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1 Proofs

In this section, we provide proofs for all of the theorems introduced in the main text. We begin with
a simple extension of the results of [3] for the Bloom filter false positive and negative rates. Then,
we prove our main claim, which is that the query time of our data structure is sublinear, given some
relatively weak assumptions on the stability of the query.

Theorem 1. Assuming the existence of an LSH family with collision probability s(x, y) = sim(x, y),
the distance-sensitive Bloom filter solves the approximate membership query problem with

p ≥ 1− exp
(
−2m

(
−t/m+ SLH

)2)
(1)

q ≤ exp
(
−2m

(
−t/m+NSLL

)2)
(2)

Proof. We begin with a brief explanation of the results from [3]. Recall that a distance-sensitive
Bloom filter is a collection of m bit arrays. Array i is indexed using an independent LSH function
li(x). To insert a point x into the ith array, we set the bit at location li(x) to ‘1.’ To query the filter,
we calculate the m hash values of the query and return “true” when at least t of the corresponding
bits are ‘1.’

To bound p (the true positive rate) and q (the false positive rate), we bound the probability that a
single array returns “true.” Since the arrays are independent, the number of ‘1’s follows a Binomial
distribution. [3] obtain their main result (Theorem 3.1, in their paper) using the Azuma-Hoeffding
inequality to bound the tail of the Binomial distribution. This is done for the Hamming metric, using
a specially-chosen value of t. We repeat their analysis, but for any value of t and in a general metric
space.

True Positive Rate: First, we will prove the bound for p, the true positive rate. Given a query y, let
py be the probability

py = Pr[bit at h(y) = 1]

∗Equal contribution.
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From Proposition 2.1 of [3], we have that

py ≥ max
x∈D

sim(x, y)L > SLH

Note that max sim(x, y) ≥ SH because there is a point x ∈ D with sim(x, y) ≥ SH , as y is a true
positive. Also, note that the Nm

len term (where len is the length of the array) is zero in our case, as we
do not perform rehashing. Finally, note that we concatenate L hashes so that the LSH function has
collision probability sim(x, y)L.

We use the Azuma-Hoeffding inequality as in [3]. Let B(qy) = Binom(m, qy) and observe that

t− E[B(qy)] = t−mqy ≤ t−mSLH

1− p = Pr[B(qy) < t] (3)
= Pr[B(qy)− E[B(qy)] < t−B(qy)] (4)

≤ Pr[B(qy)− E[B(qy)] < t−mSLH ] (5)

≤ exp

(
− 2

m
(t−mSLH)2

)
(6)

Finally, we have
p ≥ 1− exp

(
−2m(−t/m+ SLH

)
False Positive Rate: The false positive analysis is similar. Here, we have (again, from Proposition
2.1 of [3]) that

py ≤
∑
x∈D

sim(x, y)L ≤ N max
x∈D

sim(x, y)L = NSLL

We will use the Azuma-Hoeffding inequality again, this time using the fact that

t− E[B(py)] ≥ t−mNSLL

q = Pr[B(qy) ≥ t] (7)
= Pr[B(qy)− E[B(qy)] ≥ t−B(qy)] (8)

≤ Pr[B(qy)− E[B(qy)] ≥ t−mNSLL ] (9)

≤ exp

(
− 2

m
(t−mNSLL)2

)
(10)

Leaving us with the desired inequality:

q ≤ exp
(
−2m(−t/m+ SLL

)

1.1 Group Testing: Runtime and Accuracy

The first step of our analysis is to bound the true positive rate and false positive rate of our group
testing design. We suppose that the individual tests have a true positive rate p and a false positive rate
q, and that the tests are independent. Under these assumptions, we have the following result:

Lemma 1. Suppose we have a dataset D of points, where a subset K ⊆ D is “positive” and the rest
are “negative.” Construct a B ×R grid of tests, where each test has i.i.d. true positive rate p and
false positive rate q. Then Algorithm 2 reports points as “positive” with probability:

Pr[Reportx|x ∈ K] ≥ pR (11)

Pr[Reportx|x 6∈ K] ≤

[
q

(
eN(B − 1)

B(N − 1)

)|K|
+ p

(
1−

(
N(B − 1)

eB(N − 1)

)|K|)]R
(12)
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Proof. The procedure returns “positive” for an element x ∈ D only if all of the tests whose group
contains x return “positive.” Therefore, we will analyze the probability of reporting x ∈ D as
“positive” in each repetition (column) of the grid. We obtain the final probabilities using the fact that
the repetitions are independent.

True Positive Rate: If x ∈ K, then each group containing x returns “positive” with the true positive
rate p. Therefore,

Pr[Reportx|x ∈ K] = pR

False Positive Rate: If x 6∈ K, then there are two ways for the repetition to accidentally report x as
“positive.” The first way is for x to fall into a group that contains one of the |K| true positives, and for
this test to correctly report “positive” (which happens with probability p). The second way is for x to
fall into a group that exclusively contains negatives, but for the test to malfunction (which occurs
with probability q).

Let px be the probability that we report x in a single repetition. That is,

Pr[Reportx|x 6∈ K] = pRx
= pPr[x ∈ positive group] + qPr[x ∈ negative group]

The probability that x falls into a negative group is determined by the hypergeometric distribution.
Each group contains N/B points2 from the dataset, which we draw from a pool of N −|K| negatives
and |K| positives. Since we condition on x being negative, we draw N/B − 1 points from N − 1
possibilities, |K| of which are positive. Therefore, the probability that x falls into a negative group is
equal to the probability mass function of the hypergeometric distribution, evaluated at zero.

Pr[x ∈ negative group] =

(|K|
0

)(
N−|K|−1
N/B−1

)(
N−1
N/B−1

)
Which, after simplification and using Vandermonde’s identity:

Pr[x ∈ negative group] =

(
N−N/B
|K|

)(
N−1
|K|
)

Pr[x ∈ positive group] = 1− Pr[x ∈ negative group]

We wish to have an upper bound on both quantities, which amounts to having both an upper and
lower bound on Pr[x ∈ negative group]. We repeatedly apply the following inequalities(a

b

)b
≤
(
a

b

)
≤
(ea
b

)b
to get (

N−N/B
|K|

)|K|
(
eN−1|K|

)|K| ≤
(
N−N/B
|K|

)(
N−1
|K|
) ≤

(
eN−N/B|K|

)|K|
(
N−1
|K|

)|K|
or, after simplification(

N(B − 1)

eB(N − 1)

)|K|
≤

(
N−N/B
|K|

)(
N−1
|K|
) ≤

(
eN(B − 1)

B(N − 1)

)|K|
This yields the inequalities

Pr[x ∈ negative group] ≤
(
eN(B − 1)

B(N − 1)

)|K|
Pr[x ∈ positive group] ≤ 1−

(
N(B − 1)

eB(N − 1)

)|K|
which, when substituted into the expression for pRx , proves the theorem.

2We suppose that B evenly divides N for simplicity. We may accommodate the general case by replacing N
in our inequality with N + 1, which does not asymptotically change our results.
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We next bound the runtime of our method.
Theorem 2. Under the assumptions in Lemma 1, suppose that each test runs in time O(T ). Then
with probability 1− δ

tquery = O

(
BRT +

RN

B
(p|K|+ qB) log(1/δ) logN

)
(13)

Proof. We must query each group test, and then intersect all the candidate groups. The BRT term
is the cost of querying all B × R cells. To obtain the cost of intersecting the R candidate sets,
let Pi be the candidate set of the ith repetition and let ci be the cost of the ith intersection, where
i = {1, 2, ..., R}. The total cost is

ctotal =

R−1∑
i=1

O

|Pi+1|+

∣∣∣∣∣∣
i⋂

j=1

Pj

∣∣∣∣∣∣
+O

|Pi=1| log |Pi=1|+

∣∣∣∣∣∣
i⋂

j=1

Pj

∣∣∣∣∣∣ log

∣∣∣∣∣∣
i⋂

j=1

Pj

∣∣∣∣∣∣


because the cost to intersect two sets of sorted integers is the sum of set cardinalities, and we pay an
O(|P | log |P |) cost to sort a list of size |P |. Also, note that∣∣∣∣∣∣

i⋂
j=1

Pj

∣∣∣∣∣∣ ≤ |Pi|
because |A ∩B| ≤ min{|A|, |B|} ≤ |A|. Therefore, we have

ctotal =

R−1∑
i=1

|Pi|+ |Pi+1|+O(N logN) = O

(
RN logN +

R∑
i=1

|Pi|

)

Because each group has exactly N
B points, the value of |Pi| is

∑B
j=1

N
B 1(i,j), where the indicator

function 1(i,j) = 1 if the group test in row j and column i outputs “positive.” Under the mild
assumption that p > q (i.e. the true positive rate is larger than the false positive rate), this sum is
maximized when all |K| true positives are assigned to different groups. The expected value of this
sum is

µ = E[|Pi|] ≤ p|K|+ q(B − |K|) ≤ p|K|+ qB

We want to bound this sum in probability:

Pr

 B∑
j=1

1(i,j) ≥ (1 + ∆)µ


We use the simplified Chernoff bound for independent non-identical Bernoulli sums:

Pr

 B∑
j=1

1(i,j) ≥ (1 + ∆)µ

 ≤ e−∆2µ
2+∆

We wish to find the value of ∆ which makes this probability smaller than the failure rate.

e−
∆2µ
2+∆ < δ

∆2µ

2 + ∆
≥ log 1/δ

In our context, µ > 1 (otherwise, it is trivial to bound |Pi|) and we may constrain ∆ > 1. This yields
the inequality

∆2µ

2 + ∆
≥ ∆2

3∆
log 1/δ
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Therefore, we may set ∆ = 3 log 1/δ to get the following statement with probability 1− δ
B∑
j=1

1(i,j) < (1 + 3 log(1/δ)) (p|K|+ qB)

This bound on the intersection cost proves the theorem.

1.2 Bounding the Test Cost

In this section, we bound the runtime and error characteristics of a specific binary classifier: a
distance-sensitive Bloom filter. To distinguish between the K nearest neighbors and the rest of
the dataset, we apply Theorem 1 to a group with N

B points, SH = sim(x|K|, y) = s|K|, and
SL = sim(x|K|+1, y) = s|K|+1, where x|K| is the K nearest neighbor to the query y. This gives us
the following bounds on q and p:

p ≥ 1− exp

(
−2m

(
− t

m
+
(
s|K|

)L)2
)

(14)

q ≤ exp

(
−2m

(
− t

m
+
N

B

(
s|K|+1

)L)2
)

(15)

These bounds have four design parameters that we may freely choose: t, the threshold number of
collisions we require to report a “positive”; m, the number of bit arrays in the Bloom filter; L, the
number of hash values we concatenate together in each array; and B, the number of cells into which
the dataset is partitioned within each column. In this section, we seek to find specific values for these
free parameters that will allow us to build a distance sensitive Bloom filter with sufficiently high p
and low q. We will use these values in the proof of Theorem 3 and for the rest of our analysis.

A note about the hashing cost: The cost to query each filter is the cost of performing L × m
LSH computations. However, the LSH computations are not O(1), they are O(d), where d is the
dimensionality of the dataset. Since this simply adds a constant multiplier term of d to the asymptotic
expressions, we not not include the dependency on d in our analysis.

Choosing a Value For t: In the bounds given in Equation (14) and Equation (15), the inner expression
with − t

m is squared, which gives the initial impression that any value of t will work. However,
when we derived these bounds in Theorem 1, we implicitly require that the threshold ratio (here t

m )
be smaller than the “positive” Bloom filter collision probability SLH and larger than the “negative”
Bloom filter collision probability NSLL . Making the same substitutions, we find that t

m must satisfy
the following condition.

N

B
(s|K|+1)L <

t

m
< (s|K|)

L (16)

The intuition behind this condition is that t must be a threshold number of collisions that lies between
the expected number of collisions in a positive group and the expected number of collisions in a
negative one.

Any t
m in this range gives us some valid bound on p and q, but values very close to the edges

of the range are suboptimal. Rather than find an optimal value of t, which is likely difficult and
data-dependent, we choose a specific value for t

m that works well: the average between the lower
bound and the upper bound in Equation (16). This gives us the following value for t:

t = m

(
N
B (s|K|+1)L + (s|K|)

L

2

)
(17)

One benefit of choosing this value for t is that the bounds on p and q from Equation (14) and
Equations (15) now look the same. After substituting t into the bounds, we define a new variable α
as

α = exp

−2m

(
(s|K|)

L − N
B (s|K|+1)L

2

)2
 (18)

5



Note that
q ≤ α and p ≥ 1− α (19)

α simplifies the analysis because it represents the bounds on p and q at the same time. If we decrease
α, we have a larger p and a smaller q (i.e. a more accurate test).

Choosing a Value For B and L: To further simplify the analysis, we wish to decouple α from N in
Equation (18). Our goal in this section is to choose B and L as a function of N so that the error rate
α no longer depends on N . As with t, our choices are not necessarily optimal. We use them because
they allow us to prove theoretical guarantees about the system.

We first let
B = 2

√
N (20)

To have sublinear query time, B must be proportional to some fractional power of N because the
query time in Theorem 2 contains both N

B and B factors. The use of N
1
2 minimizes the complexity

of their sum, and the constant factor of 2 is chosen to simplify the analysis in the next paragraph.

We next let L be the smallest positive integer such that (s|K|)
L ≥ 2NB (s|K|+1)L. Since s|K| ≥

s|K|+1, it is always possible to find such an integer (even though this integer may be impractically

large). This choice of L simplifies the difference in the squared term in α to (s|K|)
L

2 . In particular, α
no longer depends on N . The analysis now depends on N exclusively through the parameter L.

If we start with N
B (sK+1)L = (sK)L

2 and solve for L, as well as plug in our expression for B from
Equation (20), we get the following expression for L.

L =
1
2 log(N)

log(s|K|)− log(s|K|+1)
(21)

Finally, we can plug this value of L into Equation (18) and simplify, which gives us the following
value for α.

α = exp

−m(s|K|)
log(N)

log(s|K|)−log(s|K|+1)

8

 (22)

We will use the following well-known fact: for any non-negative and nonzero real numbers a, b, c,

a
log(b)
c = b

log(a)
c (23)

We apply Equation (23) to Equation (22), with a = s|K|, b = N , and c = log(s|K|)− log(s|K|+1)
and simplify the result to obtain

α = exp

−mN log(sK )

log(s|K|)−log(s|K|+1)

8

 (24)

The γ-Stable Query Condition:

As observed by [3], it is not possible to design a distance-sensitive Bloom filter with arbitrary p
and q without additional conditions on the query. Therefore, we introduce the requirement that the
query be γ-stable. That is, we require that the query not be a pathologically difficult query for a
distance-sensitive Bloom filter to answer3. When the γ is small, the query has |K| neighbours with a
clear distinction between non-neighboring points (i.e. s|K|+1 � s|K|). When |K| is large, there is
no such distinction, and the neighboring points are approximately as close as the neighbors. Unstable
queries are both rare and non-informative in the near neighbor setting - for further discussion, see the
seminal paper of [2]. We formally define a γ-stable query as:

Definition 3. γ-stable Query: We say that a query is γ-stable if

log(s|K|)

log(s|K|+1)− log(s|K|)
≤ γ (25)

3This parameter functions similarly to ρ from the standard LSH near neighbor analysis.
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First we note that similarity is a measure from 0 to 1, so the numerator of γ is negative. Furthermore,
since s|K|+1 < s|K| and the log function is monotonically increasing, s|K|+1 − s|K| < 0 and the
denominator is negative. Thus, γ is positive (a negative number over a negative number). Indeed, if γ
is small then the query is stable because γ is small when the similarity of x with the |K|th nearest
neighbor is large (the numerator is a small negative number) and when there is a large similarity gap
between the |K|th and |K + 1|th neighbors (the denominator is a large negative number).

Our γ-stable parameterization has the added benefit of removing the similarity values s|K| and s|K|+1

from Equation (24). Substituting the query parameterization from Definition 3 to Equation (24), we
have the following upper bound for α. This bound holds for all γ-stable queries:

α ≤ exp

(
−mN−γ

8

)
(26)

The reason Equation (26) is an upper bound is because Definition 3 guarantees that −γ is a larger in
magnitude negative number than the negative exponent of N in Equation (24). Thus, when we raise
N to these exponents, we have that

N−γ < N
log(s|K|)

log(s|K|)−log(s|K|+1) (27)

Thus, our use of γ results in a smaller (in magnitude) negative number inside the exponential in
Equation (24), and thus a larger α overall. Note that this somewhat loosens our bounds for p and q
(since they are in terms of α).

Given these parameter choices, we are ready to state our theorem which bounds the query time of
each distance-sensitive Bloom filter. We use p′ and q′ to denote the desired true positive rate and
false positive rate of the Bloom filter, to differentiate from p and q above.
Theorem 3. Given a true positive rate p′, false positive rate q′ and stability parameter γ, it is
possible to choose m, L and t so that the resulting distance-sensitive Bloom filter has true positive
rate p′ and false positive rate q′ for all γ-stable queries. The query time is

O(mL) = O (− log(min(q′, 1− p′))Nγ log(N)) (28)

Proof. From Equation (19), we have q ≤ α and p ≥ 1− α. To guarantee that the actual error rates
of the filter meet the design requirements (i.e. q ≤ q′ and p ≥ p′), we must choose α small enough
such that q′ ≤ α and p′ ≥ 1− α. Thus we need

α ≤ min(q′, 1− p′) (29)

For γ-stable queries, we may bound α using Equation (26). Because it is more expensive to design
a filter with small α, we wish to use the largest possible value of α that will work. This value is
attained when the upper bound in Equation (26) is equal to the upper bound in Equation (29). This
gives us the following condition for the Bloom filter to have the desired error characteristics:

exp

(
−mN−γ

8

)
= min(q, 1− p) (30)

Simplifying, we have the following expression for m. Note that m is positive because log(min(q, 1−
p)) < 0.

m = −8 log(min(q, 1− p))Nγ (31)
We now have concrete values for all of our free variables: t from Equation (17),B from Equation (20),
L from Equation (21), and m from Equation (31). Note that L should be chosen as the maximum
over all s|K| and s|K|+1 that are γ-stable4, so that Equation (21) is true for all γ-stable queries.

When t,B,L, and m are chosen in this way, the resulting filter has true positive rate p ≤ p′ and false
positive rate q ≤ q′ for all γ-stable queries.

To query a distance-sensitive Bloom filter, we must compute m× L hash functions and perform m
array lookups for an overall complexity of O(mL). Thus, the time to query our Bloom filter is

O(mL) = O (log(min(q, 1− p))Nγ log(N))

4This requires a mild assumption that the ratio
s|K|

s|K|+1
is bounded.
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1.3 Query Time Analysis

In this section, we combine previous results to solve the randomized nearest neighbor problem.
First, we consider the query time of a 2

√
N × R grid of Bloom filter classifiers. Lemma 2 is a

straightforward substitution of the query time from Theorem 3 into Theorem 2, with T = mL.
Lemma 2. Under the assumptions in Lemma 1, we can use distance-sensitive Bloom filters as tests
to achieve the following query time tquery of Algorithm 2 with probability 1− δ

tquery = O(RN
1
2+γ log(N) max(− log(q),− log(1− p))

+RN
1
2 log2(N)(|K|+ qN

1
2 ) log(1/δ))

(32)

Proof. Each cell is a distance-sensitive Bloom filter, so the test query time T is equal to our result for
the query time of a distance-sensitive Bloom filter from Theorem 3.

We use B = 2
√
N from Equation (20) and O(T ) = O (log(min(q, 1− p))Nγ log(N)) from Theo-

rem 3 with the query time expression from Theorem 2 to get

tquery = O(−RN 1
2+γ log(N) log(min(q, 1− p))

+RN
1
2 log2(N)(p|K|+ qN

1
2 ) log(1/δ))

(33)

Since p < 1, we may replace it with 1. Also, since 0 < p < 1 and 0 < q < 1,

− log(min(p, q)) = max(− log(p),− log(q)) (34)

Making these two substitutions into Equation (33), we have

tquery = O(RN
1
2+γ log(N) max(− log(q),− log(1− p))

+RN
1
2 log2(N)(|K|+ qN

1
2 ) log(1/δ))

(35)

Our bound on the query time has two free parameters: p and q. We will show that, given an appropriate
choice for p and q, our algorithm solves the nearest neighbor problem (i.e. |K| = 1) in sublinear time.
We begin by finding the values of p and q which solve the nearest neighbor problem in Lemma 3.
Lemma 3. Under the conditions in Lemma 1, our data structure solves the randomized nearest
neighbor problem for sufficiently large N and small δ, where5

p = 1− δ

2R
q = N−

1
2 (36)

R =
log( 1

δ )

log(4.80N
1
2 )− log(2e2 + 3.44N

1
2 )

(37)

Proof. For this proof we will use the index described in Algorithm 1, using R columns of B = 2
√
N

distance-sensitive Bloom filter cells. We now will determine the requirements for p, q, and R to
achieve an overall failure rate of δ in Algorithm 2.

There are two ways that the querying process, Algorithm 2, can fail to solve the nearest neighbor
problem. We may fail to return the nearest neighbor, but we may also return any point in D that is not
the nearest neighbor. Let P be the probability that Algorithm 2 returns the nearest neighbor xNN to
the query, and let Q be the probability Algorithm 2 returns at least one other point in D. Then using
the union bound, we solve the nearest neighbor problem if

(1− P ) +Q < δ (38)

To simplify our analysis, we constrain (1− P ) and Q to be less than δ
2 .

(1− P ) ≤ δ

2
Q <

δ

2
(39)

5We require N ≥ 150 and δ small enough that R ≥ 10 logN
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Analysis of 1 − P : Since |K| = 1 for the nearest neighbor problem, the true positive rate from
Theorem 1 is equal to P , so that P ≥ pR. Thus 1− P ≤ 1− pR, so we will achieve the necessary
bound on P in Equation 39 if

1− pR ≤ δ

2
(40)

Rearranging the inequality in terms of 1− p, we have a constraint on the values of p which solve the
nearest neighbor problem.

1− p ≤ 1−
(

1− δ

2

) 1
R

(41)

If p satisfies the inequality, then 1 − P < δ
2 ). Thus, we may reduce the right hand side of the

inequality, and the resulting values of p will still solve the nearest neighbor problem.

We now tighten the constraint in Equation (41). We use the Generalized Bernoulli’s inequality, which
states that

(1− x)r ≤ 1− rx for r ∈ [0, 1] (42)

Since R ≥ 1, 1
R ∈ [0, 1], so we can apply this to the right side of Equation (41):

1−
(

1− δ

2

) 1
R

≥ δ

2R
(43)

This gives us our new, more restrictive constraint for 1− p:

1− p ≤ δ

2R
(44)

Analysis of Q: From Theorem 1, we have an upper bound on the probability that a single point is
falsely reported, Pr[Reportx|x 6∈ K]. Using the union bound, we get that Q, the probability that
any of the N points is falsely reported, is less than or equal to N times the probability that a single
point is falsely reported:

Q ≤ N ∗ Pr[Reportx|x 6∈ K]N (45)

Thus, we can achieve the requirement from Equation (39) that Q ≤ δ
2 by requiring that

N ∗ Pr[Reportx|x 6∈ K]N <
δ

2
(46)

If we now substitute in our expression for Pr[Reportx|x 6∈ K] with |K| = 1 and B = 2
√
N from

Theorem 1 and (extensively) simplify, we have a constraint for q.

q <
2eN

1
2

e2(2N
1
2 − 1)

[
N − 1

N

(
δ

2N

) 1
R

−
p[(2eN−1N − 2)N

1
2 + 1]

2eN
1
2

] (47)

Like we did above for 1− p, we can now tighten this constraint for q to obtain a simpler expression.
The simplified constraint leads to a smaller range of values for q, but these values still satisfy the
original constraint and guarantee a total error rate of δ. We decrease the constraint by replacing
the factor of −p with −1, by replacing the factor of −N−1N with −1, and by replacing the factor of
e(2N

1
2 )

e(2N
1
2−1)

with 1. We end up with the following (tighter) constraint for q:

q <
N − 1

Ne

(
δ

2N

) 1
R

− (2e− 2)N
1
2 + 1

2e2N
1
2

(48)

Breaking up the δ
2N term and simplifying, we get

q <

(
N − 1

N

)
21−

1
RN

1
2−

1
R δ

1
R

2eN
1
2

− (2e− 2)N
1
2 + 1

2e2N
1
2

(49)
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Note that as R increases, the right hand side of the constraint for q also increases. For some small
values of R, the right hand side is actually negative. A negative expression means that we have shrunk
the range of allowable q values so much that our simplified constraint is no longer meaningful. This
does not mean that it is impossible to find q to satisfy the original constraint, it simply means that our
simplifications were too aggressive.

We now make two key assumptions that allow us to show that the right hand side of Equation (48) is
always positive and well defined:

N ≥ 150 R ≥ 10 logN > 50 (50)

The analysis is possible without these assumptions, but must be done with the complicated expression
in Equation 47 rather than the simple version.

We continue to tighten the constraint by replacing some values of N and R with their smallest
possible values (i.e. N = 150 and R = 50), in cases where making such a replacement will only
make the right hand side of the constraint smaller6:

q <
149

150

2
49
50N

1
2−

1
10 logN δ

1
R

2eN
1
2

− (2e− 2)N
1
2 + 1

2e2N
1
2

(51)

We also simplify the term N
1
2−

1
10 logN :

N
1
2−

1
10 logN = N

1
2N

−1
10 logN

= N
1
2 (N

1
logN )

−1
10

= N
1
2 e
−1
10 since x

1
log x = e

Plugging this value back into the constraint, we have

q <
149
1502

49
50N

1
2 e
−1
10 δ

1
R

2eN
1
2

− (2e− 2)N
1
2 + 1

2e2N
1
2

(52)

To obtain our final constraint for q, we first combine fractions by multiplying the top and bottom of
the left fraction by e:

q <
149
1502

49
50N

1
2 e

9
10 δ

1
R − (2e− 2)N

1
2 − 1

2e2N
1
2

(53)

We then explicitly calculate the constants in the numerators, and slightly tighten the constraint by
rounding the constants up/down appropriately. Since we are tightening the constraint, we can also
replace the "less than" with a "less than or equal to." We finally get a simple constraint for q, such
that any q that satisfies the below inequality will solve the δ nearest neighbor problem:

q ≤ 4.80N
1
2 δ

1
R − 3.44N

1
2 − 1

2e2N
1
2

(54)

Notice that this bound for q is positive when R is sufficiently large, since δ
1
R approaches 1 and the

numerator approaches the positive value 1.36N
1
2 − 1.

Solving for p, q, and R: We now fix p and q to be the largest (and thus, least expensive) values
that obey their respective simplified constraints. Using the edge of the 1− p constraint range from
Equation (44) and the edge of the q constraint range from Equation (54), we set

p = 1− δ

2R
(55)

q =
4.80N

1
2 δ

1
R − 3.44N

1
2 − 1

2e2N
1
2

(56)

Notice that – although our analysis is performed under the assumption that R > 10 logN – we may
still choose a value for the free parameter R. Our strategy is to select a value of q which satisfies the

6We make the substitution whenever the replaced term monotonically increases with increasing N and R
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constraint, and then solve for an R which guarantees this value of q. To simplify our later analysis,
we will use

q =
1√
N

(57)

We can now plug in Equation (57) into Equation (56) and solve for R:

R =
log( 1

δ )

(log(4.80N
1
2 )− log(2e2 + 3.44N

1
2 ))

(58)

Note the right side is a valid fraction less than 1 because N >= 150. In fact, the denominator is fixed
within a small range: the largest it can be is when N = 150, when it is about 0.97, and the smallest it
can be is about 0.72, when N →∞. Thus the denominator is O(1).

When δ is small enough that R > 10 logN , then Equation (58) yields a value of R which satisfies
our simplifying assumption and attains the correct value of q.

We have now found explicit values of p, q and R, which constrain all of the free parameters of our
data structure. These values are given by Equation (55), Equation (57), and Equation (58). We have
shown that these values attain a sufficiently low false positive rate Q and high true positive rate P to
solve the nearest neighbor problem, proving the theorem.

We have specific parameter settings from Lemma 3 that solve the nearest neighbor problem, but it
remains to bound the query time of the resulting data structure. We obtain our main theorem by using
these values with the query time expresssion from Lemma 2.
Theorem 4. (Main Theorem) Under the conditions in Lemma 3, we solve the randomized nearest
neighbor problem for γ-stable queries in time tquery with probability 1− δ.

tquery = O

(
N

1
2+γ log4(N) log3

(
1

δ

))
(59)

Proof. We made many simplifications to the constraints for p and q in Lemma 3. These simplifications
require us to solve a harder version of the problem than necessary. For example, there is some
maximum value of δ in Lemma 3 that suffices to make R ≥ 10 logN . Call this δ′, such that when
δ = δ′ the value of R from Lemma 3 is 10 logN . To solve the nearest neighbor problem for an
arbitrary δ, we split our analysis into two cases, δ ≥ δ′ and δ < δ′, and solve for the query time under
each one.

Case 1, δ ≥ δ′: If δ ≥ δ′, we use the values from Lemma 3 with δ = δ′. This will return an array of
tests that solves the δ′ nearest neighbor problem. Because we substantially simplified the constraints
in Lemma 3, δ′ < δ and thus we solve a harder version of the problem than necessary. When δ = δ′,
we have the following from Lemma 3:

R = 10 logN

q = N−
1
2

1− p =
δ′

2R
|K| = 1

We now plug these values into our query time result from Lemma 2 and simplify. Note that Lemma 2
has its own failure probability δ3. Note that to have R = 10 logN , 1

δ′ is slightly smaller than N10,
so log( 1

δ′ ) = O(logN). This leaves us with

tquery = O(N
1
2+γ log4(N) log(1/δ3)) (60)

Case 2, δ < δ′: If δ < δ′, then our simplifying changes to the constraints no longer force us to solve
a harder problem than necessary. In this case, we use the values from Lemma 3 using δ. As before,
we obtain our query time result from Lemma 2:

tquery = O

(
log

(
1

δ

)
N

1
2+γ log2(N)

max

(
log(N

1
2 ), log

(
R

δ

))
log(1/δ3)

) (61)
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Figure 1: Precision recall graphs for the top 1 nearest neighbours on each dataset.

Table 1: Algorithm index sizes in gigabytes, determined by the minimum index size an algorithm
achieved over all hyperparameters, subject to having recall greater than R. All recalls are R1@100
except for YFCC100M, which is R1@1.

DATASET R FLINNG FAISS FALCONN HNSW FLASH INV. GROUPS

REFSEQG 0.8 0.090 - - 0.031 4.29 - -
REFSEQP 0.8 0.090 - - 0.031 4.29 - -
PROMETHION 0.8 0.074 - - 0.64 8.59 4.22 -
URL 0.5 0.048 - - 3.03 4.29 2.21 -
WEBSPAM 0.5 0.0068 - 2.25 8.04 4.29 - 0.14
YFCC100M 0.95 3.5 3.7 - - 4.29 - -

Note we used the fact thatR = O(log( 1
δ )), since as we noted in the proof of Lemma 3 the denominator

in the equation for R is O(1). We can further simplify Equation (61) by rewriting log
(
R
δ

)
as

log(R) + log
(
1
δ

)
, and recognizing that log(R) is dominated by log

(
1
δ

)
. Furthermore, since both

terms in the max operation are greater than 1, we note that the maximum is asymptotically smaller
than the product of the two terms. After simplifying, we have that

E[tquery] = O

(
log2

(
1

δ

)
N

1
2+γ log2(N)

)
(62)

Combining Results: In total the runtime for an arbitrary δ is the maximum of case 1 (Equation (60))
and case 2 (Equation (62)):

tquery = O

(
N

1
2+γ log4(N) log2

(
1

δ

))
(63)

Here, we have absorbed δ3 into δ, which adds only a constant multiplier to the expression.

2 Experiments

In this section, we provide additional details about our experiments. We also show a full table of
index characteristics for each dataset in our evaluation.
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Figure 2: Plots for top-10 and top-100 nearest neighbor search on selected datasets. FLINNG
performs best when the top neighbors are very similar to the query, as predicted by the theory.

Figure 3: F1 scores for top-1 nearest neighbor search on all datasets.

2.1 Dataset Details

We used the following metric spaces for the datasets in our experiments. For RefSeqG, RefSeqP
and PromethION, we use the Jaccard similarity space. For the purposes of Jaccard similarity, the
tokens associated with a genetic sequence are the sets of all k-mers (size k sub-strings) present in
the sequence. We use MinHash as the hash function. For distance-based indices such as HNSW and
FALCONN, we preprocess the data by computing 100 MinHash signatures and estimate the Jaccard
similarity rather than compute it explicitly, as this is more efficient.

For the Webspam and URL datasets, we consider the cosine similarity between the high-dimensional
and sparse representations of the data. Here, we use MinHash as the hash function. For YFCC, we
consider the Euclidean distance and use signed random projections.

2.2 System Details

We performed all experiments using 1.48 TB of RAM. For YFCC100M, we used 88 Intel Xeon
E5-2699A v4 processors, each of which has a 56 MB L3 cache. For YFCC100M, we used 96 Intel
Xeon Gold 5220R processors with a 36 MB cache.
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Figure 4: Percentage of benchmark queries with γ < 0.5, for some cutoff number of neighbors K
less than or equal to k.

2.3 Baseline Failures

Some of the baseline methods did not run on some of the datasets. We attempted to construct HNSW
and FALCONN indices on YFCC100M, but memory limitations meant that the index would not
fit within our 1.48 TB of RAM. We modified the HNSW library to work with nonstandard short
floating point vectors, but the resulting index took more than 5 days to construct. We also tried to
build FAISS indices on the genomics and web datasets, but were unable to fit the quantized data in
memory because these problems are ultra high-dimensional.

2.4 Hyperparameters

For algorithms with fast indexing times like FLINNG, FLASH, FALCONN, and the grouping
algorithm from [4], we tried hundreds of hyperparameter settings and selected the best indices. For
algorithms such as HNSW and FAISS, which can take hours or days to train, we built indices using
suggested parameters and tuned the query-time arguments aggressively.

FLINNG requires four hyperparameters: R, B, m, and L. We use R = {2, 3, 4} and B = 2a for
a ∈ [11, 15]. To have 16-bit cell IDs, we constrain BR < 216. For YFCC100M, we use R = 2 and
a ∈ [12, 19]. We set the number of LSH functions m to 2a for a ∈ [2, 11]. We used L = 18 for
Webspam, L = 12 for YFCC100M and L = 17 for the other datasets.

FLASH requires the following hyperparameters: m (the number of hash tables), L (the number of
hash functions in each table), and s (the size of each reservoir for reservoir sampling). We used
the recommendations from the paper. However, we found that much larger values of m and s were
needed than in the original paper to obtain high recall on some of our tasks. We used the same values
of m as the authors of FLASH: m = 2a for a ∈ [2, 11] for all datasets. For the non YFCC100M
datasets, we let s = 2a for a ∈ [2, 11]. For YFCC100M, we let s = 2a for a ∈ [3, 12]. As with
FLINNG, we used 18 hash bits for webspam, 12 hash bits for YFCC100M, and 17 hash bits for every
other dataset.

Our implementation of the grouping algorithm from [4], which we denote GROUPS, requires M , the
number of groups, t, the number of back propagation steps, NL, the number of groups each point is
in, and R, the total number of points to checks across all t back propagation steps (see the original
paper for more details on each parameter). None of our datasets in dense format fit in memory, which
GROUPS requires, but we were able to project the URL and Webspam datasets into 400 dimensions
using 400 random projections to get a meaningful benchmark against our algorithm (we cannot
apply random projections to the other datasets so we were not able to run GROUPS on the other
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datasets). For Webspam, we tried all combinations of M = 20000, 40000, t = 1, 2, 4, NL = 2, 4,
and R/t = 10000, 80000. For URL, we tried all combinations of M = 20000, 80000, 320000,
t = 1, 2, 4, NL = 2, 4, and R/t = 10000, 20000, 80000.

FALCONN could only run on the URL and Webspam datasets because the package does not natively
support Jaccard similarity for the genome datasets and has out-of-memory issues for YFCC100M.
FALCONN requires three hyperparameters: m (the number of hash tables), np (the number of probes
for multi-probe LSH), and L (the number of hash functions for each table). We let np = 2a for
a ∈ [1, 9], m = 2a for a ∈ [1, 4], and used 22, 20, 18 hash bits for URL and 20, 18, 16 hash bits for
Webspam.

Due to the high dimensionality of the other datasets, FAISS was only feasible for YFCC100M. For
high-dimensional sparse data such as Webspam or URL, quantization actually increases the memory
of the index. We used an inverted file index with product quantization. This index requires two
construction parameters: m (the number of k-means centroids) and s (the number of bits for product
quantization). There is one query-time parameter np (the number of clusters probed for each query).
FAISS also supports the use of an HNSW graph to identify the best clusters, so we use both flat (i.e.
brute force) and HNSW pre-indexing. We trained 3 different indices, all with s = 32 bit product
quantization: m = 4k centroids with flat (brute force) indexing, m = 262k centroids with flat
indexing, and 65k with HNSW indexing. We used a subset of one million points to train the k-means
centroids. We used np = 2a for a ∈ [1, 9]. We observe that all of these IMI indices performed about
the same. We calculated the Pareto frontiers by varying np (the primary way to trade recall for search
time in FAISS) and reported the best results in our experiments. We would also like to note that our
query comparisons were done on CPU, one query at a time, as is standard when benchmarking near
neighbor algorithms [1]. However, for fairness we exclude the k-means training time from the index
construction time as this can be efficiently done on GPU.

HNSW requires two construction hyperparameters: efc and M . The parameter M is the maximum
number of edges for each node in the graph, while efc may be thought of as a parameter that controls
the quality of the near neighbor graph (larger is better). We used parameter M = 32 and efc = 100
for all trials. HNSW has one query-time parameter efs, which controls the recall-time tradeoff.
We let efs = 2a for a ∈ [4, 14]. For our genomics datasets (PromethION and RefSeq), we used a
pregenerated and fixed number of minhashes to allow HNSW to perform fast search in the Jaccard
metric space. We used 2a for a ∈ [1, 11] number of hashes. We modified the HNSW code to support
the approximate Jaccard metric by implementing a distance functin that counts the collisions among
these hashes for two sequences. We tried to build an index for YFCC100M, but the graph construction
algorithm did not finish,even after four days of construction time.

Finally, we used inverted indices to compute the ground truth results for the URL and PromethION
datasets. We show the query time for this structure as a baseline. The other genomic datasets
(RefSeqG and RefSeqP) were too high-dimensional for an inverted index lookup to be practical, and
Webspam and YFCC100M had too many nonzeros.

2.5 Supplementary Plots

Figure 1 shows the precision recall plots for all datasets considered in our evaluation. Figure 2
shows the latency-recall relationship for top-10 and top-100 near neighbor search on selected datasets.
Figure 3 shows the F1 scores for each index, and Figure 4 shows the empirical distribution of γ values
for three datasets. Note that a surprisingly large fraction of queries satisfy our theoretical assumptions
- up to 40%.

2.6 Index Characteristics

Table 1 shows the index size for all of the indices considered in our evaluation.
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