
Under review as a conference paper at ICLR 2024

A SEB ALGORITHM

Algorithm 1 illustrates the detailed steps of our proposed subword to byte sequence mapping in
Section 4.1. Algorithm 2 gives the step-by-step operations to obtain the subword embedding with
SEB based on bytes, given the mapping in Algorithm 1.

Algorithm 1: Construction of Subword to byte sequence mapping
Input :Byte vocabulary Vb = {0, 1, . . . , Vb � 1};

Subword vocabulary Vw = {w0, w1, . . . , wVw�1};
The number of bytes per subword n

Output :Mapping: M : Vw ! (Vb)n

1 for wi 2 Dw do

2 repeat

3 for j 1 to n do

4 Sample bij ⇠ Uniform[0, Vb) // P(bij) = 1
Vb

, bij 2 Vb

5 end

6 until (bi1, bi2, . . . , bin) /2M

7 Add wi ! (bi1, bi2, . . . , bin) to M

8 end

9 return M

Algorithm 2: Subword embedding with SEB
Input :Subword to byte sequence mapping M : Vw ! (Vb)n;

Subword sequence S = (w1, w2, . . . , wm);
A feed-forward network FFN;
Embedding matrix is B 2 RVb⇥d;
Subword embedding dimension d0

Output :Subword embeddings E0
2 Rm⇥d0

1 for i 1 to m do

2 (bi1, bi2, . . . , bin) M[wi]
3 end

4 Byte sequence for S : (b11, . . . , b1n, . . . , bm1, . . . , bmn)
5 E 2 Rmn⇥d

 retrieve (b11, . . . , b1n, . . . , bm1, . . . , bmn) from B

6 Ẽ 2 Rm⇥nd
 reshape E (in a row-major order)

7 E0 = FFN(Ẽ) 2 Rm⇥d0

8 return E0

B EXPERIMENTAL DETAILS AND MORE RESULTS

B.1 ENVIORMENTAL SETTINGS

All the programs in our work are implemented using Python 3.9.0, Fairseq Ott et al. (2019), PyTorch
1.13.0, and CUDA 11.7. For the hardware environment, we run all codes on a machine with Intel
i7-11700K CPU, 64G memory, and NVIDIA GeForce RTX 3080 GPU.

B.2 PREPROCESSING DETAILS

Translation For IWSLT14, there are 166K sentence pairs for training and validation and 5.6K for
testing. The vocabulary shared by the source and target languages is built by BPE Sennrich et al.
(2015) with 10K tokens.

For WMT14, en-de contains 4.5M sentence pairs. Newstest2013 is used for validation and new-
stest2014 for testing respectively. The merge operation is 32K for BPE and the dictionary is shared
by source and target.

13

Under review as a conference paper at ICLR 2024

Sentiment analysis There are 25000 training samples and 25000 testing samples for IMDb. We take
25% of the training data for validation and the rest for training. For SST2, The training, validation,
and test examples in SST2 are 67349, 872, and 1821, respectively. The tokenizer is “basic_english”
in the TorchText package. The minimum frequency needed to include a token in the vocabulary is 5.
The maximum length of the sentence is 256.

B.3 IMPLEMENTATION DETAILS

Translation The baseline we compare is the transformer with subword embedding Vaswani et al.
(2017). Our proposed method only replaces the subword embedding with SEB.

For IWSLT14, the encoder and decoder layers are both 6 and have 4 attention heads. The hidden
dimension of attention is 512 and the dimension of the feedforward layer is 1024. The optimizer is
Adam Kingma & Ba (2014) with an inverse square root learning rate scheduler, and warm up 4000
steps. The learning rate is 5⇥ 10�4. The total training epochs are 100, and we average the best 5
checkpoints for testing.

For WMT14, the encoder and decoder layers are both 6 and have 8 attention heads. The hidden
dimension of attention is 512 and the dimension of the feedforward layer is 2048. The optimizer is
Adam Kingma & Ba (2014) with an inverse square root learning rate scheduler, and warm up 4000
steps. The learning rate is 5⇥ 10�4. The total training epochs are 100 and we use the early stop if
the validation loss does not decrease in 5 epochs. We average the best 5 checkpoints for testing.

Sentiment Analysis We use 2-layer BiLSTMs for both IMDb and SST2 classification tasks. We
keep all model architectures the same for the baseline models and models with our SEBco except for
the embedding parts. The subword embedding dimension is 64 and 256 for IMDb and SST2. The
hidden units are 64 and 300 for IMDb and SST2. The hidden dimension of 2-layer FFN in SEBco is
128 for both datasets. We optimize the model using Adam Kingma & Ba (2014) and the learning rate
is 5⇥ 10�4 for the baseline and our method on both datasets. The best model parameters evaluated
on validation data are applied for testing.

Language modeling In this experiment, we also use a two-layer FFN in SEB, which has 4096
hidden units. The architecture is transformer_lm in the Fairseq framework. We share the input and
output embedding in the encoder and the other hyperparameters and settings are the same as Fairseq.

B.4 ANALYSIS FOR SEMANTIC MEANING

In this section, we will analyze whether the derived subword embeddings from our method can truly
encode the meaning of the words in the embedding space. To experiment on this aspect, we mainly
calculate the cosine similarity between two word embeddings obtained based on our method SEB.
We list some examples in IMDb sentiment analysis in Table 7.

good great funny bad worse boring

good 1 0.63 0.49 -0.58 -0.61 -0.58
great 0.63 1 0.40 -0.53 -0.33 -0.38
funny 0.49 0.40 1 -0.72 -0.61 -0.60
bad -0.58 -0.53 -0.72 1 0.72 0.85

worse -0.61 -0.33 -0.61 0.72 1 0.88
boring -0.58 -0.38 -0.60 0.85 0.88 1

Table 7: The cosine similarity of the subword embeddings calculated based on SEB.

The cosine similarity demonstrates that the subword embedding of our proposed SEBwill learn the
semantic meaning from the task. For example, positive words (good, great, and funny) have positive
and high-value similarities with each other, which is also the same case for all negative words (bad,
worse, and boring). However, all the negative-positive pairs have negative similarities, which means
the subword embedding of our proposed SEBcan automatically learn the semantic meaning.

14

Under review as a conference paper at ICLR 2024

B.5 ANALYSIS FOR SPACE COMPLEXITY

We analyze the space complexity in the experiments. We mainly take the translation on IWSLT14
and sentiment analysis as examples. Transformer model for translation on IWSLT14 de-en with
256 hidden units in our method SEBas the translation results are close to the traditional subword
embedding.

The tables below present the sizes of both the entire model’s parameters and the embedding layer
for translation on IWSLT and sentiment analysis, respectively. The numbers in () represent the
percentage reduction achieved by our method compared to the subword model.

Params Whole model Embedding BLEU

Subword 37M 5.2M 34.54 ± 0.10
SEBco 33M (# 12%) 0.7M (# 94%) 34.62 ± 0.12

Table 8: Transformer model for translation on IWSLT14 de-en.

Params Whole model Embedding Accuracy

Subword 5.9M 2.4M 81.2 ± 0.7
SEBco 3.8M (# 36%) 0.8M (# 68%) 82.5 ± 0.7

Table 9: Sentiment analysis on SST2

Params Whole model Embedding BLEU

Subword 1.5M 1.5M 85.6 ± 0.5
SEBco 0.4M (# 72%) 0.5M (# 80%) 85.8 ± 0.2

Table 10: Sentiment analysis on IMDb

In all of these tasks, our method SEBco can decrease the space complexity, which shows the ability
of our method to reduce the model size. In scenarios where model training is necessitated on a
device with limited memory, it will be better to make the model smaller while keeping the model’s
performance.

15

	Introduction
	Related work
	Preliminaries
	Subword-level and byte-level tokenization
	Federated Learning
	Threat Model

	Proposed Method
	Construction of subword to byte sequence mapping
	Subword embedding based on byte representation
	Complexity anlysis

	Experiment
	Experiments on privacy protection
	Experiment on performance
	Translation
	Sentiment analysis
	Language Modeling

	Conclusion
	SEB Algorithm
	 Experimental Details and More Results
	Enviormental settings
	Preprocessing details
	Implementation details
	Analysis for semantic meaning
	Analysis for space complexity

