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A THE K;,s PROBLEM AND RELATED REFORMULATIONS
A.1 DUAL FORM OF K,,;

The following well-known Lemma gives the dual representations of Y, () and KL #(-5-). We follow the approach used
in|Honda and Takemura|[2010], Agrawal et al.[[2020].

Lemma 2. Consider any discrete distribution n) with a finite support {y; } jc(n) and an upper bound B. We assume y; > 0,V
and 0 < z < B.
a) The dual representation of K, s(m,x)is

nglf(n,x) =  max an log(1+ Ay (x —y;)).

Av€E [U,ﬁ j=0

The optimal \j; in the dual maximization above is characterised by:
Ap =0, if v < iy,
= 5, if v > pyand 371 T]j(%) <1,
Ying _ n B—
Y Ty =% x> pg and 35 omi (55)5) 2 1.

The support of the primal optimizer k* satisfies supp(n) C supp(rk*) C supp(n)U{B}. The constraint is tight at optimality:
MHrx = T.

Further for y; € supp(n):

b) The dual representation of ICiLnf (n,x) is

n

Kinp(n,x) = max > n;log(l —Ap(x —y))-
Ape|o, j=0

The optimal X} in the dual maximization above is characterised by:

A =0, ifr > py,
T =0 fa<i
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The support of the primal optimizer k* satisfies supp(n) = supp(k*). The constraint is tight at optimality:

P = T
Further for y; € supp(n): .
SRR e )
Proof. See sections[A.2]and O

A.2 PROOF OF LEMMA 2A

Define the set D := {0} U [b, B]. Suppose a probability distribution 7 has finite support (say {0, y1, ..., y» } for some n)
from D. Let M™ (D) denote the set of positive finite measures on D. We want to find nglf (1, x), which is defined as

KY . (n,2) = min KL(n, k).
inf (77 ) supp(1) CD (77 )
E[k]>x

We shall develop a Lagrangian duality for the above quantity in the space M™ (D). The Lagrangian with multiplier
A= (A1, \2) and K € MT(D) is:

(s, N) = KL(.%) + A (z - /D ydr(y)) + Mol — /D dr(y)).

Then the dual objective becomes
LA):= inf Lk, ).
) RG_/%/H’(D) (1, A)

Let us define two quantities useful in the analysis:
h(y, )‘) = _)‘2 - >\1y7

Z(A\):={yeD:h(y,\) =0}.
We define the set
Ro:={ANER*: A\ >0,) € R,\#0, ig%h(y,)\) >0}
y

={AER?: A >0, €RA#0,—Xo >\ B > 0}.

The lemma below shows that in maximising the dual objective £(A), it is enough to restrict ourselves to the set Ro.

Lemma A.l.a.
max L(\) = max L(\)
A12>0, AER:
A2 ER

Proof. Suppose A ¢ Ro. Then, there is a yo € D such that h(yo, A) < 0. We know that for any M > 0, we have a measure
Ky € M™T(D) such that
dliM

dn
So, we must have that supp(xar) = {yo} U supp(7).

ki (yo) = M, (y) = 1,Vy € supp(n)\{vo}

L(Ep,A) = /D log <dn(y)> dn(y) + /D h(y, N drar(y) + Az + Ao

dHM

— o) tog (M9 & Arhye, N + / By, Ndrar(y) + Az + Ao,
M supp(n)

Now as M — oo the first two terms tend to —oo while the other terms remain bounded and gives the result. O



The next lemma characterises the minimizer £* in the dual objective £(\). The support of x* is contained in supp(n) U Z(X)
and its density wrt 1) (wherever it is well-defined) is 1/h(y, A).

Lemma A.l.b. For \ € Ry, * € M™ (D) that minimizes L(k, \) satisfies supp(n) C * C supp(n) U Z(\).

Also, for y € supp(n), h(y, \) > 0, and
dr* 1

dn =AM — Xy’

Proof. Given \ € R, the inner optimization problem is strictly convex in «. This means that a unique minimizer x* must
AL(Ke,N)
A >0,
t=0

exist. This * must satisfy for any arbitrary x1, k¢ := (1 — t)k* + LKy,

Let us define L£(t) := L(x¢, A) which is

d
[ o (500 Jantu) + [ s Nda(s) + v+ e
supp(n) ki D

Then,
dL(t d .
O e )~ (o) + [ B ) () — )
supp(n) @R
So,
dL(t *
EO [ ha )+ [ )
t=0 D\supp(n) D\supp(n)
Now, A € R? guarantees that £ (0) > 0. This completes our proof. O
Remark A.1.1. Ify € Z()), then y can only be —i—f. Therefore, we get that Z(\) = { — :\\—’;‘} if\1 >0,—52 € Dand

Z(X\) = 0, otherwise.

It now remains to find max L(X) in order to characterise the Lagrangian dual of X, s, ).
€R2

If Z(\) = @, supp(k*) = supp(n). We can then say from the characterization of x* that

Kiny(n,z) = Inax Zﬁj log(—A2 — A1y;)
=0

The first order conditions tell us that >, )\ij\lyj =land ), 2 ,; = . Multiplying the first equation by —; and the

second by —A; and then adding the two would give us that Ao — Mz = 1. And Ay > B =14+ Nz > B = )\ €
[0, B } We can therefore conclude that

Kinp(n,x) = Zm log(1 4+ A1 (z —y;))
/\16 0, B = =0

If Z(\ ®, then —22 < B. But A € R, implies that —22 > B. Hence, —Q = B. Then, we can say that
bW p b y

n
King(n,0) = max > njlog(Aa(B - ;).
0=
Let \j; denote the maximizing A1, x*(B) denote the mass that < puts at B. Then, we get from the first order conditions

that Ej pval YR o T *(B) = 1 and ) /\*yjin’) + Br*(B) = x. Multiplying the first equation by B and adding to the

o .
second gives us that B—z= AE = A= ﬂ. Therefore, in this case,

'Lnf 77’ 277] log (




Note that this can happen iff Z _onjlog ( ) <1

Irrespective of whether or not Z(\) = ®, we can say that

Kinp(n,x) = Zm log(1+ Mi(z —y;))
M E 073 = | =0

. Let us define p(\;) := Z;L:O nilog(l + Ai(@ — y;)), A1 € [0, 5=]. Then, p (\1) = Z] o 711’/\(:”@”]3) and
1" . — . 2 "
p (M) =-27 % The expression for p leads us to conclude that p is always concave in \; and hence,
h J
must have a unique maximizer.

, 5. Hence, we must have
—X

[o #] p(A1) = p(0) = 0. Since the maximizer is A\j; = 0, we know from the definition

If x < E,, note that p/(O) = x — Z?:O njy; < 0, ie., p decreases in [0

K& p(n,x) = max,

of Z(\) that Z(\) = ®, and therefore, supp(x*) = supp(n).

If x > E,, then we have that p/(O) > 0, meaning that p is increasing at Ay = 0 and therefore, may take the

maximum value at either \j; = Bl_z € (O7 S ) Let us first compute p ( Bl_x )

(x —y;)(B—x)
Z K (B —y;)

— ;& — ;8 +1;B — n;y;
B 7yj

Il
=]

J

B - 1)

2; i
[ zn:nJB y]}

J=0

> 1.

If p' (5=) < 0, then p must reach its maximum in (0, 5 ). This happens iff 37" o (£ o L) >

Ifp ( ) > 0, then p must reach its maximum at z=—. This happens iff P =0 Mj ( ) < 1.

By]

Remark A.1.2. For the rare event setup, it is now easy to check that mass will be put at B;y~%% in IC%f (pi, x) iff x > Fo(7),

where Fy(vy) := B;

no @iPig VT ey
i=1 B;—a,; +y%e

A.3 PROOF OF LEMMA 2B

We want to find

= min KL
Kior(n,x) i (1, &)
Elk|<z

Just as in section we shall develop a Lagrangian dual for KX, #(n, ). The Lagrangian with multiplier A = (A1, A2) is:
£k N) = KLG) = Ma(o = [ yae(y) a1 = [ dety))
D D
Similar to section[A.2} define the quantities

A) = inf A
£ ne./gll*(D)ﬁ(ﬁ’ ),



h(y, A) = A2 + A1y,
Z(\) :=={y€D:h(y,\) =0}
and the set
Ro:={ANER?*: A >0,  €R,N#0, igf)h(y,A) >0}
Yy
={AeR?: A >0,A2>0,\#0}

As in section[A.2] we have the following lemmas:

Lemma A.2.a.
max L(A\) = max L(\)
A1 >0, AER 2
A2€R

Proof. Suppose X ¢ R,. Then, there is a yo € D such that h(yo, A) < 0. We know that for any M > 0, we have a measure

Ky € MT(D) such that
d:‘{M

dn
So, we must have that supp(kar) = {yo} U supp(n).

kv (yo) = M, (y) = 1,Yy € supp(n)\{yo}

205, = [ e (G200 )an() + [ B Ninas(3) = 2z =
=n(yo) log < 5\4)> + Mh(yo, \) + /supp(n) h(y, Ndrar(y) — Mz — A

Now as M — oo the first two terms tend to —oo while the other terms remain bounded and we obtain the desired result. [

Lemma A.2.b. For A\ € Ry, k* € M (D) that minimizes L(x, \) satisfies supp(n) C k* C supp(n) U Z(N).
Also, fory € supp(n), h(y, A) > 0, and

dr™ 1
dn M+ Xy
Proof. Given A € R, the inner optimization problem is strictly convex in «. This means that a unique minimizer «* must
exist. This x* must satisfy for any arbitrary x1, k¢ := (1 — t)k* + tkq, w > 0.
t=0

Let us define £(t) := L(x¢, A) which is

£ = [ s (G Jan + [ 1w Ndw) < e = 2o

Then,
dL(t) / dn
= - )" () = s ) + [ Bl (s 9) = ().
dt supp(n) 4k
So,
dL(t .
EOl o[ haw )+ [ b )
t=0 D\supp(n) D\supp(n)
Now, A € R? guarantees that L (0) > 0. This completes our proof. U
Note that if y € Z(\) theny = —52 if — )\ € D. But because A € Ry we have f% < 0 and hence Z(\) = ¢. This

implies supp(x*) = supp(n) with the mean and probability conditions
nj

1= —_—

zj: (A2 + Ay))

Yin;
T =
Z (A2 + A1y;)



These imply 1 = Ay + A\jz. As Ay > 0, we have \; < % Thus, denoting the optinal A; by A}, we get that

znf na Zn] log (xfyj))

with 0 < A\ < 1/z and the mean equation

Z i yJT]J

J zfy]))

A4 REFORMULATION OF THE LOWER BOUND

We can now use lemma 1 to simplify P; (see[7]of the main body) in the We observe that the objective
in P; is a smooth and strictly convex function. The optimizer, z; _, is therefore given by first-order stationarity conditions.
Using the dual representation, we can write this as

ZG’

wl)\Lh( te) —wiAp, (z7.) =0

i,e

where A7, , A7 - are as in lemma 1 and are functions of .. Now let us define quantities that are useful in reformulating 7P
to a form suitable for further analysis. Define

Kli =1- CC )\ ( ze)
Cli = >\L11( ?76)77a17
Ki = 14aj Ay, (27.),
Ci = A, (27 )y~
These quantities will turn out to have bounded limits as v — 0. The stationarity condition may now be rewritten as
Criwy™ = Cywiy™. (D
In the rare event setup, the tightness of the constraint in lemma 1 gives us that
71 D i s n g =50 iy
* a1;P15 Q5 PDij —a; Dij « j=1 Py
T, = = + By 1[1— Y — . 2
o ; Ky + Chiagg ; K; — Cja; ' Jz:; K; — Cia;; K; @

Since the primal optimizer has the same support as the underlying distribution in part (b) of lemma 1, we must have

i Py e Im R 3)
— Ki; + Cra; Ky,

From their definitions and from the stationarity condition, we have the following relationship between K; and Kj:

LetP; = [inf ]ICi(wl, w;, ) (see from the main body). We know from the Envelope Theorem that
TE i b1

dlCi(wl, Wi, {E)
dx

A (w1,wq,x)
dz

= 711)1)\[‘;1, + wi)\U; .
The first order stationarity condition = 0 implies that wy A Ly, = wi)\Ui* = ¢, (say). Let us define =} :=
arg minge,, .1 Ki(w1, w;, ). Itis easy to infer from our derivations of the KE 5 and Ky 7 expressions that

L (p,ag) = KL(pr, py))

. (%)
mf( x;) = K L(p;, ps)

K
K



where

ﬁ(i) _ P1j _ DP1j
W T ) T (- )+ 22
Bii = Dij _ Pij ©)
Yool (@ —ay ) (14 Lay) — L
We note that Eﬁgi) =E; = ;.
We can now express Ky; = 1 — %1,):2‘ -1, K;, =1+ %xj Cy = W C;, = % The following obvious
equations will be helpful.
1= 370 piy™
Kli = n (1) _o
1= i Py ™
=300 piy™
Ki= —r——
wi(l = Ky;) = wi(K; — 1) = ¢}
We also claim that
n
1- Zplj')/al < Ky <1,
= : ™)
1<KZ<|:1 YL g

max; ai; (1-327_; p1;71)

For the proof of the first claim, we see that K;; = 1 — ALL-x < 1 because 0 < )‘Li‘i < % =0 < )‘Lﬁx < 1.
The lower bound on K; is trivial.

For the proof of the second claim, we see that K; = 1 + j;—ac* > 1. We also have that w;(K; — 1) = ¢;z* <

dix* < dix; .. . 1< bs ik < K; it
K S TS e This implies that K; — 1 < T TS T S mazyan TS P As the final step, we
. . .. iRl
can conclude from the above chain of inequalities that K; | 1 — L X — | <1
max;a;; 1_Ej:1 P17

These bounds tell us that K;, K; — 1 as v — 0. Now, we can write P; in terms of K4;, K;, Cy;, C; as

o (1320 piyv™)
Pi =w1y™ |:Zp1j log(K1; + Chia1j) + . a11 - 10g(K1i)]
; Y
+wy™ [Zpij log(K; — Csa,;) + zy:all ij log(Ki):| .

J

The advantage of re-writing P; in terms of K1;, K;, Cy;, C; is that these quantities have bounded well-defined limits and
using equations (I),(2).,(3).(@). we can eliminate the dependence on z; (whose behaviour is not as easy to analyze when
~v — 0). The bounds on K; and K; will also help us to define the approximate version P; , of P; (see E] of main body).

A.5 PROOF OF PROPOSITION 1

Consider i.i.d. draws of the 7th arm. Define

1 . oy . )
Ti(j ) := the first time iy % is seen in arm .

Ti(f) := the kth inter-arrival time of a;;y~ %" in arm ¢.

Then, we have that
1 g n
P(rf)) > n) = (1= 7" p)



Clearly, the kth inter-arrival time is independent of all the previous inter-arrival times. Hence

P(ri) > i) = (1 — 4% i)™
Now setting nj = ty~* and taking the limit v — 0 we have
() -\ — i A Y
Jim P75 > ty™*) = lim (1 —9%pi;)
— ePiit

Now as the inter-arrival times are asymptotically independent exponentially distributed, it follows by the standard argument
that IV;;(¢) is asymptotically distributed as Poisson(p;;t). Note that the same argument could have been repeated while
assuming two or more support points as a set. We would then get that the count process for the set are asymptotically
distributed as sum of the individual Poisson distributions. From computing the Poisson mgf this implies asymptotic
independence of these Poisson variables. We omit the arguments as they are standard.

B PROOF OF THEOREM 1

In this section alone, we add the superscript e to C;, C'1; to prevent any confusion, since exact and approximate versions
are used simultaneously. Let Cf;, Cf, 2}, denote solutions inner minimization problem P;(w), and C{;, C{', z} , denote
solutions to the approximate inner minimization problem P; ,(w). We have already established bounds on K4, and K in
A.4. Tt is straightforward to see from equation [2] of the supplementary material and equations [T0] of the main body, that

0<Cy, 0 < %, 0<Cf < %, e < %. Using these bounds, one can easily use the definitions of mathcal P;,

P; o to conclude that P;, P; , = O(min(w1y®, w;y*)). hr% Pi — 1. becomes an immediate conclusion.

To establish the bound on |P; — , we’ll follow three broad steps: showing that the solutions to P; also ap-
proximately solve P; ,; showing that solutlons to P; and solutions to P; , are close; using the Lipschitz property of ICiLn 7

and Iggl ¢ along with the triangle inequality to connect the bounds derived in the earlier steps and arrive at the proof. I@fn ¥
and IClU 7 are defined as follows:

~ o aiip

Kinp(z) =~ 1( E p1;log(l + zai ) ZE 1 _112611]1 )
; J
J

Ko p(m, z) =y <Zpij log(1 — zai;) + Zm)

J

Step 1: Solutions to exact problem approximately solve approximate problem

Bounds on K7; (see[7) imply that given any e > 0, we have y small enough that K; > 1 — €. Then

log (L€ Clitss ) oo (Kui £ Chians )y
1+ Chal] - 1+ Chalj -

By Mean Value Theorem (MVT), we have that

| (1—6+Cfia1j)> €
og [ —— 1 Z1i7lj -
g 1—|—Cleia1j - ].—6

and hence,

—— < log(Ky; + Cfyary) — log(1 + Cfa;) < 0.

Thus, for small enough v, log(1 + C§;a1;) = log(K1; + C§aq;).
Using the fact that Ky, = 1 — C;z7 .y, we get

log(Kli) (1 _ E)Ce *
A

1:% i€

(1=~ ) p1j)



when 1 > 7. p;; < e. Similarly, we have

(1 _ ,Yozl Zpl' log(Klz) > Clzmz e — —Ce'l'ik (0167 z; e) 70“
! ’70“ 11— Clgz ;ﬂ,e’yal b 1’76 1- Cfl ze’yal

J

log(K71,) —C¢.x

*
vl 1:T i,e’

= _Z a15P15
R S G TUY

Thus, for v small enough, we have (1 — v Zj P1j)
mass on the upper bound B; and hence

In ICiLn  (from Lemma 1b), p has no probability

This gives us
(Zj b1y )2

]Czn Cei _ICZLn Ki?Cei §2,y2(¥1—
8 C1) = Ky B €| < 2920 S

Bounds on K;, imply that for any ¢ > 0, we can choose v (again independently of w) so that K; < 1 + e.
Then,
1+e+ Cfai ;
0 <log(K; + Cia;j) —log(l + Cfa;j) < log (W)
Now, from MVT we have

€
log(1+ ¢+ Claij) —log(1 + Cayy) < g = <

Thus, log(K; + Cfai;) ~ log(1 + Cfa;;) when v is small. From K; = 1 + Cfx} v, we have

€

Cext

i Yi,e 1Og(1<z)
1— 1 [e%] E i < Ox*
( )l-l-Cex Rt < ( v : pij) o = iTie

when 7 < e. Thus when y small, (1 —~v% . p;;) log(Ky) Ctx}

Yy 1,e°
We thus have the following bound:

251 20
mdxa” Y

1— £ _qai (Zp” maxaw>

rnaxau

KT, (K, CF) — KU, (a5, CL9)| <

It may be noted that the bound does not depend on w, which give uniform bounds independent of w.

Step 2: Solutions to exact problem are close to solutions of approximate problem

So far, we have shown that the CT;, Cf and z7 , that solve the exact problem are also good solutions for the approximate
problem. However, the solution to our new approximate problem will be C7;, Ci* and z; ,. We’ll now show that this
set of solutions to the approximate problem indeed approaches the set of solutions to the actual problem at the rate of
,ymin(2ai,ai+a1) as y — 0.

‘We have that
x a15P15

i,e (e ¥ A e )
s 1= CYzy ™ + Clany

n
= Z a15P15
T,a
=1 1 + Chalj

Z

Note that the above two statements imply that Cf; and C, are bounded above by J Pli We collect the following established



results:

Cii _ C1; _ wiy™
Cs Ce wyy’
1
SFy(y) > Cf = —
T;e 0(7) % B, — xf,e’yai ’
1
l’*a > Fo(O) = Cla = —,
B;
i, < F(y) =z, = z”: ijDij
e — 1,e J - 1 + Cem ’70“ _ Ceal_]
- . N~ GiDij
x aﬁFg(O)ixiﬂ Zm
J

where F() is defined in RemarkiA.1.2

the solution to the exact and approximate inner optimisations are close when v is small. We break the analysis into the

following four cases.

Case 1. 7, < Fo(v), z]

i,a

< Fy(0).
We have that

n
* *
xi,e - xi,a - E

j=1

In what follows, we shall let b; = mina,;;. We shall now establish that, for all w,

ajp1;(1 — Ki; + a1;(CY; — CF,))

(14 Ca15) (K + Cfja1)

j—l
_ Z aljp’bj — Qi (Cf = CR))
C’“a”)(K C alj)
Splitting terms from the numerator and using = c;, = gi:; = ;”1321 , we get the following:
~ wlfy
A(l— Ku) + B(1 - K;) = A(Cy; — C1) + B - (Cf —
where
- a1;5P1j
A= JE1y
; (1 + Clza’lj)(KU + Clza’1J>
n 2
3 a1;P15
= > b A
; (1+ Cfa15) (K + Cfiar;) — '
N QijPij
B_E:(—m--x—c@
j=1 i a"bj)( 2 i al])
B _ zn: ;52 Pij > b;B
j=1 (1= Cfaij) (K — C a1j)
Therefore,

0161‘ - Cﬂ =7

Using equation (@), we can write that

ci-cti= (5

Awi'y"‘i + Bwl'yo‘l

Aw; + Bwq
Aw;y®i 4 By

)7‘”(1 — K1i).



Following this, we can use the lower bounds on fl, Band K 1; to conclude that

E:'plj :
e _ ol < (2P ) min(ar,a:)
‘Clz Clz| — (mln(bl,b»)v

This also tells us that Z
* o 1 pl] a1 Ao
|xi,e - <Zp1]7 t+ by A by — " )

And using a similar computation, we can also prove that

min oy,

M1y
cs—-Ce )
= il= min(by, b;)(b; — p1y™)

Case 2.z, > Fy(v), 2}, > Fo(0).

In this case, we can say that

x¥

o) _cap= —__The e
| ? 3 | Bl(Bl _ l’;e’yai),y

‘We also have that

n

* Z a15P15
€. =
v,€ wz’Y i

(e)
i e e ;" (a1 — o ™)
n
% a15P14
xi,a = Z iy :
— 1+ ;011“1 Cfalj
Subtracting the two gives us that
n
G15P15 aljpljtul ;
|:C;ke - a| Z P Z ’Ya :
oy Bi(ai; — p1y®?)

The above relation, along with the relation between |Cf; — C{;| and |z}, — x| as outlined under Case I, may be used to
prove that
|CF; — O3] < Di’me(al’ai)

where D; is constant depending on arm p;.

Case 3. Fy(v) <z < Fy(0).

i,e7 i,a —

A direct conclusion here would be

. . B; "N @iPij \2 .,
‘xi,e - in,a' < |F0(O) ( )| =14 ryaz E a.”_pa” (Z BZ — aij) ryo‘,
ij

j=1

We have that

oo ox zn: a1p1j (1 = Kui + a15(CY; — CFy))
" (L ) (K + Ciag)

whence we can conclude that

(27 — 5ol + COat 30 arjpiy™)

s

G — Ol <

bipi
1+ B, C'(a)

=[Cf; — O] < Dyymin(eaed)
where D; is again a constant depending on arm p;. Lastly, we can show that
2
ce— Ly UZb/B) b"/B")Bi< il ) i
B; bz‘/h‘ 5 B; — Qi

1 M1 )
ol [P R L SR
I Bil = Bi(Bi — p1y*) i



to conclude that

oz - ezl < S
bipis

Case 4. v, < Fo(v) < Fp(0) <z}

z,a°

We first show that 1/B; < Cf. Suppose this is false. Then, C{" =

w1, w; and v, we have:

Cli 2 O = xj, > Z
J

@ijPij

Bi—aij) v o Bz(Bz_

a15P15
1 + Cfialj

/’[’1 (673
— N
py*)

a1;5P1j —

; 1+ Cfialj ha

But this contradicts the hypothesis of this case. Hence we must have have:

1 1
—<Cf< —
Bi v Bi — I;e’yai
As C¢ = 4, from above we have
P GGy, T
ce oy - B; — a} >
And we can conclude that "
Cf — O] < ————
| A 1z| — Bz*,ul’}/alry
o crl < (2 pidm
1i 1il S~ R
pi(Bi — pay®i)
22
|xz,a - xze| S MZ Bl ,ymin{ozl,oq}

This completes the analysis of the four cases and shows that C{;, C¢, x}

— M

. are close to CY;, C¢, x7 , when +y is small.

Step 3: Connecting solutions to exact problem and solutions to approximate problem

We concluded in Step 1 that
|Kznf (Clez)

and in Step 2 that |CY; — CF;| is related to [z} , —

Cl; = O] <

- ’CiLnf<K1i7 Cp)l < 292

* * e * (e
|2} e — @f o + 225 a1p; CFaf /™

(>2;p15)?
=22 pyr™

x} .| by the equation

‘x;ﬁ,e - x?,a' + p1 Zj plj,‘/al

2
ay;Pij

J (1+C7;a15) (140 (a1 =27 . y*1))

‘We have:

a; a15P15
J

b
/J/2<1+Bl Eiplj/ﬂz)

2
Z a1;P1j ZZ ai;P1j
— 1 — zaq; — 1 — zaq;
J J J J

Now, the derivative of ICm # can easily be bounded above by 711y**. This leads us to the following conclusion.

(13 By

3
o+ i+ B

“biAb;

|’C1nf(cfz) ]Cinf(cin S

piby

where we have used the inequalities CY;, CY; < Z p“

‘We thus have,

|’CiLnf(K1i,sz) ’Cmf(cfi)\ < |K:iLnf(K1ivclez)

b;
p

Kznf(clez>| + ‘K:znf<clez)

)(b_ 1 a~)'}/a1/\a1
i —H1Y T ‘|"}/a1 _ 0(7(2041)/\(o¢1+ai))

Kby

and b; Z 1 < 1.

K”lf(ciliﬂ < Lli’y(2a1)/\(0¢1+a,~)

1/B; > Cf. From equation for fixed



where Lj; is a computable constant, and Ly; y(2aA(@tai) can be computed by adding the bounds on
‘ICanf(Klla Clez) ]Cznf(clel” and ‘Icznf(clez) ICznf(Cilz”

Similarly from Step 1 we have:

J 50 720@
maxa”

|’ngf(K2’Cz) ICinj( ze?Cze)‘ 1_ i <Zp3

mdxau

maxa;; >

To upper bound |7, (K, Cf ) — lCmf( T CHIs
was bounded. We first use the triangle 1nequahty to make the following split.

|]Cznf(K1iasz) ’Cznf(cilz”

"Cglf(K”O1) ]Cmf( 1aaca)| < |’C1nf(K7'70'e) Icmf( zevce)‘+|lcvnf( ze?Cze) Icmf( ze’cf)|

+|]Cznf( 1evc7fl) ,Cinf(‘r;avcg”

In the right hand side of the above inequality, the bound to the first summand was already obtained. The second and third
summands can be bounded above by showing that X, 7 is Lipschitz in both its arguments, the Lipschitz constants being
computable ones. Thus, we have

|IC177f( 7?706) ,Cznf( 1€7Ca)| <7 (lulilulﬂcleiczal
pa(pa — p2) (a14ai)A(20:)
(b1 A bi)(bi — pay™)

(Bi —bi) (11 — p2) (Zn a1P1j )2 20,
’y “.
L Bi — Q45

bipti =

IA

_|_

The bound in the first step was derived by bounding the partial derivative wrt z of ’6% f (m, z). Similarly bounding the
partial derivative wrt m gives

*

; xi,e ‘Ti’a
|’C”7'f( Ze’cla) IC’Lnf( zavCa)| < LT

|z} . — 2} ,| is bounded above by the maximum of the upper bounds derived in the four cases of Step 2. We can therefore
conclude that,
|’C17Lf(Ki;Oi) ICznf( zaaca)| <L 7(a1+a1)/\(2a1)

where L; can be computed as described above. The upper bounds on |ICmf (K14, CY;) — ICmf(C’fi)| and |ICmf(Ki, ce) —
KU (@} 4, CF)| give us the proof of Theoreml The upper bound on [V*(p) — V.*(p)| can be inferred immediately.

C PROOF OF THEOREM 2

The proof goes through the following steps: first we analyse the behavior of equation (T2) and derive some constraints it
imposes on the asymptotic behavior of C¥;, C; utilising this, we then analyse the behaviour of equation (11 and finally get
the five asymptotic regimes noted in the Theorem.

Step 1: Constraint imposed by equation (I2) in the asymptotic behaviours of C;, Cy'.

We first observe that C'; — 0,C? — 0 as v — 0 cannot happen for any ¢ € [K]\{1}, because then equation [10] would
1mply that n1 = Z?:l ai;pij = Z?:l QijPij = -

Equation (I2Z) from the main body can be re-written (using envelope theorem) as
wiy®™ (Zpu log(1+ Cfiar;) - Cx) wn® (Zpij log(1 — Cfay;) + Cﬁxi‘,a)
J J

iy (Zplj log(1 + C%ar;) + Cfixz,a) - (me log(1 — Clar;) — C?xz,a)
J

J



for all i # k, i, k # 1. Using equation w; C{,v** = w;C{v**, we can simplify this equation to

a Cai a
2.5y log(l+ Cany) + 2 305 pijlog(1 — Cilayy)
a Ca a
225 prjlog(l+ Clyany) + 2 32 prj log(1 — Ciag;)

-1 )

for all ¢ # k. We also re-write (I0) from the main body as
a15P14 @ijPij
= ) 10
Zl+0u% %:1—05% 1o
Now, we analyze the asymptotic behavior of equation (9) as v — 0 on a case-by-case basis.
Case1: CY;, — A{(>0),C; = 0;CY, = A3 (> 0),Cr — 0.
Taking the limit in equation (9) we get

> p1jlog(l + Cfyan;) + %; > pijlog(l — Cfaij)
72037 piylog(l + Cfyais) + ca > prjlog(l — Clak;)
_ Ej pijlog(l + Af;a1;) — A, Zj @ijPij
> p1jlog(L+ Afyay;) — ASy 305 akjpr;

Taking v — 0 in (2)), we have that
TR
1+ Alzalj - A

Q1P
a
Z 1+ Ajpay; Z kiPki

Hence,

> fi(Axi)

> filAw)
where f;(z) := p1;[log(1+aq;x) — If;fju ]. It is easy to check that f is a monotonically increasing function, and therefore

the above equation must imply A;; = A;x. But this also means that p1; = g, which is against our assumption of all means
being distinct.

Case2: C; — A1;(>0),C¢ = 0,Cf, — 0,CF — Ap(>0)

As in Case 1 we take the asymptotic limit on[J]to get

L b 2 p1jlog(1 4 Cian;) + %Z > pijlog(l — Cfay;)
10 Z p1jlog(l+ Cfpay;) + C” Z prjlog(l — Clag;)

— im Ej p1jlog(l + Af;a15) — Af; Zj @ijPij
17037 pijlog(1 + Cfrany) — % > Prjlog(l — Afa;)

which is impossible, because the denominator of the right hand side approaches 0 as v — 0.

Case3: CY, — A1;(>0),C¢ — A;(>0),Cf. — 0,CF — Ai(>0)

‘We have that
- > p1jlog(l+ Cfian; Z pijlog(l — Ciaij)
= l1m

)+

4—0 Zj p1jlog(l + Cfaij) + C’“ Z prjlog(l — Clag;)
)+
) —

— Z'plj log(l + A%ialj IOg 1— A7 a”Lj
= l1m

(
=0 Z p1jlog(l + Cfyai; Z prjlog(l — Afag;)




which is impossible, because the denominator of the left hand side approaches 0 as vy — 0. That only leaves us with only the
following three possibilities.

Case d: C — Ay;(#0),C% — A;(#0),C% — Ap(#£0),C8 — A(# 0)

From[9] we know _
>, pijlog(l+ Cfyar;) + wilar 30, pijlog (1 — Ciaij)
550 > p1jlog(l+ Cfyaij) + z’;z:’f >, Prjlog(l — Clag;)

which cannot be ruled out as an impossibility.

Case 5: CY;, — 0,Csa — A;(#0),Cf, — 0,C¢ — Ap(#0)
Using Cf;wiy® = Cwiy™ = A; Vi # 1 on[J]gives us that

log(1+C aij log(1—C,aa;j)
Cﬁz p] 14 J +E] l] Ca7 ij

73% C“C Z] 1 1og(1+clkalj) N Z log(l C(i Cany)
— lim Cf’l < Z a15P15 + Z pl] IOg( — Aiaij) > 1
0 Cip \22j a15p15 + 22 Z,ZC,Z log(1 — Agax;)
a )1 s Prj _ .
- lim Cll _ Z] aljplj + E] AL log(l Akak])

7=0 Oy > a1p1y + & log(1 — Ajasj)
C“wifyai . (Z ai;p1j + Z Bes log(l — Akakj)>

= lim
Zj aijpi; + Zj IZ: log(1 — Aja;j)

=0 Clwgy™r -

Case 6: CY, — A1;(#£0),C¢ — 0,Cf, — A1(#0),C¢ — Ap(30)
Using Cf;wiy* = Cfwyy™ = A; Vi # 1 on[J]gives us that

co X, p; log(1+Cha1]) Y log(1—Cas)
S50 cu >0 log(l-‘rClkalJ) 0 log(l c akj)

- Z]‘ D1j log(l + Ayia1;) — Aulh‘

_Zj p1jlog(1+ Aigary) + 4 3 pr;log(1 — Ayay;)

=1

Step 2: Analysis of equation[TT] of the main body.

The Envelope Theorem guarantees that equation [TT] of the main body can be rewritten as

L KL(p, ) i Y (32, prjlog(l + Ciar;) — CF; 32, a1;p\}) . an

 KL(pi,p)) = (2 pijlog(l — Cfay) + CF Y-, aijpi)

because BP“T(UJ) KL(p1,p%) and M(@) = K L(p;, p;). We shall use this form of equationto derive expressions

for w;, ¢ € [Kl J\{1} under the following cases:

Case 1: a1 # g,

Case 2: a1 = Qupag > @4, Vi #£ 1,

Case 3: a1 = a9 = Qpaz > @, Vi # 1,2,

Cased: a1 = a = Qnaz > @i, @ & {1,2,k}, Qmar > @z and ¢ > 1
Case 5: a1 = a = Qunax > @i, 1 ¢ {1,2,k}, Qpae > @z and ¢ < 1

where (g := max; o;. We shall first show that Case 1 is equivalent to Cf;, — 0,C% — A;(# 0)Vi # 1



For the “if" direction, let us assume that o; > «; for all i € [K]\{1}. In the limit as v — 0, we then get
that

=1=0=1

X KL(pl,]Sgi)) _ i Y (32, p1jlog(l 4 Cfa15) — CF; 3, aljp( ))
K L(pi, pi) Y (22, pijlog(l — Cfag;) + CF 3 aijpij)

which is an absurdity.

=2

For the “only if" direction, let us suppose that for some k& € [K|\{1}, a1 < oy. If C} — 0, from our analysis
in Step 1, we can conclude that C'{,, — Ay (# 0). Therefore,

an—an (32, p1jlog(l + Cfyars) — CF 32, aljpu )

" —oo0asy —0
(22, prylog(1 — Ca;) + CF 325 ar;jpr;)

K "1, puylog(14+CYia1,)—CF; 325 avpyy)
=2 7% (32, pij log(1+Cf aij)+CF 305 aijpij)

contradicting > =1

From our analysis in Step 1, we can conclude that Cff — Ag(# 0) implies that C¢,, — 0 and consequently,
Cy, — 0,08 — A;(#0) Vi # 1.

Let apmay = o Since Cf; — 0, C¢ — A;(# 0) Vi # 1, we can use Taylor series expansions to write

K (3 pylog(1+ Cyary) — CF Y, a1 )

lim =1
¥—0 P Pyai (Z] p” 10g(1 + Cfaij) + CZ Z] (L”pw)
K (G5, a1 o —a
= lim 2 -1

v=0¢ (Z pijlog(1+ Cfaij) + CF Z @ijPij)

We know that Cf; = C¢ 2% This substitution will give us

lw'yul

lim 2 — <z) ,yOli—Otl =1
=0 (Zj pij log(1 4+ Cfa;j) + CF Zj aijPij)
K 2 (0’5, adp1;
= lim M, <wl> *7 = 1; where M, := 2
il =) 7 = LW i = - - _
0 wy (32, pijlog(l + Cfaj) + CF 375 aijbij)

If o < al, then AT must go to oo as 7 — 0. But M; being bounded and MZ(
(1) e = My(G) () = 0asy = 0.

2 .
31) y®~e1 < 1 implies that

w;

wl_Mfy

N2 o P
1) yoimon = \f, Sk wevTh wi _yopoo£ a5y — 0. Let us choose an € > 0

L OF T wiy™i T wy

such that L; — e > 0. Then for sufficiently small v, we get wjy** > (L; — €)“2 “’”al . But due to Mk(ﬂ)Q'y“k—al <1,we
must have (L; — 6)21\/Ik YOI < My (wl)zvak’al < 1. This implies that w; > (L; — €)v/Myy = . But we cannot
have w; %ooas'yﬁo

If a1 < a; < Az, let us suppose Ml(ﬁ

We are thus forced to conclude that only those values of ¢ for which a; = aune, Will contribute positively to the
2
sum ZZ o im0 M; (wl) AT

For ¢ such that oy = a@umas, as v — 0, let Mi(ﬂ)%yo‘i*‘ll — L; # 0. Therefore, in the limit,

Smax — D‘l

w1 'y 2 . This also gives us that as v — 0, for all s,¢ such that oy = & = maz,

ws ML Z psjlog(1+Asas;)+As E Qs;Dsj
Wi M, L, L,, Z pj log( 1+Afat])+AfZ atjPtj




To approximately solve our maxmin problem, we do the following:

M, a'rna.r

Let us fix a k with o), = 4, and set wy, = 1. Then, wy = . For the other 7 such that o;; < a4z, USING

Ly,
¥, aupu+3,; Y log(1—Arar;) Ap 3, a1;p1;+32; Prj log(1—Agak;)
Clw;y©i Clw we get that w; = 2 2 LI
@ Wity Z] (11];01]—&-2] p‘i] log(1—Ajaqj) k k,Y ’ g v A; Z ‘1111?13"'2 pijlog(1—A;aij)
Note that A; may be obtained by solving pu1 = 3, % For any other s with oy, = Qunae, We have
S psjlog(1+Asas;)+A ; @sjDsj :
Wy = 2y Py 0B (It Asae) T A 3 asjbeg We use this to evaluate Ly for each “rarest arm" and finally nor-

22, Prjlog(l+Agar;)+Ak 32, ak;brj *
malize the weights obtained to lie within [0,1].

Special case: If there is a unique k with ax = Qunag, then our analysis tells us that Ly, = 1. Our approximate
Ar 25 a15P15+2 ;5 Prjlog(1-Akar;) o) —q; for
Aid>oja15p15+>0, pijlog(1—Aiaij) v

solution then becomes the normalized form of wy = /My~ 2 tw =
1# k, 1, and wy, = 1.

Before starting on rest of the cases, we’ll introduce some additional notation that will be of importance. Let us
revisit the following function introduced in section [3.1]

() = 0Py _ijPij
gz<x) {y'zj:1+ya1j zj:l—xaij}
Clearly, g; is decreasing in x, and gi(Ay) = A1x. We now define f; (x) as

fi(z) = Zplj log(1 + gi(z)ai;)
J

;i log(1 — za,j)

fi can also be shown to be decreasing in x and increasing in g;(z). Further, we define h; as follows.

¥, o1y log(1 + gi(w)as) — gi(x) Y arspy)
Zj pij 10g(1 — xaij) + xaijf)ij

hi (.’E) =
It can be showed that h; is a decreasing function of x.
We can now turn our attention to Case 2.

Since a; = Qupqy Uniquely, in the sum

S S, P log(1+ Cliary) — O 3, i)
=2 10 7a7(2 pijlog(l — Cfa;j) + C¢ Z a;ijPij) ’

if we do not have C}} — 0 as y — 0 for some k, then the sum on the left becomes equal to 0, which would be a contradiction.
We also note that there will be exactly one arm k where C2 — 0 as v — 0. Let us separately examine this k™ summand.

lim (Zj p1;log(l+ Cpaiy) — CF Zj aljﬁg?)’yal_ak — lim Q(Ej p1jlog(l+ Cfrai;) — Cfy Z alpu ),ym—ak
720 (32 prjlog(1 — Cas) + CF 32 anjpr;) Y0 (CP)? 32, aijpr;
Since this term needs to be equal to 1, we must have
a\2 a \2,,,2,0r—Q1 . a2 . .

lim 7(5’1 )a — fi (Gl 7 - 2. TPk G

Yooy 20 wy 2(3; p1jlog(1 + Awparj) — A 325 a1;py; )
This suggests the following form for wy.

1 Zj aijpkj o —og o —og

Wy = w1y 2 (= Mgury™ 2 )

Atk 2032, p1jlog(l + Arkarj) — Ak D, a1gp1j)



We shall now establish that k = 2.

It can be understood that g;(x) is the factor by which the mean of arm 1 is reduced to -

clude that g»(0) < ... < gk (0), implying that f2(0) < ... < fx(0).

Hence, we con-

Observe that (8) can be expressed as (as Ay = 0)

fi(Ai) = fi(Ak) = f1(0)
If £ > 2, we have fa(A2) < f2(0) < f%(0), giving us a contradiction. Hence, k = 2.
Since for every other arm 4, C¢;, — A1;(# 0) and C? — A;(#£ 0) asy — 0,

Ay
a1 — Oy
w17y

A;

w; =

where Aq; and A; can be obtained by finding the unique solution to

> p1jlog(l+ Aisarj) — Ar2 )2 asjpa;
> p1jlog(1+ Avsan;) + 55 3 pijlog(1 — Azaiy)

a15P15 - Q5 PDij
Z 1+ Ajiaq Z 1 — Aja;

J J

=1

and

the latter equality following from the limit form of the mean equation. We can then use the same normalization technique as
in case 1 to find the optimal weights.

For Case 3, if C¢y — A15(#£ 0),C§ — 0 as v — 0, we have

(i _(2
- (32 p1jlog(l + Ciaar;) — Cfy 3, aljpgj)) o1z _ fim 2032, p1jlog(l + Clharj) — Cfp >, a1jp§j)) o

=0 (32, p2jlog(l — Casy) + CF 3 asjpa;) 7=0 (C$)232; a3;pe

which is impossible, thereby guaranteeing Cfy, — A12(# 0),C§ — Aa(# 0) asy — 0, and we = %wl. This will enable

2
us to find wy as described under case 2.

As already argued in case 2, C§ — Az(# 0) as v — 0 means that C* — A;(# 0) asy — 0 for all i # 2.
Therefore, we must have

i Y, p1jlog(1+ Chary) — Cy X, a1

i — =1
7=0 32 pajlog(l — Clag;) + CF 3 azjpa;

where Ay; and A; can be related by

>, p1jlog(1+ Ausary) + 52 37 pajlog(1 — Asaz))
> pijlog(l + Avzar;) + A,Tlf > pijlog(l — Ajasj)

=1 (12)

and using the mean equation,
a1;5P1j Qi Pij .
—_— = —_— VZ
Z 1+ Alialj Z 1-— Aiaij

J J

Let us denote these by A3(A12) and A;(Ap;). Substituting them in and using the defintions of f;, we have
f2(A12) = fi(Aw).

Each of these f;’s is increasing in Ay;. Thus we have A1; = f; ' o (fa(A12)).

3

Using this, we can solve for A, from equation [TI] We observe that each summand in [T1] is an increasing func-
tion of Ay; and hence A;2. So a simple efficient scheme to find the solution is to first guess an A;2 and then use a simple



bisection method to numerically get Ay;’s for this guess. The mean equations can be used to get the A;’s. Finally, we check
if [T1]is satisfied (upto tolerance). If LHS of [T]is greater than 1, then we halve our initial guess, and double the guess if
lesser than 1. And repeat the earlier procedure till error tolerance is breached.

It only remains to consider Cases 4 and 5. We have already argued under case 3 that C} — Aj(# 0)asy = 0
whenever ; = uyq,. Corresponding to any such A;, we can write all other A;’s in terms of A;. Let us define §;;(z) as
follows.

p1;log(1 + gi(y)ar) +pi% log(1 — ya;)
Sij( ): Y- 9;(2) =1
p1jlog(1 + gj(x)ar) + p; #~ log(1 — ya;)

Let us now define ( as

Ci= ) hi(ée(0).

{k:k#1,

Ak =Qmaz}

Equation [IT]can now be re-written after taking the limit v — 0 as

Do (Ar) + lim (v hy(CF)) = 1
(kik#1, K

ap=0maz}

The issue now is to determine if C§ — 0 as v — 0. We have observed earlier that h;(A;) is a decreasing function of A; and
the bijective map ;2 implies h;(4;) is also a decreasing function of A,. Thus, we have

(> > Tw(Ap).

{k:k#1,

ap=0maz}

If ¢ > 1, then equation [l 1| can be satisfied only when C§ — A, (> 0). Because otherwise, the first term itself would
contribute more than 1 and we’d have a contradiction. Similarly, when ¢ < 1, we must necessarily have C§ — 0.

In the case when ( > 1, the A;, Ay;’s are determined exactly as in 3. If ¢ < 1 then A;, Ay;’s are determined
exactly as in Case 2. This completes our proof.

D THE MEETING POINT OF THE MEANS IN THE APPROXIMATE PROBLEM

Equation (I2) in the main body and the Mean Value Theorem together give us the following chain of equalities/inequalities.

> prjlog(l + Ciea15) — Cusfis

i=1
< i:m ilog(1 + Cisa1;) — Chs z”: L
— . J J . 1 _ Csasj
Jj=1 Jj=1
n C n
1s
S;plj log(1 + Cisa15) + . Zpsj log(1 — Csas;)
n C
= iy log(1+ Cryany) + Zptg log(1 — Cyayj)
i=1 i=1

n
<> pijlog(l + Crany) — Crapn
j=1
Regrouping terms among the first and last quantities of the above chain gives us that

Clt 1+ Cray .
It J s
Cls N Cls ;plj Og(1+clsa1] +M




Note that log (TFgH24) = log (1 + {G4=F1)40) < (O, — O1,)jis, and hence, Sitpry < St iy, iee., pry < fis.
sQ1j sQ1j

We conclude from the above analysis that Vs, t # 2, fis > s = Vs # 2, fis > .

E PROOF OF §-CORRECTNESS OF TS(A).

Let the set of all possible bandit hypotheses be . We have H = U;H;, where H; denotes all bandit instances with arm ¢
having the highest mean. Let i(7s) denote the recommendation of TS(A) at the stopping time. The error probability for a
bandit instance p with arm 1 having the highest mean is given by:

Py (15 < 00,i(15) # 1) < Pp(3t € N:i(t) # 1, Z;,) () > B(t,9))
=P, (3t € N:3i # 1A(p) C H,)

where A(p) := {p’ € 7‘[|bf£j(n)N2(t) (OKT Bay (1), 15 ) + No(6)KT, (Do (t), 1) < B(t,0)}. This implies:
i(t

'Ii(t)
P, (15 < 00,i(75) # 1) <P,(3t € N:p ¢ A(p))

=P,(3teN: N (OKE (Br o (8)s 1z 0) + No (K, (B (t), ) > B(t,6
o ( IL’ZZ(CL) (t)() f(p,(t)()u,(t)) b(t) f(Pb()Mb) B(t,9)) (13)

< ZP 375 €N: N(t)( )Kil;),f(ﬁi(t)(t)vﬂi(t)) + Nb(t)ng,f(ﬁb(t)aﬂb) 2 5(7575))
b#£1

Now a concentration inequality for the above quantity was shown in|/Agrawal et al.|[2021]].

Proposition 4.2 in/Agrawal et al.|[2021].
]P’(Hn eN: Ni(n)ngLf(]ﬁi(t)Mi) + ’Cfnf(ﬁj(t)7ﬂj) >x+5log(n+1)+ 2) <e "
Substituting this in (I3) finishes the proof.

F SAMPLE COMPLEXITY GUARANTEE FOR TS(A).

We follow closely the section C.6.2 in|Agrawal et al.|[2020]. Let *(p) denote the optimal weights obtained as solutions to
the approximate problem described at the beginning of section in the main paper. Lemma 14 in|Agrawal et al.|[2020]]
then tells us that TS(A) ensures that for all arms ¢ € [K], % 3 0* (p) as | — oo. Recall from sectionof the main

paper that [ is the batch index and m is the batch size.

Define the following set
Z.(p) := B¢(p1) X ... X Be(pk)

where
Be(pi) :={pi : dw (pi, pi) < ¢, | — pa| < (Y-

Here, dyy is the Wasserstein-1 metric on probability measures and fi; is the mean of p;.
Whenever the empirical bandit p(lm) € Z(p), arm1 becomes empirically best. For € > 0, choose ¢ := ((e)(< #7£2)
such that

/ _ Aa'k <
g%\w( p') —wi(p) <e

forallp’ € Z.(p). For T € N, T > m, define {y(T) := max{1, Tm/ b, 0(T) := max{1, L } and (5(T) := [ L ]. Define
the following set

£2 (T) EQ (T)

o B {2

1=£o(T)




Define the quantities:
9(p,w) 1= minPy (w)

Cp)=inf Gl
p' €Z.(p)

{w'sjw —o* (@) <e}

where P;, was defined in equation [7]of the main paper. Now the stopping rule (see section[d]in the main paper) is given by:
Lo (l) > 5(lm7 5)
where .
Z+ (1) ::lgikn inf Ny« (Im)K35, ; (Pr~ (Im), )
+ Nb(lm)’cznf (pb(lm)7 y)

where k* is the empirical best arm and ((t, ) is the stopping threshold defined as

B(t,0) :=log <K_1) +5log(t+ 1) + 2.

]
Note that in Gz (¢) we have Zj.- (1) > Im x C.(p). Hence, in Gr(¢),
12(T)
min{7s, T} <m0y (T) +m Z I{im < 75}
I=01(T)+1
12(T)
<m(T)+m > HZ (1) < B(Im, d)}
I=01(T)+1
12(T)
1= ll(T)+1 m e(p)
C( )

Define Tp(d,¢) :=inf < t : m.l1(T) + g(( )) < t}.

On Gr(e), for T > max{m, To(4, €)}, min{7s, T} < T, meaning that for such 7', 7s < T'. Hence, choosing T} (d,€) :=
max{m, Ty(d,€) + 1, we get that Gr, 5.y (€) C {75 < T1(d,€)}. Then, min{7s, T1(d,€)} < T1(d,€) = 75 < T1(J, €). This
allows us to conclude that

E(rs) = > P(rs > t)
t=1
T1(d,€) oo
= P(rs >t)+ > Plrs>1)
t=1 t=T1(5,€)+1

<TG9 +mt 3 BEE(E)

t=m-+1
Now in the same manner as in|Agrawal et al.|[2020] we can show that
Z?inwrl P(gqq(G))
==l ———= — (). Thus we have for small enough ¢ > 0
log(1/0)
) E(7s) 1
lim sup < =
50 log(1/6) Ce (p)

But we observe that by continuity in €, when € — 0

Ce(p) — r&{lpb(w ).

To(6,€)
Tog(1/8) ' . ( j as & — 0. We invoke Lemma 32 in

Agrawal et al.[[2020] to observe that

Note by definition rbri??b(w*) < V*(p). This inequality shows that TS(A) suffers an increase in sample complexity but this

is expected to be small when +y is close to zero since then w*(p) ~ w*(p).
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ALGORITHMS IN LITERATURE

The following algorithm as per Even-Dar, Mannor & Mansour (2000) provides a simplistic approach towards solving our
problem, despite being highly expensive in terms of sampling complexity.

Algorithm 1 Succesive elimination (4)

A A L

Input: Confidence level §, Upper bounds [B;y~%];¢k].-
Output: Arm recommendation k*.

Sett =1,S5 = [K].
For all i € [K], set the empirical means jif = 0.
while [SI>1 do

Sample every arm once, update /il.

nt R ~t o log(4Kt2/5
Define fiy, 4, 1= maxii;, & := 4/ oe(sFE/0),
K3

For all i € S such that i, .. — it > 2&;, set S = S\i.
t=t+1

end while

Declare the surviving arm as the best arm.

The successive elimination algorithm performs poorly in the rare event setting because a less rare arm which does not have
the largest mean becomes likely to survive the elimination and be declared the winner. This is because the less rare arm is
likely to produce a nonzero sample, thereby raising its empirical mean, while the more rare arms are yet to turn out any
non-zero samples.

Agrawal et al.[[2019] describes the following algorithm to meet the lower bound on sampling complexity.

Algorithm 2 Track and Stop

AN e

19:
20:
21:

Input: Confidence level ¢, Upper bounds [B;y ™% ];c(x-
Output: Arm recommendation k*.

Generate | 7* | samples for each arm.
Set [ = 1. Im denotes the number of samples.
Compute the empirical bandit /i = (1) {ac|x]-
Compute the approximate weights w(/1).
Let k* = arg maxE[[iq).
a€[K]
Compute Z(k*,1, 1), S(Im, ).
while | < 2or Z(k*,1,1) > (lm,d) do
Compute s, = (1/(l + 1)m — Ny (Im)
if m > 3" s, then
Generate s, many samples for each arm a.
Generate (m — Y, s,)" independent samples from w(/2). Let Count(a) be occurrence of a in these samples.
Generate Count(a) samples from each arm a.
else
Solve the load balancing problem minimize max,(s, — $,), where s, > §, > 0.
Generate 5, samples from each arm a.
end if
l=1+1
Update empirical bandit /i with new samples.
Update Z(k*,1, 1), B(Im, &) and w(f1) .
end while
Declare k* arm as the best arm.

)"



https://jmlr.csail.mit.edu/papers/volume7/evendar06a/evendar06a.pdf 

H LIL-UCB, LUCB DEPENDENCE ON SUB-GAUSSIANITY PARAMETER o

H.1 LIL-UCB

UCB index in this case is given by

2(1+¢€)log (7(1“)51\]1'@))
Ni(t)

(14+8)(1+Ve)o

We have 0 = In[ax] B;v~ in our setting. Refer to Figure 1 and the discussion following Theorem 2 in Jamieson et al.
ie[K

[2014] for algorithm and the choice of 8 and e. Refer to Lemma 1 in|Jamieson et al.|[2014] for choice of o.

H.2 LUCB
The UCB index is given by
1 1 ( 5Kt* >
o o
oN,(t) B\ 45
o= m[a]?]Bify““ here. Refer to section 3.3 and Theorem 1 in|Kalyanakrishnan et al. [2012]] for choice of UCB index.
ic
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