
Supplementary materials: Large Scale Mapping of
Indoor Magnetic Field by Local and Sparse Gaussian

Processes

Anonymous Author(s)
Affiliation
Address
email

A Addendum on Gaussian Identities1

This section will be merged into the ”Gaussian Identities” appendix in the camera-ready version.2

Let p(x) = N (x|µ0,Σ0) and q(x) = N (x|µ1,Σ1) be the densities of two multivariate Gaussian3

vector of the same dimension, then their quotient admits also a Gaussian expression4

p(x)

q(x)
∝ exp

(
−1

2
(x− µ3)>Σ−13 (x− µ3)

)
, (1)

where
µ3 = Σ3(Σ−10 µ0 − Σ−11 µ1), Σ3 = (Σ−10 − Σ−11 )−1.

Notice that Σ3 can be non-positive, making this quotient unsuitable for a random variable density.5

However, if Σ3 is definite positive, this expression can be normalized into a proper Gaussian density6

N (µ3,Σ3).7

B Definite Positive Symmetric Matrices8

Here, we introduce some well-known results about definite positive symmetric matrices that will be9

useful to manipulate covariances and derive the LBCM posterior in appendix C. We use the standard10

notation S � 0 and S1 � S2 to indicate that the symmetric matrices S and S1 − S2 are definite11

positive.12

Theorem 1 Let S1, S2 be two symmetric positive matrices with at least one definite positive, and13

α1, α2 two strictly positive scalars, then α1S1 + α2S2 � 0.14

Theorem 2 Let S be a symmetric definite positive matrix, then S−1 � 0.15

Theorem 3 Let S1, S2 be two symmetric definite positive matrices, then S1 � S2 if and only if16

S−12 � S−11 .17

Theorem 4 Let S be a symmetric definite positive matrix and V a (possibly rectangular) matrix18

with full column rank, then A>SA � 0.19

C Derivation of LBCM Posterior20

In this section, we detail the derivation of the LBMC posterior. It is based on an approximation of21

the BCM that we can also quickly derive here for completeness.22

In general, if we have J experts trained on a partition D1, . . . ,DJ of the dataset D, then from Bayes23

theorem:24

p(f∗| D)
Bayes∝ p(D|f∗)p(f∗) = p(D1, . . . ,DJ |f∗)p(f∗). (2)
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The BCM introduces a conditional independence approximation between theDi, which we inject in25

(2), and then we use Bayes a second time on each expert posterior26

p(D1, . . . ,DJ |f∗)p(f∗)
BCM∝ p(f∗)

J∏
i=1

p(Di|f∗)
Bayes∝ p(f∗)

J∏
i=1

p(f∗| Di)
p(f∗)

=

∏J
i=1 p(f∗| Di)
p(f∗)J−1

(3)

Then, we recall that we inject our geometric approximation in (3) to get the LBCM posterior27

pLBCM(f∗|D) ∝
∏J
i=1 p(f∗|Di)βip(f∗)

1−βi

p(f∗)J−1
=

∏
i∈A(x∗)

p(f∗|Di)βi

p(f∗)
−1+

∑
i∈A(x∗) βi

. (4)

whereA(x∗) = {i|βi 6= 0}. This expression comprises a quotient, products, and powers of Gaussian28

densities. We straightforwardly combine all the Gaussian identities from appendix A. With a zero29

mean Gaussian prior, the LBCM posterior has the following exponential form30

pLBCM(f∗|D) ∝ exp

(
−1

2
(x− µ)>Λ(x− µ)

)
, (5)

where31

µ = Λ−1

 ∑
i∈A(x∗)

βi cov(f∗|Di)−1E(f∗|Di)

 ,

Λ = (1−
∑

i∈A(x∗)

βi)cov(f∗)
−1 +

∑
i∈A(x∗)

βi cov(f∗|Di)−1.
(6)

For pLBCM to be a proper Gaussian density N (µ,Λ−1), all there is left is to check that Λ−1 is32

symmetric definite positive. Symmetry is stable by sum, inverse, and multiplication by a scalar,33

so Λ−1 is symmetric. Showing positive definiteness is slightly more cumbersome. According to34

theorem 2, we can directly consider Λ. We start by rewriting it35

Λ = cov(f∗)
−1 +

∑
i∈A(x∗)

βi
(
cov(f∗|Di)−1 − cov(f∗)

−1) . (7)

which is a sum of matrices weighted by positive coefficients that would be positive definite if each36

matrix is positive definite as well (theorem 1). Using the inversion results (theorem 2), we have37

cov(f∗)
−1 � 0. And according to 3, the matrix cov(f∗|Di)−1 − cov(f∗)

−1 is positive definite if38

and only if cov(f∗) � cov(f∗|Di).39

Intuitively, the prior covariance is larger than the posterior one. Thus, cov(f∗) � cov(f∗|Di) should40

be valid for any sensible expert model, but to finish the formal proof, we need to limit ourself to41

specific examples. For instance, using full GP experts with kernel κSE,42

cov(f∗)− cov(f∗|Di) = K>f ,f∗ΣKf ,f∗ , (8)

where Σ = (Kf ,f + σ2
noiseInd)

−1. The matrix Kf ,f∗ has full column rank and using theorem 1 and43

2 we have Σ � 0. From theorem 4, it follows that cov(f∗) � cov(f∗|Di) holds for each GP expert44

and LBCM is well defined. If, instead, we use the DTC or the G-DTC sparse approximation defined45

from this GP46

cov(f∗)− cov(f∗|Di) = K>u,f∗(K
−1
u,u − S)Ku,f∗ , (9)

where S = (σ−2noiseKu,fKf ,u +Ku,u)−1. We can see that S−1 = σ−2noiseKu,fKf ,u +Ku,u � Ku,u,47

thus from theorem 3, we have K−1u,u−S � 0. It follows from theorem 4 that cov(f∗) � cov(f∗|Di)48

holds for each experts. Therefore, LBCM is again well-defined.49

D Partial Grid50

G-DTC is based on extracting a partial grid of latent inputs near the training dataset. Here, we give51

efficient computation techniques for the partial grid, describe some subtleties about latent inputs52

near the subdomains border, and motivate the chosen value for the parameter R.53
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(a) R = 0.5× δ (b) R = δ (c) R =
√

3/2× δ (d) Worse case

Figure 1: Vertices selection from one cell of the cubic grid. The selected vertices (orange) are
extracted from a cubic grid (gray) at a distance R or less than an input x (blue). We represent one
grid cell only for clarity. (a) R is too small, and only one vertex is selected. (b) R is still too small
because the four selected vertices are coplanar (beware, the 4 gray vertices on the back are outside
the sphere)(c) R is larger, and the six selected vertices are not coplanar anymore. (d) In the worst
case, the input is located in the middle of a face, andR should be greater than the red segment length√
δ2 + (δ/2)2 + (δ/2)2 =

√
3/2× δ.

Given inputs x1, . . . , xn and a radius R, we retrieve all the vertices z1, . . . zM from a cubic grid54

of step δ, that are at a distance R or less from at least one xi. To do so efficiently, for each xi,55

we generate all the vertices z in a box of center xi and side length 2R (the generation process is56

described below). Then, we loop through all the vertices of this box to remove those at a distance57

greater than R from xi. Each remaining z is inserted inO(log(M)) into a set data structure to avoid58

duplicates. Thus, the partial grid is created in O((R/δ)3N log(M)) operations, where (R/δ)3 is59

proportional to the number of vertices in a ball of radius R.60

All that is left is to describe the vertices generation process in a box of center x = (α1, . . . , αd′) and61

side length 2R. Let p0 = (γ1, . . . , γd′) be the origin of the cubic grid of step δ, then it is possible to62

describe any vertex z by its grid macro coordinates v ∈ Zd′ :63

z = δ × v + p0 (10)

The lowest and highest macro coordinate values of all the vertices inside the box are respectively64

vmin =

(⌈
α1 −R− γ1

δ

⌉
, . . . ,

⌈
αd′ −R− γd′

δ

⌉)
vmax =

(⌊
α1 +R− γ1

δ

⌋
, . . . ,

⌊
αd′ +R− γd′

δ

⌋) (11)

where dae and bac denotes the ceiling and integer part of a scalar a respectively. Then65

Jvmin,1, vmax,1K× · · · × Jvmin,d′ , vmax,d′K is the list of grid macro coordinates of the vertices inside66

the box.67

As a side note, when we split the space Ω in Ω1, . . . ,ΩJ to create the data partition, we allow the68

partial grid of expert i to go outside Ωi. In other words, each expert’s partial grid can overlap at the69

subdomain boundaries.70

Now we can focus on the ideal value of R in the case of 3D inputs (d′ = 3). In particular, we71

want R large enough such that any input x has neighbor vertices spread in 3D, and we say that72

R =
√
δ2 + (δ/2)2 + (δ/2)2 is the smallest of such values that work for any input x. Fig. 173

illustrates it.74
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