indeed achieves better weight disentanglement, in comparison to a standard objective function. The
weight disentanglement is achieved when the parameter updates with the task vector for the task t
(i.e., τt) impart a localized influence on the output of a model only when processing an input from
the task t, without impacting the output of the model when inputs from other tasks are processed.
Ortiz-Jimenez et al. (2023) formally express the localized influence of task vectors on the input
space as

f (x;θmerge) = f

(
x;θ0 +

T∑
s=1

αsτs

)
= f (x;θ0 + αtτt) when x ∈ X(t). (8)
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Figure 2: Weight disentanglement visualization of eight-task-merged models across two tasks.
Each pixel in the heatmap corresponds to the disentanglement error ξ(α1, α2) between an eight-
task-merged model, parameterized by θmerge = θ0 + α1τ1 + α2τ2 +

∑
s/∈{1,2} αsτs, and each

task-specific model, evaluated on task 1 and 2. To visualize the landscape of the merged multi-
task model on a 2D heatmap, we adjust only two task coefficients corresponding to the evaluation
tasks. The models and evaluation task pairs used for the visualization are the same as those used in
Figure 1. The meaning of the red box is the same as in Figure 1.

To evaluate how well weight disentanglement is satisfied, Ortiz-Jimenez et al. (2023) quantify dis-
entanglement error as the discrepancy between the output of a merged model and t-th task-specific
model on input data of t-th task. Lower disentanglement errors imply that each task contributes ap-
propriately without adversely affecting others. Following the experimental settings by Ortiz-Jimenez
et al. (2023), we first evaluate weight disentanglement during the merging of two tasks:

ξ(α1, α2) =

2∑
t=1

Ex∈X(t) [dist (f(x;θ0 + αtτt), f(x;θ0 + α1τ1 + α2τ2))] , (9)

where ξ(α1, α2) is the disentanglement error with respect to two given tasks and visualized in Fig-
ure 1. We further stress-test and evaluate the disentanglement error while considering merging of
all task-specific models (T = 8 in this work), thereby evaluating how well an actual merged model
achieves weight disentanglement. However, it is difficult to visualize if all T task coefficients are
adjusted. In this work, for ease of visualization, we adjust task-coefficients of two tasks while fixing
other task coefficients, while still considering a merged model with all task vectors:

ξall(α1, α2) =

2∑
t=1

Ex∈X(t)

dist

f(x;θ0 + αtτt), f(x;θ0 + α1τ1 + α2τ2 +
∑

s/∈{1,2}

αsτs)

 , (10)

where ξall(α1, α2) represents the total disentanglement error across all tasks (visualized in Figure 2,
and dist(·, ·) is a distance metric measuring the divergence between the outputs of the task-specific
model and the merged model. Small ξ(α1, α2) or ξall(α1, α2) implies that the merged model pa-
rameter θmerge better reflects the individual contribution of each task, signifying reduced parameter
interference. Indeed, the visualizations of weight disentanglement when considering two tasks in
Figure 1 and all tasks (T = 8) in Figure 2 demonstrate the effectiveness of our method in achiev-
ing better weight disentanglement. In particular, we note that the weight disentanglement error of
the model merging with standard fine-tuning optimization increases significantly when considering
all tasks in model merging, compared to considering two tasks. On the other hand, our proposal,
SAFT, reduces the weight disentanglement even when considering all tasks, further highlighting the
effectiveness of our method in model merging.

Cross-task linearity. Cross-Task Linearity (CTL) (Zhou et al., 2024) is a property that ensures
the linear separability of task influences on the layer outputs across all layers of the network. To
satisfy CTL, for every layer ℓ, the layer output of a merged model should be approximately equal
to the combination of the layer outputs of individual task-specific models scaled by their respective
coefficients. Formally, Zhou et al. (2024) define CTL condition as:

f (ℓ) (x;λθs + (1− λ)θt) ≈ λf (ℓ)(x;θs) + (1− λ)f (ℓ)(x;θt), (11)
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Figure 3: Verification of CTL between the merged model and task-specific models. We compare
ED(s)∪D(t) [1 − cos(ℓ)(x; 2λτs, 2λτt)] between sharpness-aware fine-tuning and SGD. The values
for the last six blocks are evaluated on the two task pairs DTD-MNIST and EuroSAT-SUN397. We
set the scaling factor λ to 0.3.

where λ ∈ R is a scaling factor; x ∈ X(s) ∪ X(t) is an input from either task s or t; θs,θt are
parameters of task-specific models fine-tuned on task s and t respectively; and f (ℓ) (x;θ) represents
the response (or a feature) of ℓ-th layer of a network f for the given input x. The cross-task linearity
at each layer implies that the influence of one task on another is minimal, thereby facilitating effec-
tive weight disentanglement. Zhou et al. (2024) demonstrate that satisfying CTL condition leads to
reducing the disentanglement error ξ(α). To evaluate whether CTL is satisfied, the following cosine
similarity metric is used:

cos(ℓ)(x; 2λτs, 2λτt)

= cos

[
f (ℓ)(x;θ0 + λ(τs + τt)),

1

2
f (ℓ)(x;θ0 + 2λτs) +

1

2
f (ℓ)(x;θ0 + 2λτt)

]
.

(12)

The metric measures the cosine similarity between the layer output of a merged model and the
averaged layer outputs of the task-specific models. Following the settings in (Zhou et al., 2024), we
use the metric ED[1 − cos(ℓ)(x; 2λτs, 2λτt)] to evaluate how well CTL is satisfied, where smaller
values of ED[1− cos(ℓ)(x; 2λτs, 2λτt)] indicate stronger CTL. Since satisfying CTL leads to better
weight disentanglement, smaller values of ED[1 − cos(ℓ)(x; 2λτs, 2λτt)] should result in lower
disentanglement error ξ(α1, α2), as noted by Zhou et al. (2024). Figure 3 shows that our method
has lower ED[1 − cos(ℓ)(x; 2λτs, 2λτt)] in comparison to SGD, demonstrating that our method
results in not just better weight disentanglement, but also better cross-task linearity.

Joint-task loss landscape. We empirically demonstrate that our method reduces parameter inter-
ference by finding flatter minima across the joint tasks. Figure 4 shows the joint-task loss landscape
visualizations for two task-specific models trained on corresponding two tasks. We observe that our
method allows models to reach flatter minima across the joint tasks compared to SGD, particularly
around the boundaries of the task coefficients search space in task arithmetic. Our method increases
the likelihood of finding a merged model connected to each task-specific model along a low-loss
path, which indicates a smaller performance gap between the merged model and the task-specific
models. Consequently, our proposal makes it easier to find a merged model with reduced parameter
interference, compared to SGD.

Yet, the tendencies observed with two tasks may not generalize in the case of more tasks, as the
chance and extent of interference increases with the number of tasks (Yadav et al., 2023). There-
fore, we also visualize the loss landscape of the multi-task model built by merging all eight tasks,
parameterized by θmerge = θ0+

∑8
t=1 αtτt. To visualize the loss landscape of an eight-task-merged

model on a 2D heatmap, we vary only the coefficients of two randomly chosen tasks.

Figure 5 shows the loss landscape of a multi-task model obtained by merging the parameters of eight
task-specific models. Compared to Figure 4, the minima in the landscape shrink in every case as
the number of task-specific models to be merged increases. However, while the minima found by
SGD shrink significantly, the minima found by our method remain to be flat and wide in all cases.
This suggests that our method maintains the ability to reduce parameter interference and preserve
the performance of the merged model, even when more task-specific models are merged.

Theoretical results. Here, we further validate our proposal by theoretically demonstrating that
SAFT leads to the loss of a merged model and task-specific models being connected along a linear
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Figure 4: Joint-task loss landscape visualization of two task-specific models across two tasks.
Each pixel in the heatmap corresponds to the loss values L(θmerge;D(1)) + L(θmerge;D(2)) of the
two-task-merged model, parameterized by θmerge = θ0 + α1τ1 + α2τ2, evaluated on task 1 and
task 2. The setting of the model, task pairs, and red box is the same as in Figure 1. We use CLIP
ViT-B/32 on the EuroSAT-SUN397 and DTD-MNIST task pairs to plot these visualizations. The red
box highlights the search space used to find the optimal task coefficients {α1, α2} of task arithmetic.

Figure 5: Joint-task loss landscape visualization of eight-task-merged models across two tasks.
Each pixel in the heatmap corresponds to the loss values L(θmerge;D(1)) + L(θmerge;D(2)) of the
eight-task-merged model, parameterized by θmerge = θ0 +

∑8
t=1 αtτt, evaluated on tasks 1 and 2.

We adjust only the two task coefficients corresponding to the evaluation tasks to visualize the weight
disentanglement on a 2D map, as in Figure 2. The setting of the model, task pairs, and red box are
the same as in Figure 4. We use the same models and task pairs as illustrated in Figure 4.

path on the loss landscape over all tasks. Formally, we define the loss over all tasks as joint-task loss
and models being connected along a linear path on the joint-task loss landscape as joint-task loss
linearity as follows:
Definition 1 (Joint-task loss). Given a joint-task dataset D = Ds∪Dt and a model with parameters
θ, we define Joint-Task Loss, denoted as LJTL(θ;D), as:

LJTL(θ;D) = L(θ;Ds) + L(θ;Dt), (13)

where L(θ;Ds) and L(θ;Dt) denote the losses incurred by a model, parameterized by θ on datasets
Ds and Dt, respectively.
Definition 2 (Joint-task loss linearity). Joint-task loss linearity (JTL linearity) describes the lin-
ear relationship between the joint-task loss of an interpolated model and the weighted sum of the
individual joint-task losses of task-specific models. Specifically, given models, parameterized by θs

and θt fine-tuned on respective tasks with datasets Ds and Dt, we say JTL linearity holds over a
joint-task dataset D = Ds ∪ Dt if

LJTL(αθs + (1− α)θt;D) ≈ αLJTL(θs;D) + (1− α)LJTL(θt;D), (14)

where α ∈ [0, 1] is a scalar.
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Theorem 1 (SAFT induces joint-task loss linearity). If models, parameterized by θs and θt, are
obtained by fine-tuning from a common pre-trained model via SAFT on their respective datasets, the
models better satisfy the joint-task loss linearity. A proof is relegated to Appendix D due to space
constraints.

Joint-task loss linearity induced by SAFT implies that SAFT leads to a merged model with less
performance degradation in comparison to task-specific models on the joint task, thus implying that
models fine-tuned by our method experience less parameter interference during the process of model
merging.

6 EXPERIMENTS

In this section, following the settings from Ortiz-Jimenez et al. (2023), we conduct experiments on
diverse tasks to demonstrate the effectiveness of our proposal, sharpness-aware fine-tuning (SAFT),
in improving the overall performance of a merged model. We compare against three fine-tuning ap-
proaches: SGD, linearized fine-tuning in the tangent space (FTTS) (Ortiz-Jimenez et al., 2023), and
fine-tuning linear layers only (FTLO) (Jin et al., 2025). We also validate the effectiveness, applica-
bility, and generalizability of SAFT by assessing its performance in combination with three different
model merging methods: weight averaging, task arithmetic (Ilharco et al., 2023), and TIES (Yadav
et al., 2023).

6.1 TRAINING SETUP

Following the same training protocol outlined in Ilharco et al. (2022), we fine-tune two CLIP (Rad-
ford et al., 2021) models: (a) ViT-B/32 and (b) ViT-B/16. Our experiments are conducted across
eight diverse datasets: (1) Cars (Krause et al., 2013), (2) DTD (Cimpoi et al., 2014), (3) Eu-
roSAT (Helber et al., 2019), (4) GTSRB (Stallkamp et al., 2011), (5) MNIST (Deng, 2012), (6)
RESISC45 (Cheng et al., 2017), (7) SUN397 (Xiao et al., 2016), (8) SVHN (Netzer et al., 2011).
All fine-tuning processes begin from the same CLIP pre-trained checkpoint obtained from the
open clip (Radford et al., 2021) repository. We fine-tune each model for 8000 iterations with
a batch size of 128 and a learning rate of 10−5 for all backbones and all fine-tuning methods. The
learning rate schedule follows a cosine annealing approach with 500 warm-up steps, and optimiza-
tion is performed using the AdamW (Loshchilov & Hutter, 2019). Consistent with Ilharco et al.
(2022), we freeze the weights of the classification layer derived from encoding a standard set of
zero-shot template prompts for each dataset. This strategy ensures that no additional learnable pa-
rameters are introduced during fine-tuning and does not compromise model accuracy. For more
experimental details, please refer to Appendix A.

6.2 MAIN RESULTS

We evaluate the effectiveness of SAFT in closing the performance gap between a merged model
and each task-specific models, in comparison to other three fine-tuning approaches. Table 1 shows
that SAFT achieves the higher absolute and normalized accuracies in every case, compared to other
fine-tuning methods. Normalized accuracy is defined as the absolute accuracy divided by the cor-
responding accuracy of the fine-tuned task-specific model, evaluating the performance gap between
a merged model and task-specific models. These results suggest that SAFT not only improves per-
formance in downstream tasks but also narrows the performance gap between the merged model
and fine-tuned models, improving the overall performance. Moreover, SAFT can be used together
with other fine-tuning methods (FTTS (Ortiz-Jimenez et al., 2023) and FTLO (Jin et al., 2025)),
enhancing the performance in multi-task settings during model merging, demonstrating its gener-
alizability and applicability. In particular, FTTS (Ortiz-Jimenez et al., 2023) and FTLO (Jin et al.,
2025) demonstrate better multi-task performance compared to SGD, as these fine-tuning methods
reduce interference between tasks by encouraging weight disentanglement (Malladi et al., 2023;
Ortiz-Jimenez et al., 2023). Thus, the performance improvement brought by SAFT on top of these
fine-tuning methods demonstrates the orthogonality of our proposal.

In Table 2, our method is shown to bring consistent performance improvement across diverse model
merging methods and image encoder model backbones. Notably, our method brings performance
improvement when used together with both weight averaging and task arithmetic. Task arithmetic
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Table 1: Multi-task performance across different fine-tuning methods. We report the average
absolute and normalized accuracies for three fine-tuning baselines: SGD, FTTS, and FTLO. Results
are shown for three fine-tuning methods, grouped by whether SAFT-ASAM is applied. ViT-B/32 is
used as the image encoder of CLIP, with task arithmetic as the model merging method in every case
across eight tasks.

Fine-tuning method (→)
SGD FTTS FTLO

Abs. Norm. Abs. Norm. Abs. Norm.

w/o SAFT-ASAM 68.23 75.47 78.35 86.83 75.93 85.74
w/ SAFT-ASAM (Ours) 69.45 76.32 79.38 87.72 77.49 88.77

Table 2: Multi-task performance across different model merging methods and image encoder
models. We report the average absolute and normalized accuracies for three model merging meth-
ods: weight averaging, task arithmetic, and TIES merging. We also compare the performance of
two different models used as the image encoder of CLIP: ViT-B/32 and ViT-B/16. All cases are
fine-tuned using SGD and evaluated across eight tasks.

Merging method (→)
Weight averaging Task arithmetic TIES merging
Abs. Norm. Abs. Norm. Abs. Norm.

ViT-B/32

SGD 65.72 72.91 68.23 75.47 74.57 82.29
SAFT-ASAM (Ours) 66.76 73.62 69.45 76.32 75.45 82.86

ViT-B/16

SGD 71.58 77.37 73.40 79.31 77.94 84.04
SAFT-ASAM (Ours) 71.84 77.53 76.77 82.50 80.14 86.23

searches for the optimal task coefficient within a given search space, while weight averaging is a
specific case of task arithmetic, where αt =

1
T . This suggests that our method finds flatter minima

that covers the task coefficients search space in task arithmetic compared to SGD. Moreover, SAFT
also performs better in the case of TIES merging, indicating that interference mitigation by our
method complements the parameter interference mitigation achieved by TIES merging.

7 CONCLUSION

In this work, we draw connections between two research fields of machine learning: sharpness-
aware minimization and multi-task model merging. Particularly, the connections are drawn from
the formulation of two objectives of model merging: (1) reducing parameter interference between
task-specific models and (2) achieving better generalization of each task-specific model. Building
upon the objectives of model merging, we derive a new objective function for fine-tuning, from
which we find similarities with sharpness-aware minimization. Upon observation, we propose to
approximate our newly derived fine-tuning objective function with sharpness-aware minimization:
sharpness-aware fine-tuning (SAFT). Experimental and theoretical results demonstrate that SAFT
indeed results in less performance interference and better performance of a merged model, even
when applied together with other merging and fine-tuning methods designed for model merging.
Motivated by the effectiveness and applicability of our proposal, we hope that this work encourages
further research on investigating the relationship between SAFT and model merging, opening a new
research avenue.
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A EXPERIMENTAL DETAILS

A.1 FINE-TUNING BASELINES

We compare the following three fine-tuning baselines with and without SAFT:

(1) SGD: This refers to standard fine-tuning that uses only an optimizer such as AdamW (Loshchilov
& Hutter, 2019).

(2) Fine-Tuning in the Tangent Space (FTTS) (Ortiz-Jimenez et al., 2023): This fine-tunes the
model in the tangent space at its pre-trained initialization. It achieves this by linearizing the model
using a first-order Taylor expansion flin(θ;D) = f(θ0;D)+ (θ−θ0)

⊤∇f(θ0;D), where θ0 repre-
sents the parameters of the pre-trained model and D is the training dataset. The method freezes θ0
and updates only θ.

(3) Fine-Tuning Linear Layers Only (FTLO) (Jin et al., 2025): This exclusively fine-tunes the
linear layers within the attention module. Therefore, this method can only be applied to model
architectures that include attention modules such as Transformer (Vaswani et al., 2017).

We utilize ASAM (Kwon et al., 2021) as a default SAFT method in every experiments, since it finds
minima adaptively by considering correlation between generalization gap and sharpness. We set the
ρ value of ASAM to 0.5, following the default setup outlined in ASAM, along with all other ASAM
hyperparameters.

A.2 MERGING METHODS

We merge the models that achieve the best performance for each corresponding task. These best
models are selected based on their performance on a validation set split, which is split from the
training set at a 0.1 ratio, as specified in Ilharco et al. (2023).

We use the following model merging methods as baselines:

(1) Weight averaging: This merges fine-tuned models by averaging their parameters element-wise,
denoted as θmerge =

1
T

∑T
t=1 θt, where θt represents the fine-tuned parameters for each correspond-

ing downstream task, T is the number of downstream tasks being merged.

(2) Task arithmetic (Ilharco et al., 2023): This method calculates task vectors τt = θt − θ0 for
each downstream task t, where θt represents the fine-tuned parameters for task t and θ0 represents
the pre-trained parameters. A linear combination of these task vectors is then added to the pre-
trained parameters, denoted as θmerge = θ0 +

∑T
t=1 αtτt, where αt is a task coefficient that scales

the corresponding task vector. This method generalizes the weight averaging when αt = 1
T for

t = 1, 2, . . . , T .

Since the search space for αt becomes too large as the number of tasks increases, we set the task
coefficients to be the same for all tasks and search for the optimal coefficient within the range
[0.1, 0.3, 0.5, 0.7, 0.9, 1.0] using the validation set of each task.

(3) TIES merging (Yadav et al., 2023): This method mitigates parameter interference before merg-
ing models. First, it trims parameters changed that change minimally during fine-tuning, as these
small changes in each model can become more pronounced after element-wise parameter merging.
Second, it resolves parameter interference due to sign conflicts by determining the sign of each
parameter through a majority election before merging the models.

We apply TIES merging to task arithmetic. To find the optimal merged model, we search for the
task coefficients in task arithmetic within the range [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] and the percentile of
task vectors to be pruned to zero within [0.7, 0.8, 0.9], using the validation set for each task.

A.3 VISUALIZATION SETUP

We produce the joint-task loss landscape and disentanglement error under two distinct settings: (1)
merging two task-specific models across two tasks, and (2) merging all eight task-specific models
across two tasks.
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1. Two task-specific models across two tasks: In the first setting, we parameterize the merged
model as:

θmerge = θ0 + α1τ1 + α2τ2,

where τ1 and τ2 represent the parameters of models fine-tuned on tasks 1 and 2, respec-
tively.

2. The eight-task-merged model across two Tasks: In the second setting, we parameterize the
merged model as:

θmerge = θ0 + α1τ1 + α2τ2 +
∑

s/∈{1,2}

αsτs,

with α = 0.3, where τs denotes the parameters of the additional six tasks.

For both settings, we use (α1, α2) pairs spanning from −0.5 to 1.5 with 21 evenly spaced points
along each axis, resulting in a 21 × 21 grid. For each (α1, α2) task coefficient pair on the grid,
we compute the disentanglement error ξ(α1, α2) and visualize the error values using contour plots
to identify regions where the weight disentanglement is stronger. Since task coefficients are real
numbers, we utilize contour plots to effectively visualize the variations in loss landscape and disen-
tanglement error across the continuous (α1, α2) parameter space.

B DERIVATION OF EQUATION 6

We start with simplifying Equation 5, which is the objective function that incorporates the goals of
model merging:

θt = argmin
θ

L(θmerge(θ); D(t))− L(θ; D(t)) + L(θ; D(t))

= argmin
θ

L(θmerge(θ); D(t)).

Here, we consider task coefficients {αs} and other task vectors {τs}s̸=t to be fixed. Since then,
instead of θmerge = θ0+

∑T
s=1 αsτs in Equation 4, we express θmerge(θ) as θ0+

∑
s̸=t αsτs+αtτ ,

where τ = θ − θ0, since θt has not been found yet during the process of optimizing θ for task t.
We now have

θt = argmin
θ

L(θ0 +
∑
s ̸=t

αsτs + αtτ ; D(t))

= argmin
θ

L(θ0 + τ − τ +
∑
s ̸=t

αsτs + αtτ ; D(t))

= argmin
θ

L(θ − τ +
∑
s̸=t

αsτs + αtτ ; D(t)) ∵ θ = θ0 + τ

= argmin
θ

L(θ +
∑
s ̸=t

αsτs + (αt − 1)τ ; D(t)).

C ADDITIONAL RESULTS

C.1 EFFECT OF THE NUMBER OF STEPS DURING FINE-TUNING

SAFT enables continued accuracy gains through longer training without the risk of overfitting.
Therefore, we conduct an ablation study to evaluate whether SAFT can enhance the performance of
a single downstream task by doubling the number of training steps. In this study, we employ ASAM.
As shown in Table C1, it appears that SGD converges, as performance plateaus after 2000 steps. In
contrast, SAFT continues to consistently improve performance up to 8000 steps.

C.2 FINE-TUNING PERFORMANCE OF SAFT VARIANTS

To empirically justify our choice of SAFT variants for our main experiments, we evaluate various the
SAFT variants on the same datasets (i.e., eight vision tasks) as our main experiments. In particular,
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Table C1: Average accuracies of fine-tuned ViT-B/32 over steps across the eight tasks.

Fine-tuning steps 2000 4000 8000

SGD 90.37 90.21 90.48
SAFT-ASAM 90.50 90.84 91.03

we investigate how the performance of a merged model changes when applying SAM (Foret et al.,
2021), ASAM (Kwon et al., 2021), Friendly SAM (Li et al., 2024), WA-SAM (Kaddour et al., 2022),
SAGM (Wang et al., 2023), PGN (Zhao et al., 2022), SSAM-F (Mi et al., 2022), and SSAM-D (Mi
et al., 2022), as shown in Table C2. The results demonstrate that ASAM brings better performance
improvement, compared to SAM and other SAFT variants. As a result, ASAM shows the best
single-task performance among other variants. Therefore, we use ASAM as a default SAFT variant
in all experiments.

Table C2: Average accuracy of fine-tuned ViT-B/32 over steps across various SAM variants and
fine-tuning methods.

SAFT variants Accuracy

SGD 90.45
SAFT-SAM 90.16
SAFT-ASAM 91.29
SAFT-Friendly SAM 90.29
SAFT-WA-SAM 91.06
SAFT-SAGM 90.96
SAFT-PGN 90.90
SAFT-SSAM-F 90.80
SAFT-SSAM-D 90.60

C.3 CROSS-TASK LINEARITY (CTL)

We provide additional results that demonstrate that SAFT satisfies cross-task linearity on other pairs
of datasets in Figure C1. We utilize ViT-B/32 as the image encoder to visualize this figure, just the
same as Figure 3. The results show that our method achieves lower CTL scores across all layers for
various task combinations. This suggests that our approach better satisfies CTL for a broader range
of data, implying improved weight disentanglement and task arithmetic properties. Consequently,
it can be concluded that our method reduces parameter interference and minimizes the performance
gap.

C.4 LOSS BETWEEN A MERGED MODEL AND TASK-SPECIFIC MODELS

To demonstrate that SAFT indeed reduces the loss sharpness and the performance gap between a
merged model and task-specific models, we visualize loss changes as we traverse along a linear path
between a merged model and a task-specific model on a given task in Figure C2. Sharpness-aware
fine-tuning indeed results in reduced loss barrier, leading to less performance gap as exhibited in
less weight disentanglement error, better cross-task linearity, and better overall performance in our
main paper.

C.5 ADDITIONAL RESULTS OF FINE-TUNING BASELINES AND MODEL MERGING METHODS

Following Section 6.2, we conduct experiments on all combinations of fine-tuning baselines (SGD,
FTTS, FTLO) and model merging methods (weight averaging, task arithmetic, TIES), as summa-
rized in Table C3. In the case of weight averaging, our method leads to performance improvements
in most cases, and for task arithmetic, it achieves performance improvements in all cases. For weight
averaging, our method improves performance in most cases, while task arithmetic consistently yields
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Figure C1: Verification of all blocks CTL between the merged model and task-specific models.
We compare ED(s)∪D(t) [1− cos(ℓ)(x; 2λτs, 2λτt)]. We set the scaling factor λ to 0.3.
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Figure C2: Test loss barrier between the merged model and each task-specific model.

performance improvements across all cases. In contrast, TIES shows performance improvements in
only half of the cases. Upon closer examination, when linear fine-tuning methods such as FTTS and
FTLO — which regularize the model output to satisfy linearity — are used without SAFT-ASAM,
TIES generally outperforms task arithmetic. However, with SAFT-ASAM, TIES consistently per-
forms worse than task arithmetic.

This seems that since the combination of linear fine-tuning and SAFT-ASAM has already enhanced
weight disentanglement and reduced parameter interference, parameter trimming via TIES may
rather remove critical parameters not noisy parameters, leading to performance degradation. Specif-
ically, the combination of TIES and SAFT-ASAM delivers the best performance. Conversely, with
FTTS and FTLO, task arithmetic paired with SAFT-ASAM achieves superior results. In some in-
stances, TIES combined with SAFT-ASAM performs similarly to weight averaging. Thus, for linear
fine-tuning methods like FTTS and FTLO, combining SAFT-ASAM with TIES can negatively im-
pact performance. Additional analysis of this behavior is reserved for future work.

C.6 MERGING WITH FIXED αt

Previous research (Ilharco et al., 2023; Jin et al., 2023; Matena & Raffel, 2022; Yadav et al., 2023)
on model merging has focused on finding better merged models through hyperparameter tuning.
However, such methods become increasingly costly as the number of hyperparameters grows, and
they need to be re-applied whenever tasks are added or changed. Therefore, it is essential to create
a robust merged model that performs well regardless of the selected hyperparameters.

Our method achieves robustness by identifying flatter minima for joint loss and weight disentangle-
ment compared to SGD, enabling the discovery of optimal hyperparameters across a wider range
of conditions. To support this claim, we evaluate task arithmetic by fixing the task coefficients α
to 0.4 for all merging tasks, following the recommendation of Ilharco et al. (2023). As shown in
Table C4, our method outperforms other fine-tuning baselines in all cases, achieving improvements
of up to 30% in both absolute accuracy and normalized accuracy. Additionally, there are several
cases where the performances are nearly identical to those of hyperparameter tuning. Therefore, our
method ensures that a merged model with reliable performance can be obtained, even when arbitrary
hyperparameters are chosen.
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Table C3: Multi-task performance when merging a CLIP image encoder on eight tasks. We
report the average absolute and normalized accuracies for different five model merging methods.
Results are shown for the six fine-tuning methods, categorized by whether SAFT-ASAM is applied.

Merging methods (→) Weight averaging Task arithmetic TIES merging
Fine-tuning baselines (↓) Abs. Norm. Abs. Norm. Abs. Norm.

ViT-B/32

SGD 65.72 72.91 68.23 75.47 74.57 82.29
SAFT-ASAM (Ours) 66.76 73.62 69.45 76.32 75.45 82.86

FTTS 72.47 82.04 78.35 86.83 76.89 86.84
FTTS w/ SAFT-ASAM (Ours) 75.10 86.10 79.38 87.72 73.77 84.46

FTLO 65.96 73.83 75.93 85.74 77.39 85.89
FTLO w/ SAFT-ASAM (Ours) 65.34 72.78 77.49 88.77 76.30 84.62

ViT-B/16

SGD 71.58 77.37 73.40 79.31 77.94 84.04
SAFT-ASAM (Ours) 71.84 77.53 76.77 82.50 80.14 86.23

FTTS 77.20 84.87 79.37 87.33 81.09 89.05
FTTS w/ SAFT-ASAM (Ours) 78.09 86.45 79.78 88.26 78.41 86.72

FTLO 70.97 77.11 80.00 86.55 78.25 84.91
FTLO w/ SAFT-ASAM (Ours) 71.03 76.78 82.59 89.11 79.49 85.92

Table C4: Multi-task performance of task arithmetic with and without hyperparameter tun-
ing. We compare the average absolute and normalized accuracies of task arithmetic whether the
hyperparameter is tuned. The fixed hyperparameter α is 0.4 for all eight vision tasks.

Fine-tuning baselines (↓) w/o tuning w/ tuning w/o tuning w/ tuning
Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.

ViT-B/32 ViT-B/16

SGD 46.34 48.72 68.23 75.47 46.91 49.98 73.40 79.31
SAFT-ASAM (Ours) 57.27 62.06 69.45 76.32 71.37 76.34 76.77 82.50

FTTS 72.89 81.97 78.35 86.83 76.69 84.05 79.37 87.33
FTTS w/ SAFT-ASAM (Ours) 75.21 85.78 79.38 87.72 78.87 87.17 79.78 88.26

FTLO 48.20 55.29 75.93 85.74 77.36 83.60 80.00 86.55
FTLO w/ SAFT-ASAM (Ours) 79.68 87.92 77.49 88.77 82.50 88.95 82.59 89.11

C.7 MULTI-TASK PERFORMANCE OF OTHER FLAT-MINIMA TECHNIQUES

We also evaluate the performance of other flat-minima techniques, in addition to SAFT variants like
ASAM. Flat-minima techniques, including SWA (Izmailov et al., 2018), RWP (Li et al., 2022), and
SAGM (Wang et al., 2023), are fine-tuning methods designed to minimize the loss while finding flat-
minima during model training. As shown in Table C5, both our method and SWA improve multi-task
performance compared to SGD. However, RWP and SAGM show worse performance than SGD.
In addition, as discussed in Appendix C.6, we also present the results of performance evaluation
without hyperparameter tuning in Table C5. Our method not only achieves the best performance
when the hyperparameters are tuned but also outperforms in cases without tuning. Furthermore, the
performance gap between our method and SGD, as well as other flat-minima techniques, widens
significantly in these scenarios. This demonstrates that our method is superior to other flat-minima
techniques and exhibits less performance degradation due to variations in parameter settings.
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Table C5: Multi-task performance across different flat-minima techniques. We compare the
average absolute and normalized accuracies of ViT-B/32 for five fine-tuning methods including three
flat-minima techniques: SWA, RWP, and SAGM. We also compare the performance of merged
model with and without hyperparameter tuning. All cases are merged with eight vision tasks by task
arithmetic.

Fine-tuning baselines (↓) w/o tuning w/ tuning
Abs. Norm. Abs. Norm.

SGD 46.34 48.72 68.23 75.47

SWA 48.94 52.46 68.58 76.11
RWP 34.97 36.58 62.48 73.02
SAGM 40.18 42.93 64.36 71.16

SAFT-ASAM (Ours) 57.27 62.06 69.45 76.32

The primary difference among flat-minima techniques lies in the strategies used to derive pertur-
bations. This seems to influence how effectively these techniques can reduce the performance gap
between each task-specific model and a merged model. Our method introduces perturbations by
minimizing the loss difference between the current point in the parameter space and the point with
the highest loss in its neighborhood during fine-tuning. This approach closely aligns with the ob-
jective of model merging, which aims to minimize the loss difference between the merged model
and the individual task-specific models. Therefore, perturbation strategies derived from fine-tuning
objectives similar to the model merging objective could result in greater performance improvements
compared to other flat-minima techniques.

C.8 RESULTS ON NATURAL LANGUAGE PROCESSING TASKS

Table C6: Multi-task performance of the merged model across four NLP tasks. We report the
average absolute and normalized accuracies on four GLUE benchmark tasks: CoLA, MPRC, RTE,
and SST-2. We fine-tune Flan-T5-base using either SGD or SAFT-ASAM and merge the four task-
specific models.

Fine-tuning CoLA MRPC RTE SST-2 Average
baselines (↓) Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.

SGD 58.77 75.58 25.74 29.75 37.55 43.52 64.11 68.68 46.54 54.38
FTTS 66.06 92.61 28.19 34.96 1.81 2.35 87.39 94.90 45.86 56.21
FTLO 66.83 96.67 67.40 79.71 0 0 13.30 14.50 36.88 47.72
SAFT-ASAM (Ours) 68.65 99.31 42.16 52.92 49.82 60.00 45.30 49.38 51.48 75.47

To demonstrate the effectiveness of our method in other domains, we evaluate our method on NLP
tasks. Following the evaluation settings of Ilharco et al. (2023), we fine-tune the Flan-T5-base (Raf-
fel et al., 2019; Wei et al., 2022) on four natural language processing (NLP) tasks: CoLA, MRPC,
RTE, and SST-2 in GLUE benchmark (Wang et al., 2019). All fine-tuning processes start from the
Flan-T5-base pre-trained checkpoint available on HuggingFace. We fine-tune each model for 8000
iterations with a batch size of 16 and a learning rate of 10−5. AdamW is used as the optimizer, and
a linear annealing approach without warmup is applied as the learning rate scheduler. For efficient
fine-tuning, we convert all downstream NLP tasks into a text-to-text format, following the approach
in Jin et al. (2025). We measure the multi-task performance of the multi-task model merged by all
four tasks using task arithmetic.

Table C6 indicates that FTTS and FTLO exhibit a tendency for certain finetuned parameters to exert
undue influence after the merging process. This dominance leads to significant performance degra-
dation on specific tasks, notably RTE, where both FTTS and FTLO experience extreme performance
drops. These results suggest that FTTS and FTLO are still susceptible to parameter interference.
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Although they achieve commendable performance on some tasks, their performance is inconsistent
across the entire task set. In contrast, our proposed method effectively mitigates parameter inter-
ference, resulting in a more balanced performance profile across all tasks. This balanced approach
leads to a superior average performance, as demonstrated by the highest absolute and normalized
accuracy, with the normalized accuracy being approximately 20% higher than the second-best per-
forming method, FTTS.

The parameter dominance observed in FTTS and FTLO is further substantiated by an analysis
of the predicted text from the merged model. For clarity, the label texts for CoLA are ”unac-
ceptable” or ”acceptable”, for MRPC ”not equivalent” or ”equivalent”, for RTE ”entailment” or
”not entailment”, and for SST-2 ”negative” or ”positive”. This label text configuration aligns with
the settings established in Jin et al. (2025). Our analysis reveals that texts predicted by FTLO
frequently contain or resemble ”acceptable”, ”unacceptable”, ”equivalent”, or ”not equivalent”, ir-
respective of the input text data. While these outputs may be appropriate for CoLA and MRPC
datasets, they are irrelevant for RTE and SST-2, resulting in the observed performance decline on
these tasks. This analysis highlights that after merging, FTTS is significantly influenced by the
parameters finetuned for specific tasks like SST-2 and CoLA. FTLO exhibits a similar pattern of
influence. Conversely, although our predictions of our method may not always be correct, it consis-
tently predicts one of the correct text labels for the corresponding task of the input data, across all
four tasks. This consistency demonstrates an improved ability to mitigate parameter interference.
Notably, while FTLO and FTTS outperform our method on only one task each, our method achieves
superior performance on the remaining three tasks. Specifically, our method outperforms FTLO on
CoLA, RTE, and SST-2, while also outperforming FTTS on CoLA, MRPC, and RTE. This result
demonstrates an improvement in overall performance and suggests a greater resilience to parameter
interference.

C.9 TRAINING COSTS OF FINE-TUNING

Table C7: Training cost of SAFT.

Fine-tuning baselines (↓) ViT-B/32 ViT-B/16
Time (it/s) VRAM (GB) Time (it/s) VRAM (GB)

SGD 2.53 7.3 0.68 21.5
FTTS 1.30 12.6 0.37 37.2
FTLO 3.11 5.8 0.84 19.0
SAFT-ASAM (Ours) 1.34 7.8 0.34 21.6

Table C7 presents a comparison of training costs between SGD and our method across various
models and fine-tuning methods.

We use AdamW as an optimizer, setting the batch size to 128. Additionally, all training is conducted
using NVIDIA Quadro RTX 8000 GPUs.

The use of SAFT-ASAM leads to a nearly twofold increase in training time, whereas VRAM usage
experiences only a minor increment.

Recently, there has been active research aimed at reducing the computational cost of SAM (Du
et al., 2022; Liu et al., 2022). Model merging is an approach designed to efficiently build multi-task
models, and since our work seeks to establish a connection between model merging and SAFT, we
believe our research can significantly contribute to works focused on improving the efficiency of
SAFT.

D PROOF FOR THEOREM 1

In this section, we provide a proof for Theorem 1, which is restated below for the convenience:

Theorem 1 (SAFT induces joint-task loss linearity). If models, parameterized by θs and θt, are
obtained by fine-tuning from a common pre-trained model via SAFT on their respective datasets
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Figure D1: Comparison of the dominant Hessian eigenvalue for parameters on the line segment
between the pre-trained parameters and fine-tuned parameters. We compare the dominant
Hessian eigenvalue λmax(θ;D(t)) of parameter θ along the line segment θ0θt, where θ = θ0 +
γ(θt − θ0) for γ ∈ [0, 1], D(t) denotes the dataset for task k. The line represents the mean of the
dominant Hessian eigenvalues for all tasks.

Ds and Dt, the models are linearly connected on the loss landscape over the joint-task datasets
(D = Ds ∪ Dt).

Proof. Let δ represent the difference between the linear interpolation of Joint-Task Losses incurred
by task-specific models parameterized by θs and θt and Joint-Task Loss incurred by a interpolated
model parameterized by αθs + (1− α)θt:

δ = LJTL(αθs + (1− α)θt;D)− αLJTL(θs;D)− (1− α)LJTL(θt;D). (15)

δ = LJTL(αθs + (1− α)θt;D)− αLJTL(θs;D)− (1− α)LJTL(θt;D)

= [L(αθs + (1− α)θt;Ds)− αL(θs;Ds)− (1− α)L(θt;Ds)]

+ [L(αθs + (1− α)θt;Dt)− αL(θs;Dt)− (1− α)L(θt;Dt)]

= δs + δt, (16)
where δs = L(αθs + (1− α)θt;Ds)− αL(θs;Ds)− (1− α)L(θt;Ds),

δt = L(αθs + (1− α)θt;Dt)− αL(θs;Dt)− (1− α)L(θt;Dt).

Performing a third-order Taylor expansion of L(αθs + (1− α)θt;Ds) around θs:

L(αθs + (1− α)θt;Ds) = L(θs;Ds) + (1− α)∇θL(θs;Ds)
⊤(θt − θs)

+
1

2
(1− α)2(θt − θs)

⊤Hs(θt − θs) +Rs, (17)

where Hs = ∇2
θL(θs;Ds) and Rs is the remainder term.

Similarly, expand L(θt;Ds) around θs:

L(θt;Ds) = L(θs;Ds) +∇θL(θs;Ds)
⊤(θt − θs) +

1

2
(θt − θs)

⊤Hs(θt − θs) +R′
s. (18)

Multiply both sides by (1− α):

(1− α)L(θt;Ds) = (1− α)L(θs;Ds) + (1− α)∇θL(θs;Ds)
⊤(θt − θs)

+
1

2
(1− α)(θt − θs)

⊤Hs(θt − θs) + (1− α)R′
s. (19)
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Compute δs:

δs = L(αθs + (1− α)θt;Ds)− αL(θs;Ds)− (1− α)L(θt;Ds)

=

[
L(θs;Ds) + (1− α)∇θL(θs;Ds)

⊤(θt − θs) +
1

2
(1− α)2(θt − θs)

⊤Hs(θt − θs) +Rs

]
− αL(θs;Ds)−

[
(1− α)L(θs;Ds) + (1− α)∇θL(θs;Ds)

⊤(θt − θs)

+
1

2
(1− α)(θt − θs)

⊤Hs(θt − θs) + (1− α)R′
s

]
. (20)

Simplify the expression:

δs = L(θs;Ds)− αL(θs;Ds)− (1− α)L(θs;Ds)

+ (1− α)∇θL(θs;Ds)
⊤(θt − θs)− (1− α)∇θL(θs;Ds)

⊤(θt − θs)

+
1

2
(1− α)2(θt − θs)

⊤Hs(θt − θs)−
1

2
(1− α)(θt − θs)

⊤Hs(θt − θs)

+Rs − (1− α)R′
s.

= −1

2
α(1− α)(θt − θs)

⊤Hs(θt − θs) + (Rs − (1− α)R′
s) . (21)

Similarly, compute δt by expanding around θt:

δt = −1

2
α(1− α)(θt − θs)

⊤Ht(θt − θs) + (Rt − αR′
t) ,

where Ht = ∇2
θL(θt;Dt). (22)

Combining δs and δt:

δ = δs + δt = −1

2
α(1− α)(θt − θs)

⊤(Hs +Ht)(θt − θs) + ϵ,

where ϵ = (Rs − (1− α)R′
s) + (Rt − αR′

t) . (23)

Since the dominant Hessian eigenvalue λmax(θ;D) is the largest eigenvalue of H(θ;D), we have

(θt − θs)
⊤Hs(θt − θs) ≤ λs∥θt − θs∥2,

(θt − θs)
⊤Ht(θt − θs) ≤ λt∥θt − θs∥2, (24)

where λs = λmax(θs;Ds), λt = λmax(θt;Dt). Then, |δ| is bounded as:

|δ| ≤ 1

2
α(1− α)(λs + λt)∥θt − θs∥2 + ϵ, (25)

where ϵ = (Rs − (1− α)R′
s) + (Rt − αR′

t) is the remainder term. Agarwala & Dauphin (2023)
have demonstrated that SAM reduces the dominant Hessian eigenvalue throughout the learning tra-
jectory. According to Equation 25, the reduction of the dominant Hessian eigenvalue by SAFT leads
to smaller |δ| and thus better satisfaction of joint-task loss linearity.
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