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A Addendum on Gaussian Identities

This section will be merged into the ”Gaussian Identities” appendix in the camera-ready version.

Let p(z) = N (x|uo, Xo) and ¢(z) = N(x|u1,X1) be the densities of two multivariate Gaussian
vector of the same dimension, then their quotient admits also a Gaussian expression

PO o exp (—u —3) TS5 (a — u3>) 7 M

where

p3=T3(Xg o = XM m), Ty = (Xt -2
Notice that 33 can be non-positive, making this quotient unsuitable for a random variable density.
However, if X5 is definite positive, this expression can be normalized into a proper Gaussian density

N (s, 3).

B Definite Positive Symmetric Matrices

Here, we introduce some well-known results about definite positive symmetric matrices that will be
useful to manipulate covariances and derive the LBCM posterior in appendix C. We use the standard
notation S > 0 and S; > S5 to indicate that the symmetric matrices S and .S; — Sy are definite
positive.

Theorem 1 Let Sy, S5 be two symmetric positive matrices with at least one definite positive, and
a1, ag two strictly positive scalars, then o181 + a252 = 0.

Theorem 2 Let S be a symmetric definite positive matrix, then S~ = 0.

Thelol'em31 Let S1,S5 be two symmetric definite positive matrices, then S1 > So if and only if
Sy = =57

Theorem 4 Let S be a symmetric definite positive matrix and V' a (possibly rectangular) matrix
with full column rank, then AT SA > 0.

C Derivation of LBCM Posterior

In this section, we detail the derivation of the LBMC posterior. It is based on an approximation of
the BCM that we can also quickly derive here for completeness.

In general, if we have J experts trained on a partition D1, ..., D of the dataset D, then from Bayes

theorem:
Bayes

p(f«| D) < p(D|f)p(fe) = p(D1, ..., Dyl fe)p(fe)- (2)
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The BCM introduces a conditional independence approximation between the D;, which we inject in
(2), and then we use Bayes a second time on each expert posterior

BCM J Bayes J * D C * DZ
i=1 *

Then, we recall that we inject our geometric approximation in (3) to get the LBCM posterior

1L, (£ D) p(f) % Tlicag.) PP
pLeeM (f«| D) o : p(f)7 1 - p(fi)_l+ziex4(z*) Bi “)

where A(z.) = {i|B8; # 0}. This expression comprises a quotient, products, and powers of Gaussian
densities. We straightforwardly combine all the Gaussian identities from appendix A. With a zero
mean Gaussian prior, the LBCM posterior has the following exponential form

prBeM (f«|D) o< exp <—;($ —p) Az — H)) ) &)

where

p=A"11 > Bicov(fuD) T E(LID) |

i€A(zy) (6)
= Z Bi)eov(fi)™ Z B cov(f.|Di) !
1€A(xy) 7€A(1¢ )

For pracMm to be a proper Gaussian density N (u, A=1), all there is left is to check that A~ is
symmetric definite positive. Symmetry is stable by sum, inverse, and multiplication by a scalar,
so A~! is symmetric. Showing positive definiteness is slightly more cumbersome. According to
theorem 2, we can directly consider A. We start by rewriting it

A =cov(fs)” Z Bi (cov(fu|D;)™ " —cov(f) ™). (7)

i€A(z)

which is a sum of matrices weighted by positive coefficients that would be positive definite if each
matrix is positive definite as well (theorem 1). Using the inversion results (theorem 2), we have
cov(f.)~! = 0. And according to 3, the matrix cov(f.|D;) ™! — cov(f.) ! is positive definite if
and only if cov(f.) = cov(f«|D;).

Intuitively, the prior covariance is larger than the posterior one. Thus, cov(f.) > cov(f.|D;) should
be valid for any sensible expert model, but to finish the formal proof, we need to limit ourself to
specific examples. For instance, using full GP experts with kernel xgg,

cov(f.) — cov(fu|D;) = K¢ ; SKe ., (8)

where ¥ = (K¢ ¢ + 02 ;.o [na) ~'. The matrix K¢ s, has full column rank and using theorem 1 and
2 we have ¥ > 0. From theorem 4, it follows that cov(f.) = cov(f.|D;) holds for each GP expert
and LBCM is well defined. If, instead, we use the DTC or the G-DTC sparse approximation defined
from this GP

cov(f.) = cov(fuPi) = Ky z, (Kiu = $)Ku ., ©)
where S = (o nmbeK £Keu+ Ku ). We can see that S—! = O’nmbeK fKru+ Kou > Ky us
thus from theorem 3, we have K, — S > 0. It follows from theorem 4 that cov( fe) >~ cov( fe |D )

holds for each experts. Therefore LBCM is again well-defined.

D Partial Grid

G-DTC is based on extracting a partial grid of latent inputs near the training dataset. Here, we give
efficient computation techniques for the partial grid, describe some subtleties about latent inputs
near the subdomains border, and motivate the chosen value for the parameter R.
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Figure 1: Vertices selection from one cell of the cubic grid. The selected vertices (orange) are
extracted from a cubic grid (gray) at a distance R or less than an input = (blue). We represent one
grid cell only for clarity. (a) R is too small, and only one vertex is selected. (b) R is still too small
because the four selected vertices are coplanar (beware, the 4 gray vertices on the back are outside
the sphere)(c) R is larger, and the six selected vertices are not coplanar anymore. (d) In the worst
case, the input is located in the middle of a face, and R should be greater than the red segment length

V24 (6/2)2 + (5/2)2 = \/3/2 x 6.

Given inputs z1,...,x, and a radius R, we retrieve all the vertices z1, ... zys from a cubic grid
of step 4, that are at a distance R or less from at least one x;. To do so efficiently, for each x;,
we generate all the vertices z in a box of center x; and side length 2R (the generation process is
described below). Then, we loop through all the vertices of this box to remove those at a distance
greater than R from ;. Each remaining z is inserted in O(log(M)) into a ser data structure to avoid
duplicates. Thus, the partial grid is created in O((R/§)3N log(M)) operations, where (R/§)? is
proportional to the number of vertices in a ball of radius R.

All that is left is to describe the vertices generation process in a box of center z = (s, ..., g ) and
side length 2R. Let pg = (71, - .., var) be the origin of the cubic grid of step 4, then it is possible to

describe any vertex z by its grid macro coordinates v € A
z2=409 X v+ pgy (10)

The lowest and highest macro coordinate values of all the vertices inside the box are respectively

S ar—R—m ag — R — g
min 6 7 5

N a;+R—m ag + R—va
max — 75 yee ey 75

where [a] and |a] denotes the ceiling and integer part of a scalar a respectively. Then
[Ymin, 1> Vmax, 1] X * -+ X [Vmin,d’» Vmax,a’] 18 the list of grid macro coordinates of the vertices inside
the box.

(an

As a side note, when we split the space €2 in €2y, ...,€) to create the data partition, we allow the
partial grid of expert 7 to go outside €2;. In other words, each expert’s partial grid can overlap at the
subdomain boundaries.

Now we can focus on the ideal value of R in the case of 3D inputs (d’ = 3). In particular, we
want R large enough such that any input x has neighbor vertices spread in 3D, and we say that
R = /82 +(5/2)2 + (6/2)% is the smallest of such values that work for any input z. Fig. 1
illustrates it.
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