
A Appendix

A.1 Network Architecture

We provide a detailed description of our object segmentation network and the auxiliary self-supervised
scene flow estimator.

(1) Object Segmentation Network

As shown in Figure 4, the network takes a single point cloud with N points as input. It consists of Set
Abstraction (SA) modules from PointNet++ [57] to extract per-point features for the downsampled
point cloud with N ′ points. Feature Propagation (FP) modules are applied subsequently to obtain
per-point embeddings for all N points. Given the intermediate features for the N ′ points and the K
learnable queries, the standard Transformer decoder [67] is used to compute the K object embeddings,
each of which is expected to represent an object in the input point cloud. An MLP layer is added to
reduce the dimension of object embeddings to be the same as point embeddings obtained from the
PointNet++ backbone. At last, we obtain each (soft) binary mask Ot

k via a dot product between the
kth object embedding and per-point embeddings. For each point, a softmax activation function is
applied to normalize its probabilities of being assigned to different objects.

In practice, the downsampling rate and point neighborhood selection in the PointNet++ backbone are
adapted to the point densities and sizes of different datasets, as shown in Table 10. The embedding
dimension from the Transformer decoder is set as 128 in all datasets.
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Figure 4: Detailed architecture of our object segmentation network.

Table 10: Configuration of the PointNet++ backbone in our object segmentation network. s denotes
the point cloud downsampling/upsampling rate. k controls the K nearest neighbors selected within a
ball with radius r. c denotes the first input and the following output channels of MLP layers. In SA
modules, the level 1-1 and 1-2 compose a multi-scale grouping (MSG) [57] with outputs concatenated.
In FP modules, the multi-level point features from SA are concatenated as inputs.

SAPIEN / OGC-DR / OGC-DRSV KITTI-SF / KITTI-Det / SemanticKITTI
level s k r c s k r c

SA

1-1 1/2 64 0.1(0.05) {3,64,64,64} 1/4 64 1.0 {3,32,32,32}
1-2 1/2 64 0.2(0.1) {3,64,64,128} 1/4 64 2.0 {3,32,32,64}

2 1/4 64 0.4(0.2) {192,128,128,256} 1/8 64 4.0 {96,64,64,128}
3 1/16 64 8.0 {128,128,128,256}

FP
3 1/8 {384,128,128}
2 1/2 {448,256,128} 1/4 {224,64,64}
1 1 {131,128,128,64} 1 {67,64,64,64}

(2) Self-Supervised Scene Flow Estimator

We use the existing FlowStep3D as our self-supervised scene flow estimator. This method extracts
per-point features via a PointNet++ backbone from two input point cloud frames separately. Then it
adopts a recurrent architecture to refine the scene flow predictions iteratively. We refer readers to
[34] for more details. On SAPIEN and OGC-DR / OGC-DRSV datasets, with smaller scene sizes
and fewer input points, we remove the last SA module with 1/32 downsampling rate and reduce the
number of nearest neighbors as half of its original choice in all modules.
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A.2 Object-Aware ICP Algorithm

In Algorithm 2, we present our object-aware ICP (Iterative Closest Point) algorithm.

Algorithm 2 Object-aware ICP algorithm. Assume each training sample contains a pair of point
clouds and scene flow estimations (P t,P t+1,M t ∈ RN×3), and object masks (Ot,Ot+1 ∈ RN×K)
obtained from a trained object segmentation network.

Step 1: Match the individual masks in Ot and Ot+1.
• Use the estimated scene flows to warp the first point cloud: P t

w = P t +M t, the warped P t
w

naturally inherits the per-point object masks from P t: Ot
w = Ot.

• Compute another object masks Ô
t+1

for the second point cloud P t+1 using the nearest-
neighbor interpolation from (P t

w,O
t
w).

• Leverage the Hungarian algorithm [36] to one-one match the individual masks in Ô
t+1

and
Ot+1 according to the object pair-wise IoU scores.
• Reorder the masks in Ot+1 to align with Ô

t+1
, thus aligh with Ot.

Step 2: Iteratively refine the rigid scene flow estimations
• Compute the per-point object consistency scores O ∈ RN×N between P t and P t+1: O =

Ot(Ot+1)⊺.

for number of iterations I do
• Compute the per-point soft correspondence scores C ∈ RN×N between P t and P t+1

based on the nearest-neighbor (closest point) distances, where

Cij = exp(−δij/τ), δij =
∥∥∥pt

i +mt
i − pt+1

j

∥∥∥
2

• Filter the per-point correspondence scores by the object consistency scores: C = C ∗O.
• Update the scene flows M t from the object-aware soft correspondences, where

mt
i =

∑N
j=1 Cij(p

t+1
j − pt

i)∑N
j=1 Cij

• For the kth object, retrieve its (soft) binary mask Ot
k, and then feed the tuple {P t,P t +

M t,Ot
k} into weighted-Kabsch [31; 21] algorithm, estimating its transformation matrix T k.
• Update the scene flows M t from the estimated transformations, where:

mt
i =

( K∑
k=1

otik · (T k ◦ pt
i)
)
− pt

i

Return the scene flows M t from the last iteration.

In the iterative optimization, as the scene flow estimations gradually approach more consistent and
accurate values, the number of iterations I in the object-aware ICP can be reduced for efficiency. We
set I in the object-aware ICP as {20, 10, 5} in the round {1, 2, 3} of the iterative optimization.

Table 11: Scene flow estimation on KITTI-SF benchmark.
EPE3D↓ AccS↑ AccR↑ Outlier↓

FlowStep3D [34] 10.21 70.80 83.94 24.56
Weighted Kabsch [31; 21] 9.31 71.01 81.20 28.75

Object-aware ICP 6.72 80.16 89.08 22.56

Compared to the weighted-
Kabsch [31; 21] algorithm, our
object-aware ICP algorithm takes
two frames as input to correct the
inconsistency in the flows. As
shown in Table 11, our algorithm
obtains a larger improvement for
scene flow estimations. In general, our algorithm is an extension of the classical ICP [2] to 3D scenes
with multiple rigid objects. Our algorithm can be naturally implemented in a batch-wise manner,
without sacrificing the optimization speed of the network.
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Figure 5: Illustration of the data generation process for our OGC-DR dataset.

A.3 OGC-DR and OGC-DRSV Datasets

Here we provide details about the data generation of our OGC-DR and OGC-DRSV datasets.
Following [54], we first generate 5000 static scenes with 4 ∼ 8 objects. For a single scene, the ratio
of width and length of the ground plane is uniformly sampled between 0.6 ∼ 1.0. For each object in
a scene, its scale is sampled from 0.2 ∼ 0.45. The object rotation angles around the vertical y-axis
are randomly sampled from −180◦ ∼ 180◦. Unlike [54], we do not keep walls and ground planes
in the generated raw point clouds since these textureless surfaces create intractable ambiguities for
self-supervised scene flow estimation. In fact, it is trivial to detect and remove them via plane fitting
in real-world indoor scenes. The walls and ground planes are simply used to place all objects in a
more realistic manner.

We then create rigid dynamics for the objects. For each object in a scene, we sample a rigid
transformation relative to its pose in the previous frame. In particular, we first uniformly sample
an angle from −10◦ ∼ 10◦ rotated by y/x/z axis with the probability of {0.6, 0.2, 0.2} respectively.
Afterwards, we uniformly sample a translation only on the x-z plane from the range of −0.04 ∼ 0.04
for each object, ensuring that the object is always on the ground. Note that, we reject all samples
which have objects overlapped or being out of the scene boundary.

The last point cloud sampling step varies for the two datasets. For OGC-DR, we directly sample
point clouds from the surfaces of complete mesh models, while for OGC-DRSV, we collect single-
view depth scans on mesh models. Note that for both datasets, the point sampling is independently
conducted on each frame in a scene. Therefore, there is no exact point correspondences between
consecutive frames. This setting is consistent with the scene flow estimation task in general real-world
scenes. Figure 5 illustrates the complete data generation process.

A.4 Additional Implementation Details

(1) Data Preparation

SAPIEN: In SAPIEN, each scene (an articulated object) has 4 sequential scans. During training, we
leverage consecutive frame pairs (both forward and backward) only, because the self-supervised scene
flow estimator can hardly handle rapid motions. Therefore, each object has 6 pairs of point clouds.
Given 13682/2356 objects in training/validation splits, we get 82092 training and 14136 validation
frame pairs. The 720 objects in testing split contribute 2880 individual frames for evaluation.

OGC-DR/OGC-DRSV: Similar to SAPIEN, each scene in OGC-DR/OGC-DRSV holds 4 sequential
frames. The 3750/250 scenes in training/validation splits give 22500 training and 1500 validation
frame pairs, and the 1000 scenes in the testing split provide 4000 testing frames.

KITTI-SF: The 100 pairs of point clouds in the training split of KITTI-SF contribute 200 training
pairs (both forward and backward), and the other 100 pairs in testing split provide 200 individual
frames for evaluation. A tricky problem in KTTI-SF is the scene flow estimation for the ground. The
textureless ground poses intractable ambiguities for the self-supervised scene flow estimator. However,
we cannot simply remove the ground by applying a height threshold, because the background points
above the ground will no longer be spatially connected, thus breaking the assumption behind our
geometry smoothness regularizer ℓsmooth. To address this issue, we apply the self-supervised scene
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flow estimator to points above the ground only. Meanwhile, we use the classical ICP [2] algorithm
onto points above the ground and regard the fitted transformation as motions for ground points (i.e.,
the camera ego-motion). Although this solution relies on an assumption that static background points
dominate the scene, our object-aware ICP algorithm can empirically alleviate potential errors in the
iterative optimization.

(2) Hyperparameter Selection

Geometry Smoothness Regularization: We choose L1 for the distance function d() given its less
sensitivity to "outliers", i.e., adjacent points belonging to different objects. As shown in Table 12, we
select two groups of neighboring points from two different scales (denoted by {k1, r1} and {k2, r2})
and weight them by {3.0, 1.0} in ℓsmooth.

Geometry Invariance Loss: For the distance function d̂() here, L1, L2 and cross-entropy are
all theoretically reasonable. We choose L2 for the best performance. The transformation for
augmentation comprises a scale factor uniformly sampled from 0.95 ∼ 1.05 and a rotation around
the vertical y-axis sampled from −180 ∼ 180◦. On KITTI-SF dataset, we add an x-z translation
sampled from −1 ∼ 1 and a y translation sampled from −0.1 ∼ 0.1.

Table 12: The choices of neighboring points in the
geometry smoothness regularization. k controls
the K nearest neighbors selected within a ball with
radius r.

SAPIEN / OGC-DR KITTI-SF
k1 r1 k2 r2 k1 r1 k2 r2
8 0.1(0.02) 16 0.2(0.04) 32 1.0 64 2.0

Network Training: We adopt the Adam opti-
mizer with a learning rate of 0.001 and train
on SAPIEN/OGC-DR/KITTI-SF datasets for
40/40/200 epochs, respectively. The batch size
is set as 32/8/4 on each dataset to fill in the
whole memory of a single RTX3090 GPU. The
three losses ℓdynamic, ℓsmooth and ℓinvariant
are weighted by {10.0, 0.1, 0.1}. On SAPIEN
and OGC-DR, since ℓinvariant can slow down the convergence, we first train 20 epochs without
it and then add it back. We also find that ℓsmooth occasionally overwhelms the initial iterations of
training, causing network predictions to collapse and assign all points to a single object. There-
fore, we empirically disable ℓsmooth before iterating through the initial 2000/2000/200 samples on
SAPIEN/OGC-DR/KITTI-SF datasets.

(3) Baseline methods on KITTI-SF

Since the KITTI-SF dataset is too challeging for the classical unsupervised methods, we leverage
the prior about ground planes in the dataset to improve baseline methods. First, we detect and
temporarily remove the ground plane, letting the baseline algorithms to segment above-ground
points only. For TrajAffn and SSC, we can use motion information to merge the ground points with
above-ground segments that are likely to be part of the static background. To do this, we employ
the Kabsch algorithm to estimate the rigid transformation of the ground. Then the above-ground
segments whose motions are well fitted by the ground’s transformation will be incorporated. For
WardLinkage and DBSCAN, the ground is treated as a separate segment. We conduct ablation studies
to validate the use of ground plane prior for these baseline methods on the KITTI-SF dataset, as
shown in Table 13 and Figure 6. After using the ground plane prior, SSC and WardLinkage gain
remarkable improvements both quantitatively and qualitatively. For TrajAffn and DBSCAN, although
the quantitative performance gain is not significant, we find that their qualitative results become more
meaningful.

Table 13: Ablation studies about the ground plane prior for baseline methods on KITTI-SF.

use ground plane prior AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑

TrajAffn [52] 30.4 34.7 42.7 40.5 45.3 49.0 83.5
✓ 24.0 30.2 43.2 37.6 50.8 48.1 58.5

SSC [51] 2.9 5.2 7.5 6.2 9.5 19.3 33.2
✓ 12.5 20.4 28.4 22.8 37.6 41.5 48.9

WardLinkage [30] 1.3 2.4 3.8 2.2 14.3 26.8 15.7
✓ 25.0 16.3 22.9 13.7 69.8 60.5 44.9

DBSCAN [17] 14.8 29.9 32.9 46.5 25.4 31.3 84.8
✓ 13.4 22.8 32.6 26.7 42.0 42.6 55.3
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Figure 6: Qualitative results for ablation studies about the ground plane prior on KITTI-SF. For each
baseline method, segmentation results without (top row) and with (bottom row) the ground plane
prior are shown.

A.5 Additional Ablation Studies

(1) Geometry Consistency Losses

We conduct additional ablation experiments on the curated SAPIEN dataset for a more comprehensive
analysis of losses in our framework. Recall that without the dynamic rigid loss ℓdynamic, network
predictions collapse and assign all points to a single object. The full SAPIEN dataset holds a number
of point cloud frames with only 2 or 3 object parts, enabling the ablated model without ℓdynamic to
still get plausible scores. However, as shown in Tables 14&15, once we evaluate the ablated models
on point clouds with ≥ 3 object parts (Table 14) or ≥ 4 object parts (Table 15), the performance of
the ablated model without ℓdynamic drops rapidly. This clearly shows that the ℓdynamic loss is truly
critical to tackle complex scenes with more and more objects. Figure 7 shows qualitative examples.

We also conduct additional ablative experiments on the KITTI-SF dataset, as shown in Table 16.
Similar to the results on the SAPIEN dataset, we observe the collapse of object segmentation without
ℓdynamic and the oversegmentation issue without ℓsmooth. Figure 7 gives an intuitive illustration.
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Table 14: Additional ablation results on a curated SAPIEN dataset where only point clouds with ≥ 3
object parts are kept (844 frames in total).

Config. AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑
w/o ℓdynamic 15.8 21.0 32.7 69.7 21.4 18.4 44.1
w/o ℓsmooth 13.0 15.5 23.7 18.9 31.8 42.9 65.5

w/o ℓinvariant 23.8 28.3 41.3 47.6 36.5 38.2 64.0
Full OGC 30.8 34.0 48.2 52.4 44.6 43.4 67.4

Table 15: Additional ablation results on a curated SAPIEN dataset where only point clouds with ≥ 4
object parts are kept (120 frames in total).

Config. AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑
w/o ℓdynamic 10.8 12.9 22.4 65.0 13.5 11.1 35.0
w/o ℓsmooth 12.8 13.9 22.2 20.3 24.5 35.3 67.3

w/o ℓinvariant 15.7 21.6 31.9 46.2 24.3 26.8 60.3
Full OGC 22.3 26.6 40.1 55.0 31.6 29.7 59.8

Table 16: Additional ablation studies about loss designs on KITTI-SF.

Config. AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑
w/o ℓdynamic 24.8 37.1 39.6 100.0 24.7 31.3 88.3
w/o ℓsmooth 44.9 31.8 39.6 30.9 55.1 61.2 90.2

w/o ℓinvariant 47.1 35.0 43.0 35.5 54.4 60.7 92.5
Full OGC 54.4 42.4 52.4 47.3 58.8 63.7 93.6

w/o ℓ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

w/o ℓ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

w/o ℓ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Full OGC

GT

SAPIEN KITTI-SF

Figure 7: Qualitative results for ablation study on SAPIEN and KITTI-SF.
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(2) Use of the Invariance Loss in Iterative Optimization

We conduct ablation experiments on the KITTI-SF dataset to validate our choice of using the
invariance loss linvariant only in the final round of iterative optimization. To do this, we iteratively
optimize on KITTI-SF for 2 rounds, with two different configurations: (i) We use linvariant in object
segmentation optimization of the two rounds. (ii) We use linvariant only in the 2nd round. For each
configuration, we run for five times with different random seeds and report the mean results with
uncertainty levels.

Table 17: Ablation results about the use of the invariance loss in iterative optimization. #R denotes
the number of iterative optimization rounds.

#R Split Config AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑

1
Train (i) 40.7±2.1 27.7±0.8 38.7±1.1 27.0±0.9 68.0±1.6 61.5±0.8 62.9±1.1

(ii) 41.4±3.0 31.3±0.9 43.5±1.2 30.5±1.1 75.4±1.2 64.8±0.7 60.6±1.0

Test (i) 34.1±2.0 24.1±1.6 35.0±2.1 26.0±1.8 53.9±2.2 52.9±1.1 57.2±0.9
(ii) 29.1±1.9 22.7±1.0 33.7±1.6 24.9±1.4 52.1±1.6 51.2±0.8 54.2±1.1

2
Train (i) 57.0±8.1 41.3±7.3 52.4±7.2 41.9±9.2 71.7±2.1 69.2±3.6 83.1±11.1

(ii) 67.0±2.3 50.5±2.3 61.5±2.4 53.1±3.6 73.1±1.4 73.7±0.9 95.5±0.3

Test (i) 41.9±8.2 33.0±6.4 43.0±6.1 35.8±7.6 54.7±3.0 58.4±4.0 79.4±13.0
(ii) 51.8±2.2 40.8±2.2 50.6±2.6 45.5±3.5 57.2±1.7 62.1±1.2 93.4±0.3

Analysis: As shown in Table 17, in the 1st round, the model (ii) trained without linvariant sacrifices
some generalization performance on testing data (F1: 33.7 vs 35.0) while fitting better on training
data (F1: 43.5 vs 38.7). As shown in Table 18, such advantages in segmentation performance on
training data lead to more refined scene flows (EPE3D: 2.36 vs 3.12), which will directly influence
the optimization in the next round. In constrast, better segmentation on testing data cannot be passed
to the next round. In the 2nd round, both models are trained with linvariant. The model (ii) stably
produces superior segmentation results on both training (F1: 61.5±2.4 vs 52.4±7.2) and testing
data (F1: 50.6±2.6 vs 43.0±6.1), owing to higher quality scene flow refinement inherited from the
previous round.

Table 18: Refined scene flow estimation after the 1st
round on KITTI-SF dataset.
Config EPE3D↓ AccS↑ AccR↑ Outlier↓

(i) 3.12±0.16 92.8±0.7 94.7±0.5 23.9±0.5
(ii) 2.36±0.12 94.7±0.5 96.4±0.2 22.5±0.1

The findings above are consistent with our
theoretical expectations. In the iterative op-
timization, the previous rounds can only in-
fluence the final results by passing refined
scene flows (on training split) to the follow-
ing rounds. The invariance loss linvariant
brings better generalization, especially to
static objects, while these properties are of little use for scene flow refinement on training data.
Therefore, in the previous rounds of iterative optimization, we can exclude linvariant and let the
model focus on moving objects in training samples and produce more refined scene flows. In the last
round, linvariant can be included to boost the generalization ability of the final model.

(3) Robustness to Scene Flow Distortions

We investigate the robustness of our method to scene flow distortions on the OGC-DR and KITTI-SF
datasets. To do this, we conduct experiments on three types of distorted scene flows: (i) We add
different degrees of zero-mean Gaussian noise into the ground truth scene flows, and these noisy
scene flows are used to supervised our object segmentation network. (ii) We use insufficiently trained
scene flow estimators to produce low-quality scene flow estimations for supervision. (iii) We use
the initial scene flow estimations which has not been refined by our iterative optimization. On our
OGC-DR dataset, we evaluate all these ablations. On the KITTI-SF dataset, we only evaluate (i) and
(iii), as we use a FlowStep3D model publicly released by the authors to estimate scene flows for
KITTI-SF. The intermediate training models are not available to evaluate (ii).

Analysis on OGC-DR: As shown in Table 19, our OGC is robust to Gaussian noises in scene flows.
The model maintains 85.2 AP even when the AccR of scene flows degrades to 6.9 only. In contrast,
the flow distortions from insufficiently trained estimators incur a notable drop in the segmentation
performance. The AP drops to 84.7 even when the scene flow AccR is still 32.2. From this, we
hypothesize that our OGC can be robust to noisy flows with large variance thanks to the rigid loss
integrated with weighted-Kabsch algorithm, but sensitive to large biases in estimated scene flows.

Analysis on KITTI-SF: As shown in Table 20, our method has strong robustness to Gaussian noise,
same as on OGC-DR dataset. The model achieves 59.5 AP even when the scene flow is corrupted by
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Table 19: Ablation results about the robustness to scene flow distortions on OGC-DR. Bold text
denotes the configuration of full OGC. #R denotes the number of iterative optimization rounds. We
report the object segmentation performance on the testing set and scene flow quality on training set
(the scene flow quality of the testing set is irrelevant to our object segmentation).

Object Segmentation Scene Flow
Flow Source #R AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑ EPE3D↓ AccR↑

Ablation (i)
GT + Gaussian (std=1.0) 1 91.3 83.3 88.1 84.4 92.1 89.2 97.6 1.60 73.9
GT + Gaussian (std=2.0) 1 86.4 79.7 86.2 85.0 87.4 83.8 96.5 3.19 19.9
GT + Gaussian (std=3.0) 1 85.2 77.2 84.5 82.9 86.2 82.0 95.8 4.79 6.9

Ablation (ii)
FlowStep3D (epoch=20) 1 90.1 81.0 86.4 81.6 91.9 88.2 96.8 1.14 90.2
FlowStep3D (epoch=10) 1 89.1 79.8 86.1 82.1 90.6 86.2 96.3 1.45 86.0
FlowStep3D (epoch=1) 1 84.7 71.6 80.5 74.3 87.8 80.9 93.5 3.84 32.2

Ablation (iii) FlowStep3D (epoch=50) 1 91.3 83.7 88.4 84.5 92.7 89.7 97.6 0.98 90.0
FlowStep3D (epoch=50) 2 92.3 85.1 89.4 85.6 93.6 90.8 97.8 0.76 92.2

Table 20: Ablation results about the robustness to scene flow distortions on KITTI-SF. Bold text
denotes the configuration of full OGC.

Object Segmentation Scene Flow
Flow Source #R AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑ EPE3D↓ AccR↑

Ablation (i) GT + Gaussian (std=10.0) 1 61.1 49.5 59.5 54.9 65.0 68.8 94.5 15.96 35.8
GT + Gaussian (std=20.0) 1 59.5 48.5 58.5 54.4 63.4 67.3 94.3 31.92 7.5

Ablation (iii) FlowStep3D (epoch=120) 1 36.0 24.6 35.4 26.4 53.8 53.7 57.8 12.21 72.8
FlowStep3D (epoch=120) 2 54.4 42.4 52.4 47.3 58.8 63.7 93.6 2.29 96.3

Gaussian noise to only 7.5 AccR. In contrast, the model without iterative optimization only gives
36.0 AP when the scene flow AccR is 72.8. Figure 8 shows qualitative results. In the middle column,
although scene flows have an overall high quality, the inconsistency in scene flows between two parts
of the same object leads to over-segmentation. We believe the Weighted Kabsch algorithm inside our
dynamic rigid loss is the key. This algorithm inherently smooths the Gaussian-like noise in scene
flows but cannot handle the biased errors. Fortunately, our object-aware ICP is designed to correct
such inconsistency in the flows, thus improving segmentation performance in iterative optimization.
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Figure 8: Qualitative results for ablation study about the robustness to scene flow distortions on
KITTI-SF. Scene flows are visualized via the point cloud warped by the flows. In the middle column,
the scene flow estimations are accurate for the above-ground background points (solid green ellipse)
but have biased errors for the ground plane points (which can be clearly seen inside the solid red
ellipse). This deviation of scene flow estimations between the above-ground background and the
ground plane leads to over-segmentation of the background (dashed red ellipse).

(4) Choice of Hyperparameters for Smoothness Regularization

We evaluate the influence of smoothness regularization hyperparameters on OGC-DR, as shown
in Table 21. When we strengthen the regularization by enforcing smoothness in a larger local
neighborhood (i.e., ablation H3), the Precision score improves with less over-segmentation, while
the Recall score is sacrificed. Figure 9 shows qualitative results. In general, as expected, such
hyperparameters control the trade-off between over- and under-segmentation issues.

(5) Weighted Smoothness Regularization via Motion Similarity

We investigate a variant of the smoothness regularization which is weighted by the inter-point motion
similarity. This motion-similarity-weighted smoothness regularization is mathematically defined as,

ℓ′smooth =
1

N

N∑
n=1

( 1

H

H∑
h=1

d(on,onh
) · exp(−∥mn −mnh

∥2/τ)
E

)
(4)
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Table 21: Different choices of smoothness regularization hyperparamters on the OGC-DR dataset.
The hyperparameter k controls the K nearest neighbors selected within a ball with radius r.

(k1, r1), (k2, r2) AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑
H1 (4, 0.01), (8, 0.02) 92.2 83.4 88.1 83.1 93.7 90.5 97.6

H2 (Full OGC) (8, 0.02), (16, 0.04) 92.3 85.1 89.4 85.6 93.6 90.8 97.8
H3 (32, 0.08), (64, 0.16) 84.6 81.0 87.4 89.5 85.4 82.3 96.8

𝐻𝐻1

𝐻𝐻2

𝐻𝐻3

GT

Figure 9: Qualitative results for the influence of smoothness regularization hyperparamters on OGC-
DR. H3 reduces over-segmentation issues in H1/H2 (solid red ellipses in column 1 ∼ 3), but fails to
separate different objects sometimes (dashed red ellipses in column 4 ∼ 6).

where mn ∈ R3 represents the motion vector of center point pn, and mnh
∈ R3 represents the

motion vector of its hth neighbouring point. τ = 0.01 is a temperature factor. E is a normalization
term, i.e., E =

∑H
h=1 exp(−∥mn −mnh

∥2/τ). This variant selectively enforces the object mask
smoothness among points with close locations and similar motions. Intuitively, it may avoid blurry
predictions on object boundaries.

Table 22: Quantitative results of motion-similarity-weighted smoothness regularization on KITI-SF.
Bold text denotes the configuration of full OGC.

Flow Source #R Regularizer AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑
FlowStep3D (epoch=120) 2 lsmooth 54.4 42.4 52.4 47.3 58.8 63.7 93.6
FlowStep3D (epoch=120) 2 l′smooth 49.8 40.7 50.1 46.0 55.0 61.1 93.5

GT + Gaussian (std=10.0) 1 lsmooth 61.1 49.5 59.5 54.9 65.0 68.8 94.5
GT + Gaussian (std=10.0) 1 l′smooth 60.0 48.1 58.5 54.0 63.9 66.9 94.5

GT + Gaussian (std=20.0) 1 lsmooth 59.5 48.5 58.5 54.4 63.4 67.3 94.3
GT + Gaussian (std=20.0) 1 l′smooth 57.9 46.5 56.3 51.1 62.6 67.2 94.4

Analysis: As shown in Table 22, l′smooth brings no benefits to our OGC method under various scene
flow situations. We believe the weighting via motion similarity makes l′smooth more sensitive to
noises in scene flow estimations, thus being inferior to our lsmooth.

A.6 Limitations of OGC

Our method can neither segment non-rigid objects nor discover unseen object types due to the lack of
supervision signals. Besides, the trained OGC model may not provide generalizable intermediate
representations to boost the performance of supervised model, which is discussed in details below.

We investigate whether our unsupervised method OGC can be used as a pre-training technique before
fully-supervised fine-tuning with a small amount of labeled data, like other popular self-supervised
representation learning methods. To do this, we firstly keep a subset (10%) of labelled point clouds
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Table 23: Quantitative results of OGC as a pre-training step on KITTI-Det.

training strategy AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ RI↑
train OGCsup on 10% labelled KITTI-Det 71.5 58.3 68.4 61.8 76.7 79.1 96.0

(train OGC on unlabelled KITTI-SF
+ finetune on 10% labelled KITTI-Det) 66.4 53.6 63.3 56.0 72.7 76.2 95.1

train OGC on unlabeled KITTI-SF 41.0 30.9 37.7 31.4 47.0 59.9 85.0

from KITTI-Det training set, and then use our OGC model unsupervisedly trained on KITTI-SF to
be fine-tuned on the labelled subset. For comparison, we additionally train a new model with full
supervision on the same labelled subset from scratch.

Analysis: From Table 23, we can see that: 1) Not surprisingly, using the pre-trained OGC model
followed by fine-tuning brings a significant improvement over our unsupervised OGC model, i.e.,
the 1st row vs the 3rd row. 2) However, the (pre-train + fine-tune) strategy fails to outperform the
fully-supervised model from scratch, i.e., the 1st row vs the 2nd row. Fundamentally, this is because
our unsupervised OGC is not dedicated to learn general intermediate representations for multiple
downstream tasks. Instead, our OGC is task-driven and it aims to directly segment objects from raw
point clouds. The learned latent representations in unsupervised training are likely to be different from
the latent representations learned in fully-supervised training. In this regard, a naïve combination
of (pre-train + fine-tune) may confuse the network and give inferior results. Nevertheless, how to
effectively leverage the unsupervised model along with full supervision is an interesting direction
and we leave it for future exploration.

A.7 Additional Qualitative Results

We provide additional qualitative results in Figure 11 for experiments in Sections 4.1 and 4.2 on
SAPIEN and OGC-DR datasets, and in Figure 12 for experiments in Section 4.3 and 4.4 on the KITTI
datasets.

For better visualization, we additionally project the segmented point clouds onto the corresponding
RGB images in KITTI-SF and KITTI-Det datasets. As shown in Figure 10, our method OGC can
successfully segment static cars parking alongside the road, thanks to our geometry invariance loss
linvariant which enables our network to generalize the segmentation strategy to similar yet static
objects through a set of scene transformations.

Figure 10: Qualitative results for static object segmentation on KITTI. Images in the 1st row are from
KITTI-SF dataset, the rest are from KITTI-Det dataset. Static cars in yellow ellipses are parking
alongside the road and can be successfully segmented by our method.

25



TrajAffn SSC WardLinkage DBSCAN OGC𝑠𝑠𝑠𝑠𝑠𝑠 OGC(Ours) GT

SA
PI

E
N

O
G

C
-D

R
O

G
C

-D
R

SV

Figure 11: Additional qualitative results on SAPIEN, OGC-DR, and OGC-DRSV.
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Figure 12: Additional qualitative results on KITTI-SF, KITTI-Det and SemanticKITTI.
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