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ABSTRACT

Fine-grained image retrieval (FGIR) is to learn visual representa-
tions that distinguish visually similar objects while maintaining
generalization. Existing methods propose to generate discrimina-
tive features, but rarely consider the particularity of the FGIR task
itself. This paper presents a meticulous analysis leading to the
proposal of practical guidelines to identify subcategory-specific
discrepancies and generate discriminative features to design ef-
fective FGIR models. These guidelines include emphasizing the
object (G1), highlighting subcategory-specific discrepancies (G2),
and employing effective training strategy (G3). Following G1 and
G2, we design a novel Dual Visual Filtering mechanism for the
plain visual transformer, denoted as DVF, to capture subcategory-
specific discrepancies. Specifically, the dual visual filtering mecha-
nism comprises an object-oriented module and a semantic-oriented
module. These components serve to magnify objects and identify
discriminative regions, respectively. Following G3, we implement
a discriminative model training strategy to improve the discrim-
inability and generalization ability of DVF. Extensive analysis and
ablation studies confirm the efficacy of our proposed guidelines.
Without bells and whistles, the proposed DVF achieves state-of-
the-art performance on three widely-used fine-grained datasets in
closed-set and open-set settings.
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1 INTRODUCTION

Fine-grained image retrieval (FGIR) aims to retrieve images with the
same subcategory as the query images from a database within the
metacategory (e.g., birds, and cars) [4, 17, 39, 41, 42]. Retrieving vi-
sually similar images, however, faces challenges arising from subtle
inter-class differences caused by similar objects, as well as signif-
icant intra-class variations due to factors such as location, scale,
and deformation. Additionally, existing works [1, 13, 16, 24, 27, 40]
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image
Top-5 retrieved images

DVF (Ours)

Hyp-ViT

Retrieval correct Retrieval error

Figure 1: We compare our method, which adheres to the

guidelines, with the state-of-the-art Hyp-ViT, which violates

some of these guidelines. Hyp-ViT makes retrieval errors in

cases of similar images due to the objects being too small to

extract subcategory-specific discrepancies. In contrast, our

DVF succeeds by enlarging the objects.

follow a closed-set training setting, where all the subcategories
in the training set are known. However, the evaluation includes a
closed-set setting with known test set categories and an open-set
setting with unknown test set subcategories. Consequently, the
essence of FGIR tasks lies in learning discriminative and generaliz-
able embeddings to identify visually similar objects.

Recently, FGIRmethods can be categorized into twomain groups:
encoding-based [6, 18, 24, 31] and localization-based [22, 35–37, 39,
44]. The encoding-based methods primarily optimize image-level
features, which often include background and non-discriminative
information. Localization-based methods typically formulate an
effective object feature extraction strategy in the image encoder
to capture subtle differences among subcategories, often rooted in
the distinctive properties of object parts. However, these methods
still suffer from small-sized objects in the input image, making it
difficult to identify discriminative regions. Moreover, the scarcity
of fine-grained image data jeopardizes the model’s discriminative
capacity and generalization ability.

Based on the preceding analysis, we present a set of guidelines for
designing high-performance fine-grained image retrieval models:
• G1: emphasize the object. The FGIR models should uti-
lize object-emphasized images as input to alleviate the chal-
lenges posed by small-sized objects that make identifying
objects and discerning subcategory-specific discrepancies
difficult [35]. Without object-emphasized images as input,
the accuracy of previous methods [35, 39] is fundamentally
limited.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• G2: highlight subcategory-specific discrepancies. Given
the considerable intra-class differences and subtle inter-class
variations inherent in the FGIR task, highlighting subcategory-
specific discrepancies becomes paramount. An illustration
of this is seen in methods [22, 37] that do not highlight
subcategory-specific discrepancies, thus restricting their dis-
criminative capability.
• G3: employ effective training strategy. As shown in pre-
vious studies [46], limited fine-grained image data inevitably
limits retrieval performance. Some works [12, 35] affirm that
effective training strategies can alleviate this limitation. How-
ever, others still neglect this aspect, hindering the design of
high-performance retrieval models.

Following the guidelines above, we propose a straightforward
yet effective approach: the plain visual transformer equipped with
a Dual Visual Filtering mechanism, referred to as DVF. Fig. 2 il-
lustrates the proposed DVF framework, consisting of an Object-
oriented Visual Filtering module (OVF) and a Semantic-oriented
Visual Filtering module (SVF), to generate discriminative features.
Motivated by the visual foundation model’s ability to accurately
detect arbitrary objects without requiring additional fine-tuning,
OVF utilizes a visual foundation model and a post-processing strat-
egy to zoom in on the object in the input image (G1). In this way,
OVF can adjust image content to aid subcategory prediction and
locate regions of subcategory-specific discrepancies. In SVF, we
propose a token importance generator to calculate token-level im-
portance, which is subsequently used as a weighting factor in class
attention to enhance the selection of discriminative tokens and
eliminate noisy features (G2). This improves the model’s ability to
discern subtle discrepancies between subcategories. Following G3,
we propose a Discriminative Model Training strategy that combines
data augmentation with loss constraints, significantly improving
the discriminability of DVF across both closed-set and open-set
scenarios.

In summary, the primary contributions of this work are as fol-
lows:
• By considering the particularity of fine-grained image re-
trieval, we formulate a set of practical guidelines for design-
ing high-performance fine-grained image retrieval models.
• Following our proposed guidelines, we develop a straightfor-
ward yet potent retrieval model called DVF, which incorpo-
rates a dual visual filteringmechanism to capture subcategory-
specific discrepancies. Additionally, we employ a discrimina-
tive training strategy to enhance the model’s discriminability
and generalization ability.
• The experimental results on three fine-grained image re-
trieval benchmarks demonstrate the superior performance
of DVF exhibits in closed-set and open-set scenarios. More-
over, visualization results demonstrate DVF’s capability to
capture discriminative image regions accurately.

2 RELATEDWORKS

Existing methods for fine-grained image retrieval (FGIR) can be
categorized as encoding-based or localization-based. The encoding-
based methods [6, 18, 24, 31] aim to learn an embedding space in
which samples of a similar subcategory are attracted and samples

of different subcategories are repelled. The methods can be de-
composed into roughly two components: the image encoder maps
images into an embedding space, and the metric method ensures
that samples from the same subcategories are grouped closely, while
samples from different subcategories are separated. While these
studies have achieved significant achievements, they primarily con-
centrate on optimizing image-level features that include numerous
noisy and non-discriminatory details. Therefore, the localization-
based methods [9, 22, 35–37, 39] are proposed, which focus on
training a subnetwork for locating discriminative regions or devis-
ing an effective strategy for extracting attractive object features to
facilitate the retrieval task. Unlike these approaches, our methodol-
ogy considers the specific characteristics of the FGIR tasks, offering
guidance for designing high-performance retrieval models.

3 METHOD

3.1 Image Encoder

For the input image I ∈ R3×𝐻×𝑊 , the image encoderwill first split it
into𝑁 = 𝑁ℎ×𝑁𝑤 non-overlapping patches of size 𝑃×𝑃 . Here,𝑁ℎ =
𝐻
𝑃
and 𝑁𝑤 = 𝑊

𝑃
. Subsequently, these patches are transformed into

embedding tokens E = [E1,E2, . . . ,E𝑁 ] ∈ R𝑁×𝐷 using learnable
linear projection, where 𝐷 denotes the dimension of each token.
Finally, the embedding tokens E are concatenated with a class token
E
𝑐𝑙𝑎𝑠𝑠 ∈ R𝐷 , and the position information of the tokens is retained

through combined a learnable position embedding E𝑝𝑜𝑠 to form the
initial input token sequence as E0 = [E𝑐𝑙𝑎𝑠𝑠 ,E1,E2, . . . ,E𝑁 ] +E𝑝𝑜𝑠 .
The image encoder comprises 𝐿 layers, each incorporating multi-
head self-attention (MHSA) and a multi-layer perception (MLP)
block. Therefore, considering the input E𝑖−1 of the 𝑖-th layer, the
output can be expressed as follows:

E′𝑖 = MHSA(LN(E𝑖−1)) + E𝑖−1, (1)
E𝑖 = MLP(LN(E′𝑖 )) + E

′
𝑖 , (2)

where 𝑖 = {1, 2, . . . , 𝐿}, and LN(·) denotes the layer normalization
operation. The class token E

𝑐𝑙𝑎𝑠𝑠
𝐿

from the 𝐿-th layer serves as the
retrieval embedding, we simplify it to E

𝑅 .

3.2 Dual Visual Filtering Mechanism

Subtle yet discriminative discrepancies are widely acknowledged
as crucial for FGIR [11, 23, 29, 38]. However, in real-life scenar-
ios, subcategory objects often occupy only a fraction of the image,
with the background dominating a larger portion. This presents
challenges for the model in both object recognition and identify-
ing discriminative regions within objects. Additionally, traditional
visual Transformers (ViTs) [5, 32, 33] are originally designed to
represent general visual concepts, rather than effectively capturing
subtle discrepancies for subordinate categories within a given cate-
gory in fine-grained visual concepts. To address these challenges,
following G1 and G2, we design a dual visual filtering mechanism
consisting of two components: an object-oriented visual filtering
module and a semantic-oriented visual filtering module.

3.2.1 Object-oriented Visual Filtering Module. Following G1, we
propose the Object-oriented Visual Filtering module (OVF) to zoom
in on the object in the image. Previous methods [19, 30, 35, 39] typ-
ically train a sub-network to locate objects in a weakly supervised
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Figure 2: Overview of the proposed framework. The framework consists of two core modules, 1) Object-oriented Visual Filtering

Module: utilizes a visual foundationmodel to zoom in object in the input image (details are in Section 3.2.1); 2) Semantic-oriented

Visual Filtering Module: accounts for the attention of the class token as well as the importance of the embedding token itself to

locate discriminative regions in the object (details are in Section 3.2.2).

manner, consuming training resources and often leading to inaccu-
rate positioning due to the limitations of weakly supervised training.
In contrast, DVF investigates the utilization of visual foundation
models [15, 21, 43] for accurate object localization in a training-
free manner. Specifically, OVF leverages the visual foundation
model Grounding-DINO [21] along with a post-processing strategy,
to locate and magnify objects. This allows the model to capture
more discriminative details, thereby enhancing the quality of the
representation. Besides, the proposed OVF is model-agnostic, mak-
ing it applicable to other FGIR methods.

Specifically, Grounding-DINO utilizes an image and its associ-
ated text prompt (metacategory name) as input, as shown in Fig. 2,
to generate coordinate results and confidence scores for the corre-
sponding metacategory object. We can use the coordinate results to
crop the input image to obtain an image with emphasized objects.
However, we observed that to acquire input images with empha-
sized objects, it is necessary to 1) confirm the presence of the object
in the image, 2) ensure the object remains intact, and 3) prevent
deformation after image resizing. To achieve this, we introduce a

Algorithm 1 The process of Post-Processing in OVF
Input: Input image 𝑋 , text prompt 𝑃 , visual foundation model 𝑌
Output: 𝑟𝑒𝑠𝑢𝑙𝑡

1: 𝑠𝑐𝑜𝑟𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑌 (𝑋, 𝑃)
2: if 𝑠𝑐𝑜𝑟𝑒 < 𝛼 then

3: 𝑟𝑒𝑢𝑙𝑠𝑡 ← 𝑋

4: else
5: 𝑟𝑒𝑢𝑙𝑠𝑡 ← 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛(𝑟𝑒𝑢𝑙𝑠𝑡)
6: end if

post-processing strategy, which involves self-checking and filter-
ing adaptation, the process of post-processing is summarized in
Algorithm 1.

To confirm the presence of the object in the image, we perform
self-checking before utilizing the detection results. If the detection
score surpasses the threshold 𝛼 , we adopt the detection result;
otherwise, the original input image serves as the output of the OVF.
In this paper, we set 𝛼 to 0.5. To ensure the object remains intact,
we enlarge the detection results by a factor of 1.1, ensuring the
inclusion of edge areas possibly overlooked during the detection
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Figure 3: (a),(d) origin input image, (b),(e) object-oriented vi-

sual filtering without post-processing, (c),(f) object-oriented

visual filtering with post-processing. (g) the evaluation re-

sults (%) on CUB-200-2011 with/without post-processing.

process. In addition, to prevent deformation after image resizing,
we constrain the aspect ratio of the image to 3:4 by adding margins
to the shortest side. The experimental results depicted in Fig. 3(g)
validate the effectiveness of the post-processing strategy.

3.2.2 Semantic-oriented Visual Filtering Module. In plain visual
transformers [5], the transformer layer treats all image regions
divided into patches equally, leading to the merging of a substantial
amount of redundant patch information. This limits the retrieval
accuracy of ViT-based models in fine-grained image retrieval tasks.
Following G2, we propose a Semantic-oriented Visual Filtering
module (SVF). This module merges attention scores from the class
token with token importance generated by a token importance gen-
erator to select discriminative tokens and eliminate noisy tokens.

The attention score of the class token indicates the semantic
significance of each region for subcategory prediction. Therefore,
for the attention scores A = [A1,A2, . . . ,A𝑚, . . . ,A𝑀 ] from the
class token in the penultimate layer, where A

𝑚 ∈ R𝑁 denotes
the attention score of the𝑚-th attention head. We aggregate the
attention scores of all heads to obtain the semantic scores for em-
bedding tokens as Â =

∑𝑀
𝑖=1 A

𝑖 . Then, the semantic score Â can be
used as the evaluation metric to select discriminative tokens as in
previous work [11]. However, there arises the issue of inaccurate
subcategory prediction, leading to the semantic score’s inability to
precisely reflect the semantic importance of the token. This prob-
lem is particularly pronounced in the open-set scenario, where the
subcategory in the test set remains unknown. To eliminate the issue,
the SVF introduces a token importance generator Ω to transform
the input embedding tokens into a new space, thereby specifying
the importance of the embedding tokens. Concretely, we project
the embedding tokens into the token importance Z ∈ R𝑁 . This can

Table 1: Ablation of our data-augmentation strategy on CUB-

200-2011 in the open-set setting.

Data-Augmentation CUB-200-2011

ColorJitter Grayscale Gaussian Blur Recall@1 Recall@2

✓ × × 88.4 92.8
✓ ✓ × 88.6 92.9
✓ ✓ ✓ 88.8 93.1

be expressed as follows:

Z = 𝜎 (Ω(E𝑖 )) 𝑖 = {1, 2, . . . , 𝑁 }, (3)

where 𝜎 (·) is a sigmoid activation function, Ω is a linear projection
layer, and E𝑖 is the embedding token.

We choose the semantic score Â of the token as the basic eval-
uation metric. Through token importance weighting as per Eq. 4,
we can more accurately estimate the semantic score O.

O = Â ⊕ (Â ⊗ Z), (4)

where ⊕ and ⊗ are element-wise summation and element-wise
multiplication, respectively. Subsequently, we select the top-𝑘 sig-
nificant embedding tokens with high activation values, denoted as
ids = TopK(O) ∈ Z𝐾 , where TopK(·) sorts the importance scores O
in descending order and returns the index ids of the top 𝑘 embed-
ding tokens. The selected 𝑘 embedding tokens concatenate them
with the class token to form the input sequence of the 𝐿-th trans-
former layer, expressed as:

E𝐿−1 = [E𝑐𝑙𝑎𝑠𝑠𝐿−1 , Eids(1)
𝐿−1 , Eids(2)

𝐿−1 , · · · , Eids(𝑘 )
𝐿−1 ] . (5)

By replacing the original input sequence of the last transformer
layer with E𝐿−1, the proposed SVF encourages the image encoder to
highlight the subtle discrepancies between different subcategories
while ignoring regions such as background or less meaningful
foreground regions, thereby promoting fine-grained understanding.

3.3 Discriminative Model Training Strategy

With the collaborative efforts of the dual visual filtering mechanism,
the proposed DVF demonstrates exceptional retrieval performance
in FGIR tasks. However, it focuses on model design and does not ef-
fectively address the challenge of limited fine-grained image data, as
noted inG3. Therefore, followingG3, we delve into the formulation
of discriminative model training strategy (DMT). Data augmenta-
tion is a training strategy that has proven effective in the field of
classification [3, 7, 33] to alleviate the problem of limited training
samples. Inspired by this, we incorporate data augmentation into
the retrieval tasks as a component of DMT. It enhances data diver-
sity throughout model training and diminishes the model’s reliance
on specific features from the training set. Specifically, we consider
the following transformations:
• Color-jitter: Add perturbation to colors.
• Grayscale: Give more focus on shapes.
• Gaussian Blur: Slightly change the details in the image.

For each image, we consistently apply color-jitter and randomly
apply Grayscale and Gaussian Blur. In Table 1, we present an ab-
lation study of our various data augmentation components in the
open-set setting.
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Meanwhile, contrastive loss [8] is presented as a loss constraint
into DMT, which improves the generalization and balance of the
model in the training process. Formally, the contrastive loss with
batch size 𝐵 is expressed as:

L𝑐𝑜𝑛 =
1
𝐵2

𝐵∑︁
𝑖=1
[

𝐵∑︁
𝑗 :𝑦𝑖=𝑦 𝑗

(1 − Sim(E𝑅𝑖 ,E
𝑅
𝑗 )+

𝐵∑︁
𝑗 :𝑦𝑖≠𝑦 𝑗

max((Sim(E𝑅𝑖 ,E
𝑅
𝑗 ) − 𝛽), 0)],

(6)

where 𝑦𝑖 is a subcategory label, Sim(E𝑅
𝑖
,E𝑅
𝑗
) represents the dot

product between E
𝑅
𝑖
and E

𝑅
𝑗
, and the 𝛽 is a constant margin.

3.4 Overall Function

We optimize a training objective as below:

L = L𝑝𝑛𝑐𝑎 + L𝑐𝑜𝑛, (7)

where L𝑝𝑛𝑐𝑎 denotes the ProxyNCA loss [24]:

L𝑝𝑛𝑐𝑎 = −log
(

exp(−𝑑 (∥E𝑅
𝑖
∥, ∥c𝑖 ∥))∑

c∈C exp(−𝑑 (∥E𝑅
𝑖
∥, ∥c∥))

)
, (8)

where 𝑑 (∥E𝑅
𝑖
∥, ∥c𝑖 ∥) represents the distance between ∥E𝑅

𝑖
∥ and

∥c𝑖 ∥, c𝑖 denotes the class proxy corresponding to retrieval embed-
ding E

𝑅
𝑖
, C is the class proxy set, and ∥ · ∥ denotes the 𝐿2-Norm.

4 EXPERIMENTS

4.1 Experiment Setup

4.1.1 Datasets. CUB-200-2011 [2] comprises 11, 788 bird images
from 200 bird species. In the closed-set setting, the dataset is divided
into training and testing subsets comprising 5,994 and 5,794 images,
respectively, out of a total of 11,788 images. For the open-set setting,
we employ the first 100 subcategories (5,864 images) for training,
and the remaining subcategories (5,924 images) are used for testing.

Stanford Cars [14] consists of 16,185 images depicting 196
car variants. Similarly, these images were split into 8,144 training
images and 8,041 test images in the closed-set setting. For the open-
set setting, we utilize the first 98 subcategories (comprising 8,054
images) for training and the remaining 98 subcategories (comprising
8,154 images) for testing.

NABirds [10] contains 48,562 images showcasing North Ameri-
can birds across 555 subcategories. For the closed-set setting, the
training set contains 23,929 images, while the remaining 24,633
images are used for testing. For the open-set setting, we set up a
more challenging training/test set split, with 20,984 images from
the first 255 subcategories used for training and 27,578 images from
the remaining subcategories used for testing.

4.1.2 Evaluation protocols. To evaluate retrieval performance, we
adopt Recall@K with cosine distance in previous work [28], which
calculates the recall scores of all query images in the test set. For
each query image, the top K similar images are returned. A recall
score of 1 is assigned if at least one positive image among the top
K images; otherwise, it is 0.

4.1.3 Implementation details. In our experiments, we employ the
ViT-B-16 [5] pre-trained on ImageNet21K [25] as our image encoder.
All input images are resized to 256 × 256, and crop them into 224 ×
224. In the training stage, we utilize the Adam optimizer and employ
cosine annealing as the optimization scheduler. The initialize the
learning rate as 3e-2 for all datasets. The number of training epochs
is set to 10 for both CUB-200-2011 and Stanford Cars, while the
NABirds are trained for 5 epochs, and the batch size is set to 32. The
results in Table 4 are provided by the original paper results, while
the results in Tables 2 and 3 were reproduced using the source code
of the original paper.

4.2 Comparison with State-of-the-Art Methods

4.2.1 Closed-set Setting. We compare our proposed DVF with pre-
vious competitive methods in a closed-set setting. The comparison
results for the CUB-200-2011 and Stanford Cars datasets are pre-
sented in Table 2, and the results for the NABirds dataset can be
found in Table 3. From these tables, it can be observed that our
proposed method outperforms other state-of-the-art methods on
CUB-200-2011 and NABirds, and achieves competitive performance
on Stanford Cars.

Specifically, in comparison with Hyp-ViT [6], the current state-
of-the-art on CUB-200-2011, our DVF demonstrates a 3.4% improve-
ment in Recall@1 and a 4.3% improvement over our base framework
ViT [5]. The experimental results on the Stanford Cars indicate that
our method outperforms the most of existing methods but falls
slightly behind HIST [18]. We argue the possible reason may be
attributed to the relatively regular and simpler shape of the cars.
In the larger and more challenging NABirds dataset, we observe
a significant superiority of the ViT structure over the CNN struc-
ture. Our DVF outperforms the best CNN method by 9.0% on the
Recall@1 and improves the performance of the previous leading
method ViT [5] by 8.1%.

4.2.2 Open-set Setting. The open-set setting poses greater chal-
lenges compared to the closed-set setting due to the unknown
subcategories in the test set. The experimental results for the CUB-
200-2011 and Stanford Cars datasets are shown in Table 4, while
the results for the NABirds dataset are provided in Table 3. The
results reveal a consistent trend in both open and closed-set set-
tings: our method outperforms other state-of-the-art approaches on
CUB-200-2011 and NABirds, while delivering competitive results
on the Stanford Cars dataset.

To be specific, in comparison with Hyp-ViT [6] on CUB-200-2011,
our DVF exhibits a 4.8% improvement in Recall@1 and a 6.2% en-
hancement over our base framework ViT [5]. Experimental results
on the Stanford Cars dataset show that our method outperforms
most existing methods but lags behind FRPT [35] by a slight margin.
The results of experiments on NABirds are shown in Table 3. Even
in more challenging settings, DVF consistently demonstrates excel-
lent performance, whereas other methods, particularly those based
on CNNs, experience a significant drop in performance. In numeri-
cal terms, our DVF surpasses the top-performing CNN method by
24.8% in Recall@1 and enhances the performance of the previously
leading method Hyp-ViT [6] by 9.0%. The significant performance
improvement can be attributed to the combined effects of the ViT
structure and our proposed guidelines in Section 1.
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Table 2: Comparison with state-of-the-art methods in the closed-set setting on CUB-200-2011 and Stanford Cars 196. The best

result is shown in bold, and the second-best result is underlined.

CUB-200-2011 Stanford Cars 196
Method Backbone Recall@1 Recall@2 Recall@4 Recall@8 Recall@1 Recall@2 Recall@4 Recall@8

PNCA [24] CNN 67.6 76.7 83.9 89.1 75.4 84.4 89.9 93.5
Proxy-Anchor [12] CNN 80.4 85.7 89.3 92.3 77.2 83.0 87.2 90.2

HIST [18] CNN 75.6 83.0 88.3 91.9 89.2 93.4 95.9 97.6
PNCA++ [31] CNN 80.4 85.7 89.3 92.3 86.4 92.3 96.0 97.8

ViT [5] ViT 83.3 88.6 92.6 95.1 83.1 89.8 93.7 96.4
Hyp-ViT [6] ViT 84.2 91.0 94.3 96.0 76.7 85.2 90.8 94.7
DVF (Ours) ViT 87.6 92.6 95.1 96.8 88.2 93.1 96.3 98.1

Table 3: Comparison with state-of-the-art methods in the closed-set and open-set settings on NABirds.

Closed-set Setting Open-set Setting
Method Backbone Recall@1 Recall@2 Recall@4 Recall@8 Recall@1 Recall@2 Recall@4 Recall@8

PNCA [24] CNN 54.4 66.3 75.9 84.2 45.2 56.5 66.7 76.0
Proxy-Anchor [12] CNN 77.5 83.2 87.0 90.0 54.3 64.9 74.5 82.2

HIST [18] CNN 71.8 78.4 83.4 87.5 51.8 62.8 72.5 81.0
PNCA++ [31] CNN 79.9 87.0 92.0 95.2 63.4 74.0 82.2 88.4

ViT [5] ViT 80.8 87.1 91.1 94.1 78.6 85.2 89.3 92.4
Hyp-ViT [6] ViT 80.2 87.6 92.5 95.6 79.2 86.7 92.1 95.3
DVF (Ours) ViT 88.9 93.5 96.3 97.9 88.2 93.0 96.1 97.8

Table 4: Comparison with state-of-the-art methods in the open-set setting on CUB-200-2011 and Stanford Cars 196.

CUB-200-2011 Stanford Cars 196
Method Backbone Recall@1 Recall@2 Recall@4 Recall@8 Recall@1 Recall@2 Recall@4 Recall@8

PNCA [24] CNN 49.2 61.9 67.9 72.4 73.2 82.4 86.4 88.7
DGCRL [45] CNN 67.9 79.1 86.2 91.8 75.9 83.9 89.7 94.0
DAS [20] CNN 69.2 79.3 87.1 92.6 87.8 93.2 96.0 97.9
IBC [26] CNN 70.3 80.3 87.6 92.7 88.1 93.3 96.2 98.2

Proxy-Anchor [12] CNN 71.1 80.4 87.4 92.5 88.3 93.1 95.7 97.0
HIST [18] CNN 71.4 81.1 88.1 - 89.6 93.9 96.4 -

PNCA++ [31] CNN 70.1 80.8 88.7 93.6 90.1 94.5 97.0 98.4
FRPT [35] CNN 74.3 83.7 89.8 94.3 91.1 95.1 97.3 98.6

ViT [5] ViT 82.6 88.7 92.2 94.3 86.6 92.5 96.0 97.9
DFML [34] ViT 79.1 86.8 - - 89.5 93.9 - -
Hyp-ViT [6] ViT 84.0 90.2 94.2 96.4 86.0 91.9 95.2 97.2
DVF (Ours) ViT 88.8 93.1 95.3 96.5 90.2 94.6 97.3 98.9

4.3 Ablation Studies and Analysis

4.3.1 Efficacy of various components. The proposedDVF comprises
three essential components:OVF and SVF from the dual visual filter-
ing mechanism, and Discriminative model Training strategy (DMT).
We conducted ablation experiments on these components, and the
results are reported in Table 5, with the Baseline representing the
pure ViT. The introduction of SVF and OVF improved the Recall@1
performance on the CUB-200-2011 by 1.7% and 3.6% respectively.
Besides, the combined use of OVF and SVF results in further per-
formance improvement. This observation indicates that both OVF

and SVF can help DVF generate discriminative features, which are
complementary, thereby improving the performance. Moreover,
incorporating DMT into the model variation improved its perfor-
mance on the CUB-200-2011.

4.3.2 Number of selected embedding tokens in SVF. The perfor-
mance comparison of different values of 𝑘 , representing the number
of selected embedding tokens in SVF, is presented in Fig. 4. The
performance gradually increases with the number of embedding
tokens but decreases when the number exceeds 12. The decline
in performance may be attributed to the fact that as the number
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Table 5: The Recall@K results (%) of component ablation

study on CUB-200-2011.

Setting R@1 R@2 R@4 R@8

Baseline 82.6 88.7 92.2 94.3
Baseline + SVF 84.3 90.5 93.7 95.8
Baseline + OVF 86.2 91.2 93.8 95.5
Baseline + OVF + SVF 88.0 92.4 95.0 96.3
Baseline + OVF + SVF + DMT 88.8 93.1 95.3 96.5
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Figure 4: Analyses of hyper-parameter 𝑘 on CUB-200-2011.

Table 6: The Recall@K results (%) for various methods

with/without OVF on CUB-200-2011.

Method R@1 R@2 R@4 R@8

PNCA++ [31] 70.1 80.8 88.7 93.6
PNCA++ w/ OVF 72.4↑2.3 82.4↑1.6 89.4↑0.7 93.8↑0.2

ViT [5] 82.6 88.7 92.2 94.3
ViT w/ OVF 86.2↑3.6 91.2↑2.5 93.8↑1.6 95.5↑1.2

DVF (Ours) w/o OVF 85.7 91.0 94.2 96.0
DVF (Ours) 88.8↑3.1 93.1↑2.1 95.3↑1.1 96.5↑0.5

𝑘 rises, the semantic visual filtering may emphasize the locations
of objects or parts rather than focusing on subcategory-specific
discrepancies, making it ineffective for FGIR. Consequently, we
have chosen to set 𝑘 to 12 for all datasets.

4.3.3 Generalizability of OVF. The proposed OVF is training-free
and model-agnostic. Therefore, we conducted comparative experi-
ments to explore the generalizability of OVF. The results in Table 6
show that the performance of both the CNN-based method and the
ViT-based method is significantly improved after integrating OVF.
This demonstrates the generality of OVF, as it can aid various meth-
ods to emphasize the object, allowing them to concentrate more
on subcategory-specific discrepancies and consequently improving
performance on FGIR.

Table 7: Comparison of Recall@K results (%) on CUB-200-

2011 with/without token importance generator Ω.

Setting Recall@1 Recall@2 Recall@4 Recall@8

w/o Ω 87.5 92.3 95.1 96.3
w/ Ω 88.8 93.1 95.3 96.5

Input Image

SVF w/o

token importance

SVF w/

token importance

edge expansion

If the difference in 

aspect ratio is large

Extend shortest side
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Figure 5: Visualization of SVF with/without token impor-

tance on CUB-200-2011. The token importance empowers

DVF to concentrate on discriminative regions, including the

beak, tail, and areas with color mutations.

4.3.4 Importance of the Token Importance Generator. Here, we
investigate the influence of the token importance generator on
retrieval performance. The retrieval results, presented in Table 7,
demonstrate that the performance declines in the absence of the to-
ken importance generator. The possible reason for the performance
degradation is that, without the token importance generator, SVF
can generate semantic scores solely based on class token; however,
its ability to capture discriminative regions is limited.

To more intuitively reflect the significance of the token impor-
tance generator, we conducted a visual experiment to demonstrate
its effectiveness, as depicted in Fig. 5. The first column represents
the input image, while the second and third columns illustrate the
selected tokens without/with token importance, respectively. Visu-
alization results show that the token importance generator enables
DVF to focus more on discriminative areas such as the beak, tail,
and color mutation areas.

4.3.5 Influence of DMT. To demonstrate the effectiveness of the
components in the proposed DMT. We conducted ablation experi-
ments on DMT components, and the results can be found in Table 8.
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Figure 6: Examples of top-10 retrieved images on CUB200-2011 by DVF. The images with green boxes are the correct ones, and

those with red boxes are the wrong ones.

Table 8: Ablation of DMT components on CUB-200-2011.

Setting Recall@1 Recall@2

DVF w/o DMT 88.0 92.4
DVF w/o data augmentation 88.3 92.8
DVF w/o contrastive loss 88.4 92.9
DVF 88.8 93.1

It is observed that both data augmentation and contrastive loss con-
tribute to performance improvement, proving the effectiveness of
DMT components in training discriminative models. Furthermore,
the DMT achieves the best results, demonstrating that data aug-
mentation and contrastive loss are complementary to each other.

4.3.6 Visualization. Upon visualizing the top 10 results obtained
from CUB-200-2011 in Fig. 6, we observe that DVF excels in re-
trieving images belonging to the same subcategory across various
subcategories, even amidst diverse variations and backgrounds.
There is also a failure case that requires careful observation of the
subtle differences between the query image and the returned image.

Additionally, we conduct visualization experiments to illustrate
the effectiveness of DVF, as shown in Fig. 7. The original input
images are presented in the first column, followed by the second
column illustrating the class activation maps computed using Grad-
CAM for the baseline model, which takes the original input images
as input. The third column describes the input image with OVF,
while the fourth column shows the class activation map of DVF
taking it as input. The visualization results demonstrate that DVF
effectively avoids focusing on background regions and enhances
the baseline model’s ability to focus on a more comprehensive re-
gion, especially in capturing more detailed discrepancies specific
to subcategories, such as head, wings, and tail.

5 CONCLUSION

In this paper, we propose a set of guidelines for designing fine-
grained image retrieval (FGIR) models by analyzing the unique

Input Image Baseline
Input Image

w/ OVF DVF

Figure 7: Class activation visualizations on CUB-200-2011.

For each sample, from left to right, we show the input image,

class activation map of the baseline model, input image with

OVF, and the class activation map of the proposed DVF. We

can observe that DVF captures more comprehensive regions.

characteristics of FGIR tasks and the shortcomings of previous
methods. Following these guidelines, we propose an effective FGIR
model and a discriminative training strategy. Specifically, we pro-
pose a visual transformer with an object-oriented visual filtering
module, and a semantic-oriented visual filtering module to gen-
erate discriminative representation. Furthermore, we introduce
a discriminant model training strategy that combines data aug-
mentation with contrastive loss to enhance the discriminative and
generalization capabilities of the model. The effectiveness of the
proposed guidelines is verified through extensive ablation stud-
ies. The experiment results demonstrate that our model, following
these guidelines, achieves state-of-the-art performance on three
challenging fine-grained image retrieval benchmarks.
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