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A THE MOE-F ALGORITHM

This section records a detailed version of Algorithm 1, which can also be rolled-forward online as the

target process Y. is dynamically observed.

Algorithm 2: The MoE-F Algorithm

Input: A time-horizon T € N, N (pre-trained) experts (1), ..., f(™) hyperparameters A > 0,

a € (0,1)and k € N, target (Y;)7-,', and input signal T[o:7—1]-
Qutput: A posterior Mixture Weights w;

1 /+x Initialize */
» Initialize 7 && (w(":i))ﬁizl V. (l/N)it\iizl

3Q 4 (/(N = 1)ligj — 1Lizy) ;2

4 (L(,n))nNzl «~0

sfort=0,...,T—1do

6 Forn =1,..., N in parallel

7 A« Aﬁ”)(w“ﬂ, Y:)

s B« B™ )7«

9 L(n) — g(f(n) (x[o;t]))

10 AL+ L™ — "

1 AW « ALT_A

12 L(f) — LM

13 /* Update components of nth expert’s posterior (Tr(")) */
14 fori=1,...,Ndo

15 A+ Agn)(ei, Y:)

16 drift « Q7™

17 diffusion « #(" (A — A)/B

18 (9 7 (0 4 drift 4 diffusion AW

19 end for

20 () g/ > m(md)

21 Sp — €(Yt, (m(P)T F(m[o;t]))

22 ﬁ(n) — (77(7L))TF(33[0¢]) // Calculate expert scores
23 end

24 T4 (67)‘5"/(2?[:1 B*Asi))nNzl // Get Expert Scores
25 }Aft ©aT (ﬁ(n))gzl // Get time t prediction
26 /+ Update @ */
27 Q<+ Q

28 forn=1,...,Ndo

29 ‘ P 7

30 end for

31 P+ (1-a)P+aly

2 | Q< ReLU(log(P)) — diag(1} ReLU(log(P)))

33 end for

34 return Sequence of Mixture Predictions (Y;)" =}
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B PROOFS

This section contains the proofs of our main result, generalizations thereof, and variants which apply
to the quadratic (squared) loss. In the latter case, the necessary modifications to the algorithm and the
overall proof structure are relatively similar but with key technical differences.

Mild Generalizations and Further Discussion. We will consider the slightly more general case
where the target process Y. follows the generalized dynamics

t t
T
Y, =Y, +/ w, F(zs)ds+ / os dW , @)
0 0
Best Expert Estimate (Generalized) Idiosyncratic Residual

where, there are constants o, C > 0 with C' < 1 such that: for each ¢ > 0 one has 0, = C e, By
the It6-isometry, see [Cohen & Elliott, 2015, Lemma 12.1.4], we have that the variance of fg os dWy

is given by
t 2
</ O dWs>
0

Observe that, if o > 0 then the variance of fot os dW, asymptotically stabilizes at 1, as ¢ becomes

gtz )

t ifa=0 ®)

_ {02 (1—e"2)/(2a) ifa>0

arbitrarily large. In contrast, the variance of fot os dWy diverges in the case where av = 0 (which is
the case considered in the main body of our paper).

Intuition behind the choice of assumed fluctuations/diffusion. The intuition behind this modelling
choice for the diffusion coefficient o. is based on ideas behind concentration of measure. Consider
the case where o > 0 in equation (8). Since we will be considering classification applications, then

we will not want the idiosyncratic residual fg os W to push fluctuate outside the unit interval [0, 1],

or rather the probability that any fluctuation of fg 0s Wy is “large” should be small. Since fg os W
has a Gaussian distribution, then note, by standard Gaussian concentration inequalities, we have that

t
IP’(‘/ os Wy
0

We can control the probability that any fluctuation is “large”, meaning larger than 1/2, by setting
the right-hand side of equation (9) to be a prespecified “small” value ¢ € (0, 1] and solving for the
required o > 0 parameter in terms of § yields the specification v = In(1/6%). If d > 2, then we may

> 1/2> < 1727/ = gma/ (17 1=e7"))  =a/(C) < e/t (g)

set C' = % purely for convenience in simplifying expressions below.
In this case, for any hyperparameter 0 < § < 1, the quantities in Theorem 1 become

t Wgn:i) (As(eivyf[o:s]) - As(nozs])Tﬂgn)) )
aw.,,’,
Jo Bs(YV[O:s])

. . t
" = wh+ / (Qo)] 7™ ds + (10)
0
where (Q;); denotes the i*" row of the transitions matrix Q; at time t > 0, wj L P(wy = e;) and

where the “innovations process” W) et (Win))tzo is the following (PP, F™)-Brownian motion

s grm)
W(n) (g / dL[Ou] Au(Yv[Ou])
’ 0 BU (Yv[Ou])

U,

o )u] is given by

where the “stochastic differential” de

degﬁL] = (2(1@ — D (@) [V f ™ (2) +w] Fw,)] — e 200/ )du

23/2 .
+ = (Ya = [ () D aw,.
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B.1 PROOF OF THEOREM 1

We are now ready to state and prove two versions, one of which generalizes, our first main result
(Theorem 1). We consider two cases. We obtain our main result by customizing Theorem 1 to our
classification problem, where D = 1 and the range of each expert is in {0,1} C R, and setting o
to be a specific constant in (0, co). For convenience, if we postulate that o; = 1; i.e. it is a constant
function of the path Y[o:4] and of time ¢ > 0. Note that, by the It6-isometry, see [Cohen & Elliott,

2015, Lemma 12.1.4] the idiosyncratic residual term fot O (Y[o;s]) dWj in equation (1) has a centred

e . . ¢
normal random distribution with variance fo o2ds=t.

B.1.1 CASE I: BINARY CROSS-ENTROPY CASE

We now state and prove a mild generalization of Theorem 1.

Theorem 3 (Optimal Optimistic Prior for n*" Expert - Squared Loss Case). Consider the binary
cross-entropy loss

(G, y) < ylog(y) + (1 —y)log(1l — 9)

and fix a continuously differentiable path . € C*(R).
(n)

Under Assumptions 4.1, the best a posteriori estimate of the n'" expert, m,
stochastic differential equation

, b () 1 ()
7_(_t(n:z) _ / (Qt) ds i / s (As(eu ) 1;1 ( 7}/[0 s] )) dW(n) (11)
0

( (]s

, satisfies the following

where (Q;); denotes the it" row of the transitions matrix Q; at time t > 0, wj L P(wy = ¢;),

s () : Af(n) ('1: : ) f(n) (33 0:t) )
A0 e (Y = fM (@) o) <[
vt von) (1= F™ (zp0.)) F (@(04)) T/ [0:))

)@ﬂmﬂ

AE )( (n) Z A 617Y[0t]) ()

i=1

(n)
(n) def. S (@) sIn(6%)
B, (y0:) = log<1 — (x[o;t])> €

F(zo0) S (FD (@) - - f N (2p0:0))

7) def

and the “innovations process” W( = (Win))tzo is the following (P, F™)-Brownian motion

s grm) 71
W(") def. / dL[Ou] ( AU(}/[Ou])
0

U

B, YV[O:u]) '

S

where

dL(g)u - dé()/h f )( [O:t]) =

(Y, — f(n)(l’[o:t])) Af (70:4)) n log< f (Z10:47)
(1= ) (@0.47)) f™ (2[0:4)) 1 — f)(210.4)

f(n)(z[O:t]) ) In(s%
+log( @Y gy,
1— M (zp.4)

)@ﬂmm

Proof. Fix a continuously differentiable path . € C*(R). Define A f(x[o.4) &t 01 f(x[.4) and set
C:R3y = (y— flzp))?
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First, observe that: for all ¢ > 0, all z. € C'(R) and all y € R one has
G(y) = — (y log(f™ (w(0.49)) + (1 — ) log(1 — F™ (2(0.))))

%(y) _ (y - f(") (x[o:t])) Af(”) (x[():t])

ot (1 - f(n) (x[O:t])) f(n) (Z[O:t]) 7

%( )= —1o < f(n)(il?[o:t]) > (12)
oy T T 1 fO (@0.4) )
9%t
W;(y) =Uu.

Since £ € C°° (R x R?), we assumed that the path z. € C1([0 : o0), R?) then this, together with the
postulated dynamics on v imply that 1t6’s Lemma/Formula, see [Cohen & Elliott, 2015, Theorem

14.2.4], used on the map £{™ : [0,00) x R 3 (t,y) — (y — £ (2))? € R pre-composed with Y.
applies. Whence, our and the assumed dynamics on Y., postulated in equation (1), imply that the

process LE") et £§n) (Y}) satisfies the following stochastic differential equation
" ou
0 63
ae(”)
19%0"
2 Oy?
ton™ 4
Y, sIn(é )dWS
-l-/o Dy (Ys)e
_ ™ +/t (=) (Ys = ™ (20.))) AL (2[0:)
’ 0 (1= f™ (@0.9)) f (210:0)

) ] Fla)]

LV = Ig” + (Y)

+

(YS) 2¢8 ln(58)ds

13)

t n
F™ (20.4) > In(s4
+ —1) 1o < esIn( )de
/0 (=D)log 1 — [ (270.)

(14)

wTF(m[O:S])] ds

S

_ L(n) + /t . (Ys - f'(n) (x[O:t])) Af(n) (x[O:t]) . log( f(n) (x[O:t]) ) [
0 0 (1= f) (@0.47)) fF) (zp0:4)) 1— f0)(zp.)
(n) t
_ 10g< f (x[Ot]) > / es 11](54) dWS
1= ™ (x0.) ) Jo
Synchronizing our notation with [Liptser & Shiryaev, 2001a, Equation (9.1)], we write

e }/S_f(n)x Af(n)x f(n)ir
Au(w, y0.0) " — ( (n)( 0:41)) - ([0:11) o (W) [w] F(z(0.4)]
(1= fO) (@(0.07)) F) (2 [0:4)) 1= f™)(z(0.)
f0) (z0.) 4
B, (yi0.1) & — log| ——+ sIn(5%)
+(Yj0:1]) og ( 11— f(")(m[o;t]) e
15)
Under Assumptions 4.1, we may apply [Liptser & Shiryaev, 2001a, Theorem 9.1] to deduce that
Then the a posteriori probability 77*:° &t (7)o, satisfies a system of equations
4 ' t t 2D A o Vo Y A (2™ Vi _
71_t(nn) _ 'LUE) + / (Qt):ﬂ'gn) ds + / Ts ( s(eza [O.S]) s(’iT ; [09])) qu’ (16)
0 0 B (Y[O:s])

21



Under review as a conference paper at ICLR 2025

where (Q;); denotes the i*" row of the Q;/transitions matrix @Q; at time ¢ > 0, w} < P(wg = ¢;),
and the “innovations process” is the (P, 7*)-Brownian motion given by

s (”
0 ( )

7

and where 4
At(ﬂ(n)7 y[o:t]) & Z A (e, Y[O:t]) a(md),
i=1
This completes the proof. O

Remark 1. Setting § = 1 in the previous derivation yields the formulation of Theorem 1 found in the
main body of the paper.

B.1.2 CASEII: SQUARED LOSS

Theorem 4 (Optimal Optimistic Prior for n** Expert - Squared Loss Case). Let (i), y) % (y — ¢)?
and fix a continuously differentiable path . € C*(R).

Under Assumptions 4.1, the best a posteriori estimate of the n*" expert, ﬂt(n), satisfies the following
stochastic differential equation

. ¢ wg’”) Ag(e;, Y]
w0 =up s [ @oTaas s [ T o
0
where (Q;); denotes the it" row of the transitions matrix Q; at time t > 0, wj L P(wy = ¢;),
Aﬁn) (w, y[o:t]) e 2(3/1: - f(n) (fL‘[O;t])) (w:F(fU[o:t]) — Af(")(m[():t]) + e° 1n(58))
d
Agn) (W(n)vy[om])de:t Z At(eny[o:t]) w(n:9)
i=1
B{™ (y0.0) & 2%/ (ye — ™ (2p9.47))e D)

F(zo:0) < (fD (@o.)s - - - F N (@0:0))

™) def (W;n))tzo is the following (P, F™)-Brownian motion

av”,  1s)

) A ( )7}/[0:5]))
:s])

. . =(
and the “innovations process” W

W(") de:f

S

s g7.(n) i
/ dL[Ou] - Au(}/[Ou]) du
0 Bu(YV[Ou]) ’
where
dLE(;l | =AYy, fO (2p0.9) =2(Ye = 7 (w10.)) ([w) F@io.)] = AF™ (o) + € "))
2V = 1 o) e AW,

Proof. Fix a continuously differentiable path z. € C*(R). Define A f(z(9.;)) £ ¢ f (2[0.¢]) and set
C:R3y = (y— flzp))?
First, observe that: for all ¢ > 0, all z. € C'(R) and all y € R one has

64 (y) = (y — 1™ (20))”
O ) =2y — £ ) (- AF ),

0l;

19
@(y) =2(y — f"(@)047)), )
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Since £ € C°°(R% x RY), we assumed that the path x. € C1([0 : 00), R?) then this, together with the
postulated dynamics on v imply that 1t6’s Lemma/Formula, see [Cohen & Elliott, 2015, Theorem
14.2.4], used on the map éin) :[0,00) x RP 3 (t,y) = (y — f(x,))? € R pre-composed with
Y. applies. Whence, the computations in equation (19) and the assumed dynamics on Y., postulated
in equation (1), imply that the process LE") & 12§”) (Y;) satisfies the following stochastic differential
equation

t gp(n) (n) 2 p(n)
(n) _ 7(n) 0l 0l T 1 0°¢; o In(s®
ton™ a
Y, sn(d )dWS
) oy (Ys)e

t
=L+ /0 2(Ys — f(zp0.9)) ([0 F(z)0.9)] = AF™ (w0.9) + €30 )ds  (20)

t
+/ 2(Ys _ f(”’(x[ozs}))\/ie““““) AW,
0
Synchronizing our notation with [Liptser & Shiryaev, 2001a, Equation (9.1)], we write
el. n n S in 8
Ar(w,yi0:0) L 2(ye — £ (@0.1)) (w] F(w(07) — AF (209) + )

el. n n 4
Bi(yjo:) £ 22 (ye — £ (w)0g)))e )

Under Assumptions 4.1, we may apply [Liptser & Shiryaev, 2001a, Theorem 9.1] to deduce that

Then the a posteriori probability 770 % (7)o, satisfies a system of equations

. ) t
D — af 4 / Q)T M ds + /
0 0

21

t 7T.g7L:i) (As(eia Y,[O:s]) - AS(/]T(”)7 }/IO:‘S]))
BS(YV[O:S])

dWa,  (22)

where (Q;); denotes the i*" row of the Q;/transitions matrix @Q; at time ¢ > 0, w} < P(wy = ;),
and the “innovations process” is the (P, 7*)-Brownian motion given by

s (n) A n
w7 (") def. / dL[Ou] Ay (ﬂ-( )a }/[O:u]) du
0

mes (23)
Bu (YV[UU])
and where )
At(w(n),y[o;t])dé Z Aq(es, Vo)) (i)
i=1
This completes the proof. -

Remark 2. Setting § = 1 in the previous derivation yields the formulation of Theorem 1 found in the
main body of the paper.

B.2 PROOF OF THEOREM 2

The proof of Theorem 2 relies on the following result. Briefly, this result guarantees for the validity
of the perturbation to the transition probability defined by

P (1 — )P +aly (24)
for arbitrary N € N, P, € PY, a € (0, 1), and where Iy is the N x N identity matrix.

In what follows, we will use Ay & {w € [0,1]V : Zf:’:l wy, } to denote the probability N-simplex;

which corresponds to the probability (measures) distributions supported on N points. Here, these
N points are the experts themselves, and the probability of selecting any expert is interpreted as the
relative credibility we ascribe to its historical predictive power.
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Proposition 2 (Regularity of Perturbations). Let N € Ny, A > 0, s1,...,sy € R, T € Ay be
given by

7% Softmin (A (sn)ﬁzl) and P, (7)), ]N.

For every o € (0,1), the matrix P in equation (24), is invertible and (row) stochastic. If, moreover,
all its real eigenvalues are non-negative, then log(Pf) is well-defined and its rows sum to 0. In
particular, setting o > 1 — 1/N guarantees that log(PY) exists, if P has real eigenvalues.

We will now show our second main result, and the intermediate lemmata leading up to it. The next
lemma states that if a (row) stochastic matrix is constructed by filling each of its rows with an element
of the probability simplex, then shining it by an arbitrarily small abound and growing its diagonal
proportionally yields a (row) stochastic matrix, which is necessarily invertible.

Lemma 1 (Invertible Perturbations). Let N € N let m € An. If P is a (row) stochastic matrix,
then, for any o € (0, 1), the matrix (1 — o)) P 4+ ol is an invertible (row) stochastic matrix.

Proof of Lemma 1. Let 1y € RY be such that: foreachi = 1,..., N we have (In)i=1(ie 1y
is a matrix of ones). By construction P = (r,...,n) . Therefore, P can be written as an outer
product via

P=1yn' (25)
Therefore, for any o € (0, 1), the perturbed matrix (1 — a)) P 4+ oIy can be expressed as
(l—a)P=((1-a) 1y)7", (26)

i.e. (1 — a) P can be expressed as an outer product of vectors in R"; namely of ((1 — ) - 1) and
7. Consequentially, our matrix of interest can be written as

(I1-a)P+aly=(1-a) - 1y)7" +aly. (27)

Note that, o Iy is invertible since det(aly) = oM > 0. Thus, the main result of Bartlett [1951] can
be applied, which yields the condition: if ol is invertible (which it is) and if

1+ 1% (aly) 'm0 (28)

then oy + ((1 —a)-1y) 7" is invertible. Thus, we only need to verify that the condition holds in
our case. Simplifying equation (28) yields

“1#£1%(aly) 'n (29)
1
=10 30
o INT (30)
N
1
=— Tn 3D
(6%
n=1
. (32)
(6% (6%

where equation (32) held since 7 € Ap. Consequentially, the identity in equation (27) and the
computation in equation (29)-equation (32) imply that (1 — ) P + ol is invertible if @ # —1.

Finally, since P is (row) stochastic and so is Iy then, foreach¢ = 1,..., N, we have that
N N
(1—a)Pi+aly),;=(1-a) ) Pj+al=(l-a)l+a=1
Jj=1 j=1
Whence, (1 — a)P + aly is (row) stochastic also. O

We now provide a set of sufficient condition on «, guaranteeing that the principal logarithm of Py is
well-defined. Furthermore, this lemme also shows that for « € (0, 1) large enough, as a function of
N, the matrix log(Py) is necessarily a valid candidate for a Markov transition matrix (i.e. each of its
rows sum to 0).

Lemma 2 (Sufficient Condition for Existence). Ifa > 1 — ﬁ then if either of the following holds:
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(i) Real Case: P/ has no complex eigenvalues,

(ii) Complex Case: P is doubly stochastic (i.e. row and column stochastic),

then log(PY) exists and its rows sum to 0.

Proof of Lemma 2. Since P is an N x N real (thus complex) matrix with real eigenvalues, then
define

m® tr(P?)/N and s* % tr((P?)%)/N —m?. (33)
First, observe that since the entries of P; (in particular its diagonal elements) are all positive then
— (PY)/N (34)
1N
NZ (I—a)m +a) (35)
i=1
1
N(l—a Zm—l—aZ) (36)
1
-~ ((1 —a)+ aN) (37)
1
- ( +a(N - 1)). (38)

Next, we compute s2. By Lemma 1, we have that P is a stochastic matrix and, therefore, so is its
square (as the product of stochastic matrices is stochastic). Note that

tr((P)?) < Sesr?afl((N) tr(S) =tr(Iy) =N (39)

where Stoch(NNV) is the set of N x N stochastic matrices. Therefore, we bound s2, defined in equa-
tion (33) using the “extremal trace bound” in equation (39) via

5% = tr(PY)/N —m? (40)
< N/N —m? 41)

1
=155 (1+a(N - 1))% (42)

That is 1
—s> —(1- 57 (1+a(V = 1)),

Now, using lower-bound on the minimal eigenvalue of a square complex matrix with real eigenvalues
using m and s in [Wolkowicz & Styan, 1980, Theorem 2.1] we have that

Amin(P) >m — s(N — 1)1/2 (43)
1 1 1/2
>~ (1 +a(N— 1)) (1 - <5 (1+a(V - 1))2) (N -1V (44
2\ 1/2(N — 1)1/2

:% (1+a(v =1) ~ (N~ (1 +a(¥ ~1))*) = (45)
:% ((1 +a(N - 1)) (46)
- [(N ~1) ((1 — a?)N? + 2a(a — )N — (a — 1)2)] 1/2> . 47)

fa>1- # and N > 1 (which is always the case) then

<(1 +a(N - 1))7 {(N — ((1 — a®)N? +2a(a — 1)N — (a — 1)2)} 1/2) >0, (48)
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Therefore, equation (48) together with equation (46) imply that
Amin(PF) >0
whenever o > 1 — ﬁ
Therefore, [Dunford & Schwartz, 1958, Theorem VII.1.10] implies that log(P?) exists, since Pf is

a matrix whose spectrum does not contain (—oo, 0]. Moreover, [Davies, 2010, Lemma 1] guarantees
that the rows of log(P) sum to 0.

Finally, we note that since Iy is doubly stochastic then so is P provided that P is. Therefore, P is
also a stochastic matrix and so is the product P P (as the product of (row) stochastic matrices is
again a (row) stochastic matrix). Whence
ef. Da pa 1 2
s2% tr(PAP) /N —m? glfm(lnLa(N—l)) (49)
and the same argument may be applied with s in place of s? upon using [Wolkowicz & Styan, 1980,

Theorem 3.1] in place of [Wolkowicz & Styan, 1980, Theorem 2.1]; however, in this case we do not
need to assume that the eigenvalues of P/ are real. In either case, this concludes our proof. O

B.2.1 COMPLETION OF THE PROOF OF THEOREM 2

Proof of Theorem 2. Step 1 - Minimizer of Inner Problem equation (Inner):
Since the elements of the set of NV x /N uniform stochastic matrices 731[\], all have identical rows then,
P is an optimizer of equation (Inner) if and only if its first row is a minimizer of

N N
1
i P Y™ v+ =N P, log(w, /N). 50
Pn;gl%; 1 LY t)+)\; 1 log(w, /N) (50)

Since the matrices in P, are row-stochastic, then all their rows belong to the N simplex Ay.
Therefore, P is a minimizer of equation (50) if and only if its first row, which we denote by

def. . e
7= (P1a,...,P1 n) € Ay is a minimizer of

[SPAN
g N n=1

N N

: n 1
min Y (Y, ;) + 3 ; 7y, log(wy, /N). (51)
Since the elements of Ay are in bijection with the set of probability measures on the N-point set
{1,...,N}, A > 0, and Zﬁ;l 7 log(wy, /N) is the KL-divergence (relative entropy) between
the probability measure 25:1 70y, and the uniform measure 25:1 + 6 (bothon {1,...,N})
then [Wang et al., 2020, Proposition 1] the unique minimizer of equation (51) is given by

7% Softmin (A (LY ™, Y)N_)).

Consequentially, the matrix P € P whose rows are 7 is a minimizer of equation (Inner).

Step 2 - Minimizer of Outer Problem equation (Outer):
By Proposition 2, for every «(0, 1) the matrix
P (1 —a)P+aly

is row-stochastic and for o “large enough”; meaning for a € (1 — 1/N, 1), the matrix P has
all its eigenvalues in (0,00). Therefore, by [Davies, 2010, Theorem 12] there is a minimizer
of equation (Outer) and it is given in closed-form by

Q% ReLU (log(P)).

This concludes our proof. O

Proof of Proposition 2. By Lemma 1, the matrix P is (row) stochastic and invertible. Thus, it
has no zero-eigenvalues. If, moreover, the assumption holds that P has no negative eigenvalues
then [Dunford & Schwartz, 1958, Theorem VII.1.10] guarantees that the (principle branch) of the
matrix logarithm of P exists. Consequentially, [Davies, 2010, Lemma 1] applies from which we
deduce that the rows of log(Pf) sum to 0. The last claim follows directly from Lemma 2 (i). O
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B.3 PROOF OF THE STABILITY GUARANTEE IN PROPOSITION 1

The following generalizes, thus implies, Proposition 1.

Lemma 3 (Maximal KL Divergence for Perturbation in Lemma 1). Let 7 € Ay, a € [0,1),
i =1,...,N, and let for each i = 1,...,N let 7" = (1 — a)7 + ae; where {e;}Y, is the
standard basis of RN . If prmin def. min;—1,.. N pi > 0 then

max  KL(7|x

i=1

a,i) < 2a ( o log(pmin) o log((l — a) pmin) )
yeees 1/pmin -1 1/((1 — @) Pmin) — 1
Proof of Lemma 3. By the (sharp) reverse Pinsker inequality in [Binette, 2019, Theorem 1], as
formulated in [Binette, 2019, Example A], yields the bound

. ; log(1 min log(1 gl’lin
KL (x|x) STV(WW,Z)(l/g; {p_l) N 1/g;a/zp_1)) (52)

min

where TV is the total variation distance between 7 and 7, and pm’in = min;—;, . N T, By
construction

(1 - a)pmin S pg{& S (1 - a)pmin + a.
Whence,
1 1 1 1
— < and < . (53)
prr;in (1 - a)pmin 1/pmln - 1 1/(<1 - a)pmin + O[) - 1
Incorporating equation (53) into equation (52) yields
4 ; log(Pmin) log((1 — &) pmin)
KL(7|7*") <TV(mw, 7" (— — )
( ‘ ) ( ) 1/pmin - 1 1/((1 - O‘)pmin) - 1
N
o ] a,i log(pmin) log((l — a) pmin)
=30 Iy ] (- o) :

rt " 1/pmin =1 1/((1 = @) pmin) —

[

N

log(pmin) 1Og((1 _ Oé) pmin)
3l odiml (= 37, 5 e o) 1)

j=

ZN: | +a) ( 10g(pmin) ~ log((1 — ) pmin) 1)

<
_(3—1 l/pnnn* 1 1/((1 70‘)pmin) -
N
1 min 1 1-— min
§<a ]w]]—ka)( 0g(Prmin) _ 0g((1 — @) Pmin) )
j=1 l/pmln -1 1/((1 - Oé) prnin) - 1
N
lOg pnnn IOg((l - a) pmin)
S (- ) e
; / 1/pmm -1 1/((1 - a)pmin) -1
1Og(pmin) log((l — a) pmin)
<(a+a) (- - ) (55)
( ) ( 1/pmin_1 1/((1_a)pmin) _1
-9 ( 1og(pmin) lOg((l _ Oé) prnin) )
=20 — — .
1/pmin_]- 1/((1_a)pm1n) -1
where equation (54) held since 7 € Ay and therefore, m; > 0 for each i = 1,..., N, and equa-
tion (55) held since Z _, m; = 1 again due to the fact that 7 € Ay. O

C DATASETS AND BENCHMARKS

C.1 NIFTY DATASET

The News-Informed Financial Trend Yield (NIFTY) dataset Saqur et al. [2024] is a processed and
curated daily news headlines dataset for the stock (US Equities) market price movement prediction
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task. NIFTY is comprised of two related datasets, NIFTY-LM and NIFTY-RL. In this section we
outline the composition of the two datasets, and comment on additional details.

Dataset statistics . Table 6 and Table 7 present pertinent statistics related to the dataset.

Table 6: Statistics and breakdown of splits sizes Table 7: Date Ranges of news headlines in splits
Category Statistics Split Num. Samples Date range
Number of data points 2111 Train 1477 2010-01-06 to 2017-06-27
Number of Rise/Fall/Neutral label 558 /433 /1122 Valid 317 2017-06-28 to 2019-02-12
Train/Test/Evaluation split 147717317 /317 Test 317 2019-02-13 to 2020-09-21

Anticipate the direction of the $SPY by analyzing market data and news from 2020-02-06.

(a) Instruction component of a 7z, ps policy query x4.

date, open, high, ® * ¢, pct_change, macd, boll_ub, boll_lb, rsi_30, ¢ ¢, close_60_sma

2020-01-27, 323.03, 325.12, =+ », -0.016, 2.89, 333.77, 319.15, 56.26, * * + , 317.40
2020-01-28, 325.06, 327.85, » * +, 0.0105, 2.59, 333.77, 319.55, 59.57, « =+ , 317.78

DN DY

2020-02-04, 328.07, 330.01, « * +, 0.0152, 1.3341, 333.60, 321.26, * * *, 319.41
2020-02-05, 332.27, 333.09, * * =, 0.0115, 1.7247, 334.15, 321.73, * * =, 319.82

(b) The market’s history is provided as the past ¢ days of numerical statistics like the (OHLCV) price (in blue)
and common technical indicators (in orange) (e.g. moving averages) data.

Figure 6: Breaking down the instruction or prompt prefix, and market context components of a prompt, x.

C.1.1 NIFTY-LM: SFT FINE-TUNING DATASET

The NIFTY-LM prompt dataset was created to finetune and evaluate LLMs on predicting future
stock movement given previous market data and news headlines. The dataset was assembled by
aggregating information from three distinct sources from January 6, 2010, to September 21, 2020.
The compilation includes headlines from The Wall Street Journal and Reuters News, as well as
market data of the $SPY index from Yahoo Finance. The NIFTY-LM dataset consists of:

e Meta data: Dates and data ID.

* Prompt (x,): LLM question (Zgyestion), Mmarket data from previous days (Zcontest), and news
headlines (2 ,cws)-

* Response: Qualitative movement label (x,.) € {Rise, Fall, Neutral}, and percentage change of
the closing price of the $SPY index.

To generate LLM questions, (Tquestion), the authors used the self-instruct Wang et al. [2023]
framework and OpenAl GPT4 to create 20 synthetic variations of the instruction below:

Create 20 variations of the instruction below.

Examine the given market information and news headlines data on DATE to
forecast whether the $SPY index will rise, fall, or remain unchanged. If you think
the movement will be less than 0.5%, then return ’Neutral’. Respond with Rise,
Fall, or Neutral and your reasoning in a new paragraph.

Where DATE would be substituted later, during the training phase with a corresponding date.

Context. The key ‘context’ (Zcontert) Was constructed to have newline delimited market metrics
over the past T (= 10) days (N.B. Not all market data for the past days for were available and therefore
prompts might have less than 10 days of market metrics.).
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Table 8 show the details of financial context provided in each day’s sample.

Table 8: Summary of the dataset columns with their respective descriptions.

Column Name Description

Date Date of the trading session

Opening Price Stock’s opening market price

Daily High Highest trading price of the day

Daily Low Lowest trading price of the day

Closing Price Stock’s closing market price

Adjusted Closing Price Closing price adjusted for splits and dividends

Volume Total shares traded during the day

Percentage Change Day-over-day percentage change in closing price

MACD Momentum indicator showing the relationship between two moving averages

Bollinger Upper Band Upper boundary of the Bollinger Bands, set at two standard deviations above the average
Bollinger Lower Band Lower boundary, set at two standard deviations below the average

30-Day RSI Momentum oscillator measuring speed and change of price movements
30-Day CCI Indicator identifying cyclical trends over 30 days

30-Day DX Indicates the strength of price trends over 30 days

30-Day SMA Average closing price over the past 30 days

60-Day SMA Average closing price over the past 60 days

News Headlines. (Znews): Final list of filtered headlines from the aggregation pipeline. The
non-finance related headlines were filtered out by performing a similarity search with SBERT model,
"all-MiniLM-L6-v2" Reimers & Gurevych [2019]. Each headline was compared to a set of artificially
generated financial headlines generated by GPT-4, with the prompt "Generate 20 financial news
headlines". Headlines with a similarity score below 0.2, were excluded from the dataset. To respect
the prompting ‘context length’ of LLMs, in instances where the prompt exceeded a length of 3000
words, a further refinement process was employed. This process involved the elimination of words
with a tf-idf Sammut & Webb [2010] score below 0.2 and truncating the prompt to a maximum of
3000 words.

It is also important to note that the dataset does not encompass all calendar dates within the specified
time range. This limitation emanates from the trading calendar days, and absence of relevant financial
news headlines for certain dates.

Label. (x,): The label is determined by the percentage change in closing prices from one day to

the next, as defined in equation 56. This percentage change is categorized into three labels: {Rise,
Fall, Neutral }, based on the thresholds specified in equation 57.

Closing Price, — Closing Price,_;

PCThange = ( > x 100% (56)

Closing Price,_;

Fall if PCTchange < —0.5%
z, = { Neutral if —0.5% < PC"Tchange < 0.5% 57
Rise if PCTepange > 0.5%

C.2 NIFTY-RL: PREFERENCES DATASET

The preference dataset is a variation of the fine-tuning dataset and it is designed for alignment training
of LLMs using reward model. In NIFTY-RL, labels are omitted and replaced with chosen and rejected
results. The chosen result is a label corresponding to a rise, a fall or neutral movement in the stock
market and is equivalent to the response in NIFTY-LM. The rejected result is a random label not
equal to the chosen label.

e Metadata: Includes dates and data identifiers.
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* Prompt (z,): Includes an LLM instruction (Zquestion), preceding market data (Zcontest), and
relevant news headlines (,,cs)-

* Chosen Result: A qualitative movement label (x,.) from { Rise, Fall, Neutral} indicating the
predicted market trend.

* Rejected Result: A label (Z,.) randomly selected from { Rise, Fall, Neutral, Surrender}\{z,},
representing an incorrect market prediction.

C.3 FLARE BENCHMARK DATASETS

Stock Movement Prediction Datasets and Tasks: Flare-SM tasks. FLARE proposed by Xie
et al. [2023], extends to include one financial prediction task — the CIKM dataset Wu et al. [2018] as
an evaluation task among (four) other general financial NLP tasks. Under the hood, this benchmark
is a fork of the ‘Im-eval® harness Gao et al. [2021] with addendums. Other stock price movement
prediction from social dataset include what is referred to as ACLIS8 (or, ‘acl18’) in this paper is
essentially the StockNet Xu & Cohen [2018] dataset which comprises of stock tweets of 88 stock
tickers from 9 financial market industries from Twitter over two years (from 2014-2015) aligned with
their corresponding historical price data. BigData22 [Soun et al., 2022] is another more recent tweets
dataset comprising of tweets about 50 stock tickers during the period 2019-07-05 to 2020-06-30.

Table 9: Summary of Flare stock price movement datasets. The ‘Stocks’ column indicates the total number of
different stock tickers referenced. The ‘Tweets’ and ‘Days’ columns represent the number of tweets and days
respectively in each dataset.

Data Stocks | Tweets | Days | Start Date | End Date

ACLI18 87 106,271 | 696 |2014-01-02 | 2015-12-30

BigData22 | 50 |272,762| 362 |2019-07-05 | 2020-06-30

CIKM18 38 955,788 | 352 |2017-01-03 | 2017-12-28

D ADDITIONAL BACKGROUND MATERIAL

In an effort to keep our paper as self-contained as possible, this section contains additional background
material used in our derivations and in the formulations of our technical results.

D.1 MATRIX LOGARITHMS

The (principal) logarithm of an N x N matrix A whose spectrum does not contain (—oo, 0] in C is
defined by

™

log(A) & % / log(z) (2Iny — A) "t dz
8!

where log(z) is the principal logarithm of z (in the complex plane) and - is a closed curve in
C\ (—o0, 0] containing the eigenspectrum of A.

D.2 THE SHIRAYEV-WONHAM FILTER

To keep our paper as self-contained as possible, we included some brief background on stochastic
filtering. Namely, this appendix contains background material on the Shirayev-Wonham (stochastic)
filter, studied in [Liptser & Shiryaev, 2001b, Chapter 9].

Consider a complete probability space (2, F, P) equipped with a non-decreasing sequence of
right-continuous sub-o-algebras F;,0 < ¢t < T. Let 0 = (6;,F:), 0 < t < T, denote a real
right-continuous Markov process taking values in the countable set £ = {«, 8,7, ...}. Additionally,
let W = (W, Ft), 0 <t < T, be a standard Wiener process independent of 6, and let &, be
a Fp-measurable random variable independent of §. We assume the existence of nonanticipative
functionals A; (e, ) and B;(«) that define

déy = Ag(0;, )dt + By(§)dWy (58)
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and satisfy the following conditions.
t
Aer) < L [ (14 aDdK () + LalL + ¢ + o), (59)
0
t
0<C<Bi)< L1/ (14 2%)dK (s) 4+ Lo(1 + z7), (60)
0

t
|At(er, x) = Aler,y)|* + [Be(w) = Bi(y)|* < L /O (x5 — ys)*dK (s) + La(ze —y0)*,  (61)

where C, Ly, Lo are certain constants, K (s) is a non-decreasing right continuous function, 0 <
K(s)<l,xe€Cpr,yeCr,e, € E,0<t<T.
Along with Equations (59) to (61) it will also be assumed that

MEE < oo, (62)

and

T
M/ 02dt < oo. (63)
0

Define
ps(t) = P(6; = B),
Poalt,s) L PO, =Bls =a), 0<s<t<T, B,a€k,

and assume there exist a function A,5(t),0 <t < T,«, 8 € E, thatis

continuous over ¢, (uniformly over «, 3) (64)
[Aap(t)] < K (65)
‘pﬁa(t + Av t) - 5(63 a) - Aaﬁ(t) ’ A‘ < O<A)v (66)

where §(3, «) is a Kronecker’s symbol and the value o(A)/A — 0 as A — 0 (uniformly over «, 3).

Let the Equations (59) to (66) be fulfilled. Then the a posteriori probability ws(t), 8 € &, satisfies a
system of equations

mg(t) :pg(O)—F/O E*WB(U)dU—F/O ﬂ'ﬁ(u)A" éu(é) AW,

where

Lrrg(u) =D Ayp(u)my(u) and Ay (€) = Au(y,&)my(u),

YeEE YEE

and W = (W, F;) is a Wiener process with

T tdfufﬁug’) "
W“/o BaE) "
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E ADDITIONAL DISCUSSIONS

We have updated the anonymous git repo with all the experiment results and added script to easily
replicate the main results of the paper in Table 2.

E.1 F1-MEASURE IN FMM TASK

For evaluation of model performances on the financial market movement (FMM) task using ternary
class labels, we use the scikit-learn library methods. For multi-class, n, labels (with n > 2), the
choice of averaging is important. The tabulated results were evaluated with default averaging
set to “weighted” — where metrics for each label were calculated, then average weighted by their
corresponding support (the number of true instances for each label). This alters the global averaging
‘macro’ (equal weight) for label imbalance. Imbalanced label support can result in an F-score that is
lower or not in between precision and recall.

Llama-2-7b-chat-hf Llama-2-70b-chat-hf Meta-Llama-3-8B-Instruct Meta-Llama-3-70B-Instruct

41 30 61

True Label

67

Neutral Rise Neutral
Predicted Predicted

Prgzu\t:tled e Prgaui?tled
(a) Llama-class models.

Mixtral-8x7B-Instruct-v0.1 dbrx-instruct OpenAl-gpt-40

34 48

True Label
u

34 44

Rise Rise Fall

Neutral Neutral Neutral
Predicted Predicted Predicted

(b) Mixture-of-experts class models and the state-of-the-art GPT-4 model.

Figure 7: Confusion matrices for Table 2. The first row highlights the Llama-class models, and the second row
focuses on mixture-of-experts and GPT-4 models.

E.2 TIME-SERIES FORECASTING EXPERIMENTS: ADDITIONAL DETAILS

This section provides additional discussion in support of the long-horizon time-series forecasting
(LTSF) experiment covered in §5.2.

E.2.1 FORECASTING GRANULARITY IN TIME-SERIES FORCASTING: IMS vs. DMS

In LTSF works, the decoding granularity is dichotomized in the following two categories:

I) Iterated/Incremental Multi-step (IMS). : This is auto-regressive language-modeling or gen-
erative style prediction decoding where each step in prediction horizon H is iteratively predicted:
Z141, and is used for the prediction for the subsequent time-step. The common limitations of such
forecasting granularity is ‘error accumulation’ over time as the decoder builds on the error from
previous steps while iteratively making subsequent predictions. Additionally, the run-time complexity
is to the order of the length of the horizon H.

IT) Direct Multi-step (DMS). : As the name implies, in this decoding or forecasting approach, the
entire forecasting horizon H is predicted at one go: Z41.++ . While computationally more attractive
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(much faster than IMS), this approach may not incorporate seasonality/periodicity in the time-series.
Modern TSF specialist models, especially the transformer-based TSF architectures, tend to follow
this scheme to avoid the quadratic cost (to the length of input) associated with attention.

E.2.2 CHANNEL INDEPENDENT STRATEGY

Recent advancements in Long-Term Series Forecasting (LTSF) have increasingly embraced a Channel
Independent (CI) approach for handling multivariate time series data Han et al. [2024]. The CI
strategy simplifies forecasting by isolating each (channel or feature as) univariate time series within
the dataset, allowing the model to focus on predicting individual channels independently. Unlike
traditional methods that leverage the entire multivariate historical data to make forecasts, the CI
approach seeks a shared function f : xil L1 € RL — itiu L+ € RH for each univariate series,
providing a streamlined model for each channel and reducing the need to account for inter-channel
dependencies.

E.2.3 OUR SETUP

For our experiments, the historical observation window (aka. look-back window or lag period), L,
is kept constant at 720 time-steps to be consistent and comparable with the literature. We follow
the channel-independent strategy similar to the three expert models used for filtering - giving us C
number of distinct features or channels of an agent’s observation. The (MSE) loss is then measured

as the discrepancy between the predicted values fgu g and the ground truth yt(ﬁl:t g as

C
1 . P
£ - 6 Z | y§211t+H - 1’521:254,1_[”;. (67)
i=1
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