Appendix

A Supplementary Experiments

A.1 Additional experiments with ProxSkip-VR

We conduct further experiments to validate the efficiency of our proposed method ProxSkip-VR. We
instantiate our variance reduction design with LSVRG and compare our method with several baselines
across various datasets (w8a/a9a), different number of workers (10/20), and different batch sizes
(16/32/64). All results in Figures 3, 4, 5, 6 show that ProxSkip-VR achieves linear convergence and
outperforms the baselines.

—+— ProxSkipVR —+— ProxSkipVR —+— ProxSkipVR

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 4 500 1000 1500 2000 2500
Communication rounds Communication rounds Communication rounds
(a) T = 16. (b) 7 = 32. () T = 64.

Figure 3: Convergence results with 20 distributed workers on w8a dataset, x = 1e3.
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Figure 4: Convergence results with 20 distributed workers on w8a dataset, k = 1le4.
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Figure 5: Convergence results with 10 distributed workers on a9a dataset, k = 1le4.

A.2 Additional experiments of cost ratio of ProxSkip over ProxSkip-VR

Here we report on more experiments related to the total cost ratio of ProxSkip over ProxSkip-VR in
Figures 7, 8,9, 10. When GD is used as the subroutine, i.e., when ProxSkip-VR reduces to ProxSkip,
the ratio is equal to one, and is depicted by the red horizontal dashed line. Any cost ratio above one
means that ProxSkip-VR benefits over ProxSkip (e.g., a cost ratio of 10 means 10X speedup in favor
of our method). As seen in the plots, acceleration of our method over ProxSkip is clearly visible, and
improves as the local computation cost & per sample increases. For large values of § (i.e., § ~ 1071),
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Figure 6: Convergence results with 20 distributed workers on a9a dataset, k = 1le4.

the acceleration can reach 20x to 85x. Note also that acceleration is more significant for small

m

inibatch sizes. That is, it is better for 7 = 16 than for 7 = 32, which is better than in the 7 = 64

case. This means that in terms of total cost, it is beneficial for the workers to use smaller minibatch
sizes, i.e., it is beneficial to be as far from the full batch regime employed by ProxSkip as possible.
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Figure 7: Acceleration with 10 distributed workers on a9a dataset, xk = 1e3.
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Figure 8: Acceleration with 10 distributed workers on a9a dataset, k = 2e3.
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Figure 9: Acceleration with 10 distributed workers on a9a dataset, x = le4.

A.3 Experiments with ProxSkip-HUB

In this work we introduced a new FL architecture: regional hubs connecting the clients to the server;
see Section 4. For conceptual simplicity, and in order to facilitate fair comparison with ProxSkip-
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Figure 10: Acceleration with 10 distributed workers on w8a dataset, k = le4.

LSVRG, we assume that the number of hubs equals to the number of clients, and that each client
owns a single datapoint only. We compare ProxSkip-HUB with ProxSkip-LSVRG to check whether
communication compression leads to any benefits in terms of total costs. Theoretically, and similarly
to our analysis in Section 5, the total cost for ProxSkip-LSVRG is

Cost(ProxSkip-LSVRG) = Tiomm,(ProxSkip-LSVRG)+6 (gm + (1 — ¢)7 + 7) Titer(ProxSkip-LSVRG).

Recall that we assume the communication cost from every worker/hub to the master is equal to 1, and
the computation cost per sample is equal to §. Here we generalize to the multi-level structure. We
assume that the communication cost from every client to hub is equal to ’. We choose the Rand-k
sparsification for ProxSkip-HUB; this compressor selects k-entries of the gradient vector, uniformly at
random from the full d-dimensional gradient. The total cost of ProxSkip-HUB is

Cost(ProxSkip-HUB) := T¢omm, (ProxSkip-HUB)

+46 (qm + % (1—qg)T+ T)) Titer (ProxSkip-HUB).

(16)

Algorithm 2 ProxSkip-HUB

1: Input: stepsize v > 0, probabilities p > 0, ¢ > 0, initial iterate xy € R<, initial shift Yo € R4,
initial control variate hy € R%, number of iterations 7' > 1
2: fort=0,1,...,7T —1do

3 broadcast x; to all clients

4. forie S;do

5: Al = Q (Vfi(z) — Vii(w)) © Apply compression operator
6:  end for o

7 A=z 2ies, Ot

8 =240+ Vi)

9 Tyy1 =x — Y(Ge — he) o Take a gradient-type step adjusted via the control variate
10:  Flip a coin 6; € {0, 1} where Prob(6; = 1) = p ¢ To decide whether to skip the prox or not
11:  if 6; = 1 then

12: Ty41 = ProXay, (it+1 - %ht) < Apply prox, but only very rarely! (with probability p)

13:  else

14: Tl = Te41 © Skip the prox!

15:  end if

16:  hye1 = he + %($t+1 — Tyy1) © Update the control variate h;
) | x¢ with probability ¢ e

17: Y1 = { v: with probability 1—gq o Update the shift y;

18: end for

Our experimental results are summarized Figure 11; we use the values § = §' = 1072, Clearly, and
thanks to communication compression, ProxSkip-HUB has benefit in terms of the total cost compared
to ProxSkip-LSVRG, and can reach up to three degrees of magnitude!
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Figure 11: Convergence results with different batch sizes and sparsification parameter k£ on a9a,
K = 2e3.

B Basic Facts

B.1 Bregman divergence, L-smoothness and p-strong convexity

The Bregman divergence of a differentiable function f : R? — R is defined by

Dy(x,y) = f(z) — f(y) = (Vf(y),® —y). (17)

It is easy to see that
(Vf(z) = Vf(y),z —y) = Dy(z,y) + Ds(y,x), Va,y € R" (18)
For an L-smooth and p-strongly convex function f : R — R, we have
L
sz —9l* < Ds(ey) < Sla—ylP, ey R (19)
and

S IVI@) = VI < Ds(a) < 3-I9S @) = VIWIE, Yoy eRL Q0

B.2 Firm-nonexpansiveness of the proximity operator
Given ¢ : R? — R, we define ¢*(y) := sup,cpa{(z,y) — ¥(2)} to be its Fenchel conjugate. The
proximity operator of ¢* satisfies for any 7 > 0

if u = prox_,.(y), then w€y—710Y*(u). (21)

If Assumption 3 is satisfied, then firm nonexpansiveness of the proximity operator im-
plies [Mishchenko et al., 2022] that

for all z,y € R% and any ~,p > 0.

oo (0)  proxs o)+ & = o o 9) — (3 = oy ) | < e =i, 22

B.3 Young’s inequality

For any two vectors a, b € R, we have
la+b]1* < 2[lall* + 2/b]|. (23)

B.4 Jensen’s inequality

For a convex function h : R% « R and any vectors i, ...,ZT, € R, we have

1 & 1 &
h <n;$z> < ﬁ;h(%) 24

Applying this to the squared norm, h(z) = ||z|?, we get

2
1 & 1 & 5
f§ ; <f§ A7 25
nﬁf/ _nﬁJWH (25
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C Analysis of ProxSkip-VR

In this section we provide the proof of Theorem 5.

C.1 Main lemma of ProxSkip

We start from Lemma 1 initially introduced by Mishchenko et al. [2022]; for completeness we provide
the whole proof. Let us define two additional sequences:

Wy = 2 — VGt (1) , Wy = T4 — VGt (T4) - (26)
Lemma 1. If Assumption 3 holds, v > 0 and 0 < p < 1, then the iterates of ProxSkip-VR satisfy
2
E |rear = ol Tyllheer = hull?] < i = wa*+ (1= 9%) T - hE @)
Proof. In order to simplify, let us define two points:
T =1 — Lhe, yi=a, — Lh,. (28)
p p

STEP 1 (Optimality conditions). Using the first-order optimality conditions for f + 1 and using
hy = V f(z.), we obtain the following fixed-point identity for x:

T, = ProXay, (x* — ;h*> = prox%¢(y). (29)

STEP 2 (Recalling the steps of the method). Recall that the vectors x; and h; are in Algorithm 1
updated as follows:

proxx () with probability p
Tip1 =1 gu(@) i o (30)
T with probability 1 —p
and
» . . o
hois = he + P (@ra1 — ps1) = he + z (prox%w(x) xtﬂ) thh probale?typ
v hy with probability 1 — p

(€29)

Let us consider the expected value V; 1 == E {Hmt“ — x|+ ;72 hesr — h*||2]:

2
S
2

30)+(31
Vi, (0ZGD p<Hme;w(x)x*

)

2
pI‘OX%w(I) - prox%w(y)H + H;ht + pI‘OX%w(I) — By — I

ht + g (pI’OX%w(Z) — .’i‘t+1) — h,*

2
1-p) (nm —ault+ L - h*n?)
(29) (
2

(28)+(29)

*

)

2 ’YQ 2
<||~Tt+1 N R N )
2 2
(HPYOX; () —prox%w(y)H + HPYOX%w(m) —x+y—pr0X%¢(y)H )

2
<||$t+1 —ault+ L - h*n?) . 32
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STEP 4 (Applying firm nonexpansiveness). Applying firm nonexpansiveness of the proximal
operator (22), this leads to the inequality

(32)+(22) . 72
v, L mm—mﬁ+u—m>0mﬂ—wm?+ﬁm—h*ﬁ

2
Ty — lht - (SU* - ’yh*)
p p

STEP 5 (Simple algebra). Next, we expand the squared norm and collect the terms, obtaining

(28)

2
B, +aQOHuW+;M¢hwﬁ.

2
Vier < plldees — o +p;7 [he = Bl — 2y (B0 — @0, he — hy)
2 72 2
+(1 —p) (||i“t+1 — x| + = | he — Bl >

2
=H@H—mW—m@Hrwhm—mH%ﬂm—mw. (33)

Finally, note that by our definition of @, we have the identity Z;1 = w; + ~vh. Therefore, the first
two terms above can be rewritten as

||§”t+1 - f*HQ -2y <5%t+1 — Ty, by — h*> = ||7th — Wy 7 (ht - h*)
— 2y (W — wy + 7y (he — hy) , he — hy)
= [l — wll” + 2y (0 — wi, by — By
+ 92 e = ha|® = 2 (W — wa, hy — h)
=297 || By — D f?
= [l — wol* = 42 1he — b (34)

2
I

Finally, plugging (34) into (33), we get:

2
wﬂsnwerW+wl—ﬁ)§wm—hw?

C.2 Main lemma

This lemma allows us to obtain a useful recursion for variance-reduced stochastic estimators used in
our ProxSkip-VR algorithm.

Lemma 2. Let Assumptions 2 and 4 hold. Then the iterates of ProxSkip-VR satisfy
E [[lor — will?] < (1 = ym)|ze — wull* = 29Dy (e, 22) (1 = vA) +7°Boy +4°C.

Proof. We start from the definitions of the auxiliary sequence w; (see (26)):

N (26) R
[y —wil* =" flwe = 7ge = (20 = YV (@)

= (e — 22) = (3 — V()|
= lze = @el® = 2y (@ — 24,60 — V(@) + 9290 — V()| (39)
Taking expectation in (35) and using unbiasedness of g; (see (5) in Assumption 4), we get
N (35)+(5) ~
E [l@: — wel|?] 7= wy — a|? = 2y (@ — 20, VF(@1) = V(1)) + 9 [16: = VF(2)]17] -
(36)
Let us now consider the inner product in (36). Using (19) and (18), we obtain
E [l — wil?] < (1= yw)llze — 2l = 29D (s, 2) + VB lge — VF@)I?] . 37
To bound the last term in (37), we can apply Assumption 4:
E [||g: — Vf(2.)|]?] <24Dy(s,2,) + Boy + C. (38)
Plugging (38) into (37) gives us
E [[ld; — wil®] < (1= yp)llwe — aul® = 29Dy (w4, 24) + 7% (2ADg (24, 24) + Boy + C)
< (1 —yp)llee — 2ul® = 29Dp(wr,2.) (1 = yA) +9°Boy +4°C, (39)
which is what we set out to prove. O
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C.3 Proof of Theorem 5

Proof. Using definition of the Lyapunov function ¥,, and the tower property of conditional expecta-
tion, we obtain

2
E[¥] = E [nxm =l + Ll = Al +WUH1}
2 2 72 2
< E[flr —wo?]+(1—p )pﬁ”ht — h.|
+ W2 (2;1Df(xt, Zy) + Boy + é’)
< (=l 2l ~ 2Ds{ern) (1= 74) +°Bo + 420
H1-ph) e — P+ WA (24D (w1, 2.) + Bou + C)

< (U= wlle - 2l = 29D ) (1= 1A+ WA))

B+WB

- 2
% )+72(C+WC>+(1—p2>;2llht—h*||2- (40)

+7*Woy (

Using the stepsize bound v < ? this leads to

B+ WB

0 >+72(C+WC“)+(1 P Ll b

E[W1] < (1 —yp)lee — z4]* ++*Wo, <

Let us denote 3 := w. In order to obtain a contraction, we need to have 8 < 1, which is satisfied

when W > — B,andweget
_ 2
E[¥i] < (1—w)llcvt—13*\\2+72W0tﬁ+72(0+W0)+(1—p2);7||ht—h*IIQ
< max (1—p* 8,1 =) U +7°(C+ WO). 41)

Finally, using the tower property of expectation and unrolling recursion (41), we get
(C’ + WC') 72
min {’YMaan 1-—- 6} .

E [\I/T] < max {(1 - PYHJ)T76T7 (1 7p2)T} \IIO +

21



D Examples of Methods Without Variance Reduction
D.1 Proof of Theorem 6 (GD estimator)
Proof. Let us show that GD estimator (g = V f(x;)) satisfies Assumption 4

E g — Vi(e)?] = [V F () — Vi@)|? S 2LD (1, ).

This means that Assumption 4 is satisfied with the following constant:

A=L B=0, C=0, A=0, B=0, C=0, o,=0.

Applying Theorem 5 leads to final recursion:

E [Wr] < max {(1 —yp)", (1-p*)"} o, (42)
By inspecting (42) it is easy to see that
1 1 1
T > maxq —,— ¢ log— = E[Ur] < ely. (43)
THOP €
Then the communication complexity is equal to
1 1
pTZmax{p,}log. (44)
TP €

Setting v = 1 and solving % = _ gives the optimal probability

_jp_1

Finally, the iteration complexity and communication complexity have the following form:

1 1 1 1
TZmax{,Q}log—/ilog, (46)

' p £ €

1 1 1
pTZmax{p,}log—\/Elog. 47)

' p € €

This recovers the result obtained by Mishchenko et al. [2022].

D.2 Proof of Theorem 8 (SGD estimator)

Proof. Let us show that the SGD estimator g, = g(x¢,&;) satisfying Assumption 7 also satisfies
Assumption 4. Using Young’s inequality we get

E [Hﬁt - Vf(;v*)||2] = E [Hg(xt,&) - Vf(x*)||2]

= E [Hg(xt,&) = 9(s, &) + g(24, &) — Vf(x*)HQ]
O [g(e &) — 9@ €17 + 2B [g(ra, &) — V()]

(7§) 4A" Dy (24, z4) + 2Var(g(zy, £)). (48)

This means that Assumption 4 is satisfied with the following constants:

A=24", B=0, C=2Var(g(z,,£)), A=0, B=0, C=0, 0,=0.
Applying Theorem 5 leads to the final bound:

2 2Var(g(x*, 5))

E [\IJT] < max{(l - ’W)Ta (1 7P2)T} Yo+ min {Wi pz} '

(49)
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In order to minimize the number of prox evaluations, whatever the choice of  will be, we choose the
smallest probability p which does not lead to any degradation of the rate min{~yu, p?}. That is, we
choose p = /. The first term on the right-hand side of (49) can be bounded as follows:

[\

1 20
Tzkg<(v — (1T, < o,
o/t €

The second term on the right-hand side of (49) can be bounded as follows:

el ~C'
< — ——
=3¢

We choose the largest stepsize consistent with bounds 7 < £& and v < %:

= min l el
T A2 -

Using this stepsizem we get the following iteration and (expected) communication complexities:

T > max é7§ log & , pT" > max é» & log & .
W oep? € w o\ ep? 5

This recovers the result obtained by Mishchenko et al. [2022]. O
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E Analysis of ProxSkip-HUB

In this section we provide analysis of the new algorithm ProxSkip-HUB, which works for the new FL
formulation described in Section 4. The pseudocode is presented in Algorithm 2.

E.1 Lemma for minibatch sampling

Fix a minibatch size 7 € {1,2,...,n} and let S; be a random subset of {1,2,...,n} of size 7,
chosen uniformly at random. Define the gradient estimator via

g(z) = % Z ng(x) (50)

JES:

Lemma 3. The gradient estimator g(x) defined in (50) is unbiased. If we further assume that n > 2,
@; is convex and L -smooth for all j, and f is L-smooth, then

E [llg(ze) = g(x)II”] < 2L(7) Dy (wr, 2.),

where

n—r n(t —1)

L(t) = — L+ ——F=L.
()= Ty max L + T
Proof. Let x; be the random variable defined by
_J1 jeSs

MW G¢s

It is easy to show that
E[x;] = Prob(j € §) = % (51)

Unbiasedness of g(x) now follows via direct computation:

E0)

@) @ B2 Va@| =E |23 w5 = 2 Y Eki Vé)

JES
= S Prob(j € 8)5,0) L 23" IV, (0) = Vi),
j=1 j=1

Let us define
aj = Voj(x) — Vo,(x,). (52)
Let X, be the random variable defined by

1 jESiand k € S,
Xik =0  otherwise ’

Note that
Xjk = XjXk- (53)
Further, it is easy to show that

E [x;.] = Prob(j € S,k € ;) = ;E; (54)
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Let us consider

2
1 ~ 1 ~
Ellg(e) —g@)I?] = E|[=> Véj(@)—— > Vé;x)
JES: JES:
- 2
1 ~ ~
= E|[= Y (V@) - Vas(a.)
JES:
r 2
2 el
= = j
JES:
i 2
1 n
= ﬁE ZXjaj
j=1
1
= ﬁE Z HXJajH + Z (Xjaj; Xrar)
k#j
3 1
= ﬁE Z ||XJaJ|| + ZX] k{aj,ak) | - (55)
k#j
Using the formulas (51) and (54) we can continue:
21 T o s T(r—=1)
E[llg(z:) — g(z)|?] = *ZH%’” +7_12<%‘7ak>
n = n(n —1) o
J 2 T—1
= = llal* + ——= D (a5, a)
™ mn(n —1) o
2
1< 9 T—1 - = 5
:?ZH%‘H +m Zaj _ZH%‘H
Jj=1 Jj=1 j=1
2

- noT 1Z|\agu T ) Zaj | (56)

Since ¢~$j is convex and L;-smooth, we know that
la;|* = IV f(2:) = Vfi(x)|* < 2L;D; (g, ). (57)

Since f is convex and L-smooth, we know that

=V f(z) = Vf()|* < 2LDy(xy, 24). (58)

2
n
1
fE a;
n -
=1
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Let us apply the bound L; < max; L; and use the identity Dy(z;, z,) = 1 2?21 Dy (e, @) :

2
n—rT

1 n
E <D l)g;QLjDaj(xt,x*)

LY V@) - - Y V)

JES: JES:

n(r—1)

+ T(n—1)

2LD¢ (¢, )

n—T

1 n
> 2m mjaXLJg ];Df] ((Et,l’*)

n(t —1)
T(n—1)

—2 """ tmaxL;Dy(a,y)
J

T(n—1)

+ 2 LD¢(z,y)

n(r—1)
mLDf(xt,x*)

=2 (TZL__TD max L; + :E;:BL) Dy(zs, ).

+2

O

E.2 Proof of Theorem 9

As in previous analysis we need to show that Assumption 4 is satisfied for the ProxSkip-HUB method.

Proof. Let us consider the first inequality in Assumption 4 and show that it holds for the new gradient
estimator §; = + > cs, Q(VY; (1) — Vo (ye)) + Vf(y):

2

E [llg: — Vf(z)|?] =E (59)

‘i > QVS;(ae) = V() + V() = V()

JES:

Let Ay = 13 (Vé(w) — V() and Ay = L 57 o Q(V; () — Ve (y:)). Using smart
zero 0 = A; — A, we have
]

< 2B [IA - AdP] +2E (18 + Vi) - V@)

Bll- VrwIl) = B[[A- At A+ 10) - Vi)

JES:

< 2E % S Qi () = V) — = 3 (V) — V5 (w1)
JESt JES:
+2E ‘1 > (Vo) = Vo(u) + V() — Vi)

26
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(60)



Let us consider the first term (60), let us define ¢} = Q(Vggj (x¢)— ng (ye))— (ng (xe)— V% (ye)):

2
B[ A7) =2 |[ 2 37 QU85 ) — V85 - (V) — V5(00))
JES:
: 2
—e |2 >
=
B | (Z loi” + 3 <ag,eg‘>)]
| \sese i)
1 , o
-5 (el Sxlfron)] )
JES: i#]
Using independence and unbiasedness of compressors we have
E[IA - ad?] = ;12 (Z E 6] + > E [@;‘,egﬂ)
JES: i#]
1 ) ) )
= 5 (Z E [Heg\ﬂ +3 <E [0i] & [eg} >)
JES: i#j
1 .
=D | Y
JESt
= o YR [IQVE ) — V) — (V) — Va5 P
JES:
12 1 ~ ~
= %E [Tg;t [Vo;(ze) — V¢j(yt)|2] : (61)

Using Young’s inequality and expectation of client sampling we get

E (1A - o] < e [ > 196w v$j<x*>||2]

JES:

4 fE [ > V) V%(w)lﬁ]
JES:

) ~

(<3) 27&}3 Z ||V¢j l’t V¢j(m*)‘|2

2w 1 ~
+iCZHV¢J () — Vs (@)

Q0) 4w .
< —LuaxDy (@, 24) + f*ZIIV% ye) = Voi(xa)|? (62)
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Let us consider the second term in (60):
1

it

= (Vo) = Vi) + VE() — Vi(x)

JES:

=E { LS (Vi) — Va5 + V() — V() + V) - V()

JES:

QI

2
ERT | ED SRCAEAIES SR eHEN
T JES: T JES:
r 2
£ 2 (|2 30 Vas) - = Y V) - | Vi) - = Y Vaw)
T jes: T jes, T s,

ED DACHCARED PR AN 1Y Va1 Y V()

}

|

JES: JES: JES: JES:
(63)
Using Lemma 3 and Jensen’s inequality (25) we have
2
1 ~ ~
E |||= > (Voj(w) = Vo,(w)) + V(y) — V()
7 jes.
2 r 2
1 ~ 1 ~ 1 ~ 1 ~
<2E { 22 V0i(m) = 2 3 Voi(w)|| | +2E |2 D Veilu) -~ Y V() ]
JES: JES: JES: JES:
2 & ~ ~ 2
<AL()Ds(ziw) + - Y [ V() - Vo5(a) (64)
j=1

Combining two parts (62), (64) and plugging into (60) we get

E (g0 — Vf(x)|?] < 2E { LS Q) Vi) — = X (Vas() — V)

1

JES: JES:
2
+ 28 { LS (V80— V) + V) - V)
JES:

< 8L(7)Dy ) + 3 |98 (00) — Vs
j=1

n

Y IVE5(ye) = Vs ()l

j=1

8 4w 1
+ ﬁLmafo(xta I*) + i
T T n
w w
<24 (L(r) + ZLnas) Dy, z) +4 (14 %) o, (65)
T T
where oy = L Z;L=1 ||V$j (ye) — ng (z,)||?. Let us consider update of control variable y;:

Yer = { x; with probability ¢ 66)

y¢  with probability 1—gq °
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Let us show that second inequality in Assumption 4:

Efoia] = Z IV (yer1) — V()|

~ 1 ~ ~
=(1-q- Zuw () = Vo (@)I* + - > V6, () = V(2.1
Jj=1

= (]- - Q) oy + 2quafo(xta ZL'*). (67)

Using (65) and (72) bounds we can confirm that Assumption 4 is satisfied with the following
constants:

A=4(L(T)+5Lmax), B:4(1+°ﬁ), C=0, A=qLpm, B=1-q, C=0.
T T
Applying Theorem 5 leads to the final result

E [Wr] < max {(1 =), (1= %), (1 = 92)" } Wo, (68)
where the Lyapunov function is defined by

8 w
Uy = [l — o> + ||ht nl 47 (1+%) 0

Letus sety = = /ywand g = 27/@ Using the same proof as for ProxSkip in Section D.1

1
ATWA’ b=
and L(7) < Lyax We get communication and iteration complexities:

Lmax 1 max 1
T = O ( (1 n E) log ) T =0 ( (1 T ) log ) .
i T € I 5

O

If we use full participation 7 = n and ¢ = + and r(x) = 0 then we get the same rate as for
DIANA [Mishchenko et al., 2019, Horvath et al., 2019b] and RAND-DIANA [Shulgin and Richtarik,
2021].

F Analysis of ProxSkip-LSVRG

The analysis of ProxSkip-LSVRG is almost the same to the analysis of ProxSkip-HUB, with one
exception. We use a different sigma component:
2

o1 =E % D (Vi) — Vi)l | - (69)

JES:

Let us consider E [||g, — V f(z.)?]:

E [lg -~ Vi@)IP) = | |2 3 (Voo ~ Vo5() + Vi) - Vi) (70)

JES:

Using (63) we have

E [lg: — Vf(2:)|°] <2E Z V(;SJ xt) Z V(b] T)

J€3t jGSt

+2E Zw u) —waJ z.)

]GSt JES:

< AL(T)Dg(x¢, x4) + 20%. (71)
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Let us show that second inequality in Assumption 4, using Lemma 3 we get

2

Elovi] =E ||| - 3 (V85s1) — Vé5(.)

JES
2 2
=(1-qE % > (Vo) — V()| | +4E % > (Véi(a) — Vo(x.))
JES: JES:
=(1—q)or +2qL(7)Dys(x, ). (72)

We showed that Assumption 4 is satisfied with following constants:

A=2L(r), B=2, C=0, A=qL(r), B=1-gq, C=0. (73)

Applying Theorem 5 with y = #(T) we get final bound:

Blwr] <max {0 - 0= 27 (1= 1) o,

where the Lyapunov function is defined as

2 v 2 24
Wy = [loy — 2| +p7|\ht—h*|\ o

Using the same argument as for ProxSkip and setting 3 = yu, we get

1
Tcomms =0 ( @ IOg 1> ) ,I}ters =0 (L(T) 10g ) . (74)
I € 1 €

If r(x) = 0, this recovers results of Kovalev et al. [2020a].
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