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Figure 1: (Left) Quantitative analysis of representation biases in Vision Foundation Models
(VFMs), including DINOv2, CLIP, and SAM, on the PASCAL-Context dataset across five vision
tasks, all using the ViT-B backbones with pretrained parameters frozen. VFMs exhibit advantages
and disadvantages across different downstream tasks when compared to a conventional ImageNet-
pretrained backbone. Our SAK model, distilled from these VFM teachers, achieves the best average
performance with more balanced improvements, as indicated by its larger ratio of mean improvement
to standard deviation (µ/σ). (Right) Qualitative comparison of representation biases through rep-
resentative examples from semantic segmentation and boundary detection tasks. DINOv2 captures
localized features but occasionally confuses semantic categories; CLIP excels in object-level under-
standing but lacks fine pixel-level details; SAM produces precise masks in both tasks due to higher
input resolution but struggles with semantic knowledge. Our SAK successfully combines the pre-
cise boundary detection of SAM with the accurate semantic understanding of DINOv2 and CLIP.
Further details are discussed in Section 2.

ABSTRACT

Vision Foundation Models (VFMs) have demonstrated outstanding performance
on numerous downstream tasks. However, due to their inherent representation bi-
ases originating from different training paradigms, VFMs exhibit advantages and
disadvantages across distinct vision tasks. Although amalgamating the strengths
of multiple VFMs for downstream tasks is an intuitive strategy, effectively ex-
ploiting these biases remains a significant challenge. In this paper, we propose
a novel and versatile “Swiss Army Knife” (SAK) solution, which adaptively dis-
tills knowledge from a committee of VFMs to enhance multi-task learning. Un-
like existing methods that use a single backbone for knowledge transfer, our ap-
proach preserves the unique representation bias of each teacher by collaborat-
ing the lightweight Teacher-Specific Adapter Path modules with the Teacher-
Agnostic Stem. Through dynamic selection and combination of representations
with Mixture-of-Representations Routers, our SAK is capable of synergizing the
complementary strengths of multiple VFMs. Extensive experiments show that our
SAK remarkably outperforms prior state of the arts in multi-task learning by 10%
on the NYUD-v2 benchmark, while also providing a flexible and robust frame-
work that can readily accommodate more advanced model designs. Project page:
https://innovator-zero.github.io/SAK/.
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1 INTRODUCTION

Vision Foundation Models (VFMs), such as DINOv2 (Oquab et al., 2024), CLIP (Radford et al.,
2021), and SAM (Kirillov et al., 2023), have gained significant attention due to their impressive
performance on various downstream tasks. This underscores the importance of integrating VFMs
into Multi-Task Learning (MTL) (Caruana, 1997; Zhang & Yang, 2021; Yu et al., 2024), which
aims to jointly learn multiple tasks with a single network, thereby enhancing model efficiency and
performance, with broad applications in areas like autonomous driving (Ishihara et al., 2021).

In computer vision, multi-task models typically use a shared encoder to extract general features for
all tasks, as they share a common interpretation of visual input (Ye & Xu, 2023a). A straightforward
approach is to directly replace the encoder backbone with a VFM. However, VFMs are pretrained
on diverse datasets, image resolutions, and objectives, introducing representation biases when ap-
plied as feature extractors for downstream tasks. Our empirical study in Figure 1 reveals that these
inherent biases yield both advantages and disadvantages across different tasks, with no single model
achieving consistently superior performance across all domains. These findings highlight the chal-
lenge of accomplishing comprehensive improvements in MTL using VFMs, pointing to the demand
for collaborative utilization of multiple VFMs to exploit their complementary strengths.

Several existing works attempt an intuitive solution by extracting image features through multiple
VFMs and then concatenating or fusing these features for later decoding (Lin et al., 2023; Kar et al.,
2024; Zong et al., 2024; Tong et al., 2024a;b; Man et al., 2024). While this enhances visual encoding,
it comes with a major drawback: The inference of all vision encoders drastically increases compu-
tational costs, along with the memory and storage requirements due to the large-scale parameters,
rendering it less practical for real-world applications.

Therefore, recent works (Ranzinger et al., 2024b; Shang et al., 2024; Sariyildiz et al., 2024) propose
more efficient frameworks by distilling multiple VFM teachers into a single student model, which
can deliver competitive results on downstream benchmarks. Despite the progress, this many-to-
one distillation risks eliminating the representation biases of the VFM teachers, potentially limiting
the model’s ability to capitalize on their individual strengths for specific tasks. Zong et al. (2024)
further point out that biased information from VFMs can lead to performance degradation when
naively fused. Moreover, when matching one student to multiple teachers, reconciling diverse biases
in shared parameters could induce optimization conflicts. Our pilot study in Table 2 shows that
the student trained by many-to-one distillation does not consistently surpass the teachers in their
respective proficient tasks.

To overcome these limitations, we propose a novel approach named SAK, with the goal to build a
Swiss Army Knife model from a committee of VFMs to synergize their complementary strengths
and enhance performance across multiple downstream tasks. Considering the key challenge of pre-
serving the representation biases while ensuring model efficiency for deployment, we introduce a
multi-teacher knowledge distillation framework. This framework incorporates a shared Teacher-
Agnostic Stem alongside multiple Teacher-Specific Adapter Path modules, which produce special-
ized representations aligned with each corresponding VFM teacher. During distillation, the Teacher-
Agnostic Stem is optimized simultaneously by gradients from all VFM teachers, thereby capturing
universal knowledge. Meanwhile, the Teacher-Specific Adapter Paths accommodate the heteroge-
neous representation biases of each teacher, explicitly learning their diverse model characteristics.

Building on the reproduction of representation biases, the next step is to amalgamate the committee’s
expertise by exploiting the individual biases. Specifically, we treat each group of representations as
a knowledgeable expert and design a Mixture-of-Representations Router. This router dynamically
weighs and combines the most relevant representations, bridging the gap between general-purpose
knowledge and task-specific characteristics. The collaboration of these modules allows the student
to harness both commonalities and differences of the teachers, facilitating smoother and more com-
prehensive knowledge transfer. Furthermore, SAK is a highly flexible framework that can further
benefit from more advanced architectural designs (e.g., stronger task-specific decoders) and more
powerful models (e.g., larger teachers), offering a general solution to multi-task visual learning.

Our contributions are summarized as follows:
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Table 1: Comparison of Vision Foundation Models. Although all utilize the same Vision Trans-
former (ViT) backbone, they greatly differ in their training paradigms, including data, image reso-
lutions, and training objectives, which lead to diverse representation biases.

Model Training Dataset Dataset Size Resolution Objective
ViT (Dosovitskiy et al., 2021) ImageNet-1k/21k 1.2M/14.2M 384 Supervised classification
DINOv2 (Oquab et al., 2024) LVD-142M 142M 518 Discriminative self-supervised learning
CLIP (Radford et al., 2021) WebImageText 400M 224 Image-text contrastive learning

OpenCLIP (Cherti et al., 2023) LAION-2B 2B 384 Image-text contrastive learning
SAM (Kirillov et al., 2023) SA-1B 11M+1B 1024 Supervised promptable segmentation

• We systematically analyze the distinct representation biases of Vision Foundation Models, which
result in varying advantages and disadvantages across tasks, underscoring the importance of pre-
serving these biases during distillation from multiple VFM teachers.

• We propose SAK, an efficient and effective solution that distills knowledge from VFM teach-
ers into a Teacher-Agnostic Stem with Teacher-Specific Adapter Path modules, sharing common
knowledge while retaining the biases. We also introduce Mixture-of-Representations Routers to
adaptively amalgamate the complementary and specialized strengths for downstream tasks.

• We evaluate SAK on two widely-used multi-task benchmarks, PASCAL-Context and NYUD-v2,
showing it remarkably outperforms previous multi-teacher VFM distillation methods and state-of-
the-art multi-task models in both performance and robustness.

• SAK offers high flexibility and scalability, supporting a broad variety of VFM teachers and down-
stream tasks, and is compatible with various adapter, router, or decoder head architectures.

2 REPRESENTATION BIASES IN VISION FOUNDATION MODELS

In this section, we investigate the representation biases of Vision Foundation Models on multiple
downstream tasks through empirical studies. We select three representative state-of-the-art VFMs:
(1) DINOv2 (Oquab et al., 2024), which claims to excel in dense prediction tasks such as semantic
segmentation and depth estimation; (2) CLIP (Radford et al., 2021) and its reproduction, Open-
CLIP (Cherti et al., 2023), which are recognized for capturing language-aligned semantics and em-
ployed as vision encoders in vision-language models; and (3) SAM (Kirillov et al., 2023), which
achieves outstanding performance in promptable segmentation. For CLIP and SAM, we use only
their image encoders for representation learning.

As summarized in Table 1, although all these VFMs utilize Vision Transformers (ViT) (Dosovitskiy
et al., 2021) as backbones, they differ significantly in their training paradigms regarding datasets,
dataset sizes, image resolutions, and training objectives. Consequently, the representations learned
by these models embed heterogeneous biases, causing each model to focus on different aspects of
image features and exhibit strengths and weaknesses in specific tasks.

We conduct comprehensive quantitative and qualitative experiments using the three VFMs on five
dense prediction tasks from the PASCAL-Context dataset (Mottaghi et al., 2014). Among these
tasks, intuitively, semantic segmentation and human parsing require high-level semantics of objects
and localized features to generate accurate masks. Saliency detection demands an overall under-
standing of the image to identify its main contents, while surface normal estimation and object
boundary detection depend more on fine-grained representations for precise predictions.

We further provide a pilot study to show the inferiority of ignoring representation biases in knowl-
edge distillation from multiple VFM teachers, which validates the significance of addressing this
problem and motivates the development of our methodology.

2.1 QUANTITATIVE ANALYSIS

To quantitatively analyze the representation biases, we evaluate the performance of the three VFMs
directly transferred to each downstream task. We first freeze the models to generate image repre-
sentations based on their pretrained knowledge, and then train a decoder head to produce final pre-
dictions for each task. DINOv2 and CLIP operate at a resolution of 512 on the downstream dataset,
while SAM uses an input size of 1,024 as required by its pipeline. All feature maps are resized to
1/4 of the output resolution before being passed to the head. To quantify the advantages of VFMs
over the conventional ImageNet-pretrained ViT backbone, we calculate their relative improvement
over ViT for each task.
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Table 2: Comparison of a student model trained by many-to-one distillation without preserv-
ing representation biases and the oracle derived from VFM teachers. The oracle selects the
best result from the three teachers for each task. The student’s 2.34% average underperformance
demonstrates the critical importance of maintaining these biases during distillation.

Model Semseg Parsing Saliency Normal Boundary
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Oracle of teachers 81.18 (DINOv2) 74.38 (DINOv2) 81.48 (CLIP) 16.21 (SAM) 75.89 (SAM)
Student w/o biases 80.18 (↓ 1.23%) 69.13 (↓ 7.06%) 82.72 (↑ 1.52%) 16.00 (↑ 1.30%) 71.16(↓ 6.23%)

Figure 1(Left) illustrates how the representation biases in VFMs manifest in varying strengths and
weaknesses in different downstream tasks. Specifically, DINOv2 shows significant improvements
in two segmentation tasks, particularly excelling in human parsing with a performance gain of over
30%. It also performs well in object boundary detection, benefiting from its strongly localized fea-
tures learned from the combination of image-level contrastive objective (Caron et al., 2021) and
patch-level reconstructive objective iBOT (Zhou et al., 2022). While CLIP achieves lower accu-
racy than DINOv2 in these three tasks, it still exceeds the baseline by a notable margin of over 5%.
Despite being pretrained on a segmentation task, SAM surprisingly underperforms ViT in semantic
segmentation, showing a 30% drop, because of its limited semantic understanding—SAM considers
solely the object masks and ignores their semantic labels in its promptable segmentation task. How-
ever, SAM is the best in surface normal estimation and object boundary detection, exhibiting strength
in capturing pixel-level details and object edges. We also compute the ratio of mean improvement µ
to standard deviation σ across tasks, which can measure the consistency of improvements. A higher
ratio indicates better outcomes, as it reflects larger average improvements with smaller dispersion.
We can observe that while DINOv2 demonstrates stronger average enhancement, CLIP attains more
balanced results, whereas SAM is inferior in both perspectives.

2.2 QUALITATIVE ANALYSIS

To validate our quantitative findings, we visualize the final predictions for semantic segmentation
and boundary detection using an example image in Figure 1(Right). We observe that DINOv2, while
being effective at capturing localized features, is less effective than CLIP in semantic perception, as
illustrated in the yellow box of Semseg results. In this case, DINOv2 confuses a chair with a sofa,
resulting in misclassification as the background (the holes). Although CLIP excels in object-level
understanding with its rich semantic knowledge from the language domain, it falls short in gen-
erating fine-grained pixel-level masks. This shortcoming arises because CLIP’s training objective
prioritizes image-level contents that are represented only by the class token, which possibly accounts
for its lower performance than DINOv2 in the quantitative analysis.

On the other hand, SAM produces exceptional details in both tasks due to its high input resolution,
as demonstrated in the red and cyan boxes. In the red box, a complex scene shows a foreground
flower blending into the background, yet SAM accurately detects and labels the background in the
segmentation mask. Notably, the background is not annotated in the ground truth, as such precise
masking requires significant time and effort. We regard SAM’s high resolution as its representation
bias, as it stems directly from the model’s training paradigm. However, SAM’s limitation lies in
its semantic knowledge, particularly when integrating semantics from multiple objects. This makes
it difficult to attain high-quality semantic segmentation results, even with highly precise masks,
echoing the quantitative analysis. We provide additional analysis and discussions in Appendix A.

2.3 IMPORTANCE OF PRESERVING REPRESENTATION BIASES

In summary, the inherent representation biases in VFMs result in their uneven performance across
tasks, with no single model achieving the best results in all areas, as reflected in our quantitative
analysis. This motivates the idea of combining multiple VFMs to achieve optimal performance in
all tasks. Existing methods (Ranzinger et al., 2024b; Shang et al., 2024; Sariyildiz et al., 2024)
propose a solution by distilling multiple VFMs into a single student model. However, given that
the student model is shared by several teachers, an important question naturally arises: Should we
respect their individual representation biases when combining diverse VFMs?
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Figure 2: Overview of our proposed SAK framework, which distills foundational knowledge from
a committee of frozen VFM teachers into an efficient student model. The student model operates
like a Swiss Army Knife, with the Teacher-Agnostic Stem (TAS) serving as the main branch to
learn universal knowledge among teachers. Each Teacher-Specific Adapter Path (TSAP) acts as a
specialized tool to preserve the inherent representation bias of each teacher. Task-specific Mixture-
of-Representations (MoR) Routers are then employed to synergize the complementary strengths of
the teachers’ biases, adaptively combining multi-level representations from both TAS and TSAP to
generate tailored features for each task.

To answer this question, we conduct a pilot study where a student model is distilled from three
aforementioned VFMs, using only linear aligners to match the student’s features with those of the
teachers, following the setup of the state-of-the-art method (Ranzinger et al., 2024b). In this ap-
proach, the representation biases are not explicitly preserved during distillation, leading the student
to learn a unified representation aimed at simultaneously matching all three teachers. We then eval-
uate its performance on downstream tasks with the same settings as in quantitative analysis in Sec-
tion 2.1. We compare the student without biases to an oracle derived from the teachers by selecting
the best-performing teacher for each task, which represents the optimal performance of teachers.

From Table 2, the answer is clearly YES. While the distilled student surpasses the oracle in Saliency
and Normal, somewhat validating the effectiveness of prior methods, it suffers from drastic perfor-
mance degradation in Parsing and Boundary, with a drop of over 6%. Given that both the teachers
and student utilize a ViT-B backbone in this study, the performance gap would likely widen with
larger models. This demonstrates the limitation of naively transferring knowledge from multiple
teachers into a student and highlights the importance of preserving the individual biases, leading us
to the key question: Can we preserve the representation biases of multiple VFMs during distil-
lation to maximize multi-task performance? Our methodology provides a positive answer to this
challenge in the following sections.

3 METHODOLOGY

3.1 OVERVIEW

The overall framework of the proposed SAK is depicted in Figure 2. As a multi-teacher distilla-
tion approach, it employs a committee of VFM teachers, including DINOv2, CLIP, and SAM. The
student model comprises a Teacher-Agnostic Stem (TAS) and multiple Teacher-Specific Adapter
Path (TSAP) modules. TAS produces general representations shared across all branches, while each
TSAP adapts the common representations to align with the specialized domain of its corresponding
teacher via distillation. In this approach, the TSAP modules are optimized explicitly to replicate the
unique representation biases of the teachers, all in a parameter- and computationally-efficient man-
ner. The resulting feature sets are then passed through task-specific Mixture-of-Representations
(MoR) Routers for adaptive combination and are finally processed by prediction heads to generate
outputs for multiple tasks. We utilize multi-level representations for both the distillation and task
decoding procedures, an essential aspect for dense prediction tasks (Ye & Xu, 2022).
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3.2 TEACHER-AGNOSTIC STEM & TEACHER-SPECIFIC ADAPTER PATH

We adopt an off-the-shelf Vision Transformer (ViT) (Dosovitskiy et al., 2021) as the Teacher-
Agnostic Stem (TAS) and design a lightweight network branch called Teacher-Specific Adapter
Path (TSAP) parallel to the main stem. Given a TAS with L blocks, the forward pass for an input
image X is expressed as:

Z0 = PatchEmbed(X); Zl = bl(Zl−1), l ∈ {1, 2, . . . , L}, (1)

where bl represents the l-th block, and Zl ∈ Rn×d denotes its intermediate outputs with n tokens of
dimension d. Each TSAP module consists of L+1 adapters {al}, l ∈ {0, 1, . . . , L}, with one adapter
parallel to each patch embedding layer or transformer block. These adapters process intermediate
features to adapt them to the teacher-specific representations Rl ∈ Rn×d in a residual manner:

R0 = a0(Z0); Rl = al(Rl−1 +Zl), l ∈ {1, 2, . . . , L}. (2)

We utilize the standard adapter structure (Houlsby et al., 2019), which includes a down-projection
layer Wdown ∈ Rd×r, a GELU non-linearity (Hendrycks & Gimpel, 2016), and an up-projection
layer Wup ∈ Rr×d, where r ≪ d is the reduced dimension. As in prior works (Chen et al., 2022;
Mercea et al., 2024), we integrate a learnable scaling factor α and a residual connection from the
input Rin ∈ Rn×d to the output Rout ∈ Rn×d, which can be formulated as:

Rout = αGELU(RinWdown)Wup +Rin. (3)

For a committee of N VFM teachers, we assign a TSAP module with adapters {ail}, l ∈
{0, 1, . . . , L} to the i-th teacher. We then select four evenly distributed blocks from its outputs
{Ri

l} to form multi-level representations {Ri}s = {Ri
l}, l ∈ Ls = {L/4, L/2, 3L/4, L}. Simi-

larly, we have shared multi-level representations {Z}s from TAS. Benefiting from the lightweight
adapters, our distilled student model maintains original efficiency, as each TSAP module accounting
for less than 5% of the TAS parameters. Consequently, our SAK framework is able to preserve the
representation biases from the teachers without significant increases in computational cost, memory
usage, or storage, as shown in detailed discussions in Appendix D.1.

3.3 MIXTURE-OF-REPRESENTATIONS ROUTER

As depicted in Figure 2, we treat the representations from TAS {Z}s as a shared expert providing
common knowledge, while the representations from each TSAP {Ri}s, i ∈ {1, 2, . . . , N} serve
as proxy experts of VFMs with representation biases mirroring the teachers, resulting in a total of
N + 1 experts. To optimize the multi-task performance, we leverage the Mixture-of-Experts (MoE)
mechanism (Jacobs et al., 1991), which adaptively produces task-specific features from this pool of
general-purpose and specialized representations.

To facilitate this, task-specific router networks are trained to generate gate scores for each expert
representation, which serve as the weights for a linear combination. As shown in Figure 6, the rep-
resentations from different VFMs exhibit substantial variation in norm magnitudes. Thus, applying
different weights for individual patches within an image can be less effective, as it may disturb the
inherent patterns. To address this, we design a Mixture-of-Representations (MoR) Router, which
differs from prior works by generating a global gating score across all patches.

Specifically, for each selected level l ∈ Ls and downstream task t ∈ T, our MoR Router rtl takes
the teacher-agnostic representation Zl ∈ Rn×d as input, projects its channel dimension to N + 1
through a two-layer MLP, and then averages over n patches to get a feature vector ht

l ∈ RN+1. To
improve stability, we incorporate the noisy gating technique (Shazeer et al., 2017) by generating a
noise vector etl ∈ RN+1 through an additional MLP. Then we compute the gating score gt

l ∈ RN+1:

gt
l = Softmax(ht

l +N (0, 1)Softplus(etl)). (4)

The output gating scores are used to calculate the weighted sum of representations at each output
level. The fused features are then passed through task-specific heads for final predictions.

3.4 TRAINING PARADIGM

Our training paradigm contains two stages, with teacher parameters always frozen. In the first stage,
we train the student model on the ImageNet-1k dataset (Deng et al., 2009; Russakovsky et al.,
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2015), focusing on aligning the outputs of the TSAP modules with their respective VFM teachers.
ImageNet is chosen due to its diverse and extensive image samples, providing a strong basis for
effective knowledge transfer. To maintain fairness—given that conventional ViT backbones are also
pretrained on ImageNet—we opt not to use other larger datasets like those utilized in VFMs and
RADIO (Ranzinger et al., 2024b). Following previous findings (Ranzinger et al., 2024b; Shang
et al., 2024), we employ a combination of cosine distance and smooth-L1 losses for distillation. Let
T i
l be the i-th teacher’s representation at a selected level l ∈ Ls, the overall distillation loss is:

Ldistill(X) =
∑
l∈Ls

N∑
i=1

(
αLcos(R

i
l ,T

i
l ) + βLsmooth-L1(R

i
l ,T

i
l )
)
. (5)

where α = 0.9 and β = 0.1 are weighting coefficients.

In the second stage, we continue training on the downstream multi-task datasets. The distillation
loss is still included, allowing the VFM teachers to transfer more specialized knowledge related to
the downstream data domain. This ensures that the representation biases are further secured in the
student model; otherwise the biases could potentially be diminished due to the issue of catastrophic
forgetting (French, 1999) during downstream fine-tuning. The overall loss is then formulated as:

L(X) = γLdistill(X) +
∑
t∈T

wtLt(X,Yt), (6)

where Lt(X,Yt) is the task-specific loss for task t, computed using the ground truth Yt. The
hyperparameter γ balances the distillation loss and the task losses, with a default value of 1.0 for
simplicity, while wt adjusts the importance of each task. We set fixed wt values following the
standard practice in MTL (Maninis et al., 2019; Kanakis et al., 2020).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two widely-used multi-task datasets: PASCAL-Context (Mot-
taghi et al., 2014) with five vision tasks and NYUD-v2 (Silberman et al., 2012) with four tasks.
Details can be found in Appendix B.2.

Implementation. We employ a pretrained ViT backbone for TAS and use simple task-specific heads
consisting of MLP and convolution layers for decoding. The VFM teachers are DINOv2, CLIP, and
SAM with the ViT-L backbones, unless otherwise stated. More implementation details are provided
in Appendix B to ensure reproducibility.

Baselines. To evaluate the effectiveness of our method, we consider three categories of baselines:
(1) Single-task baseline, where individual models are trained for each task using the same ViT-
initialized architecture, and multi-task baseline, where a shared encoder and task-specific heads are
trained jointly. (2) Multi-teacher VFM distillation approaches, namely RADIO (Ranzinger et al.,
2024b) and Theia (Shang et al., 2024). We use their released models as encoder backbones, coupled
with the same task heads as ours. (3) State-of-the-art MTL models, which involves complicated
encoder or decoder designs. We assess the overall performance of each model with MTL Gain
∆m by calculating the average relative difference across all tasks compared to the single-task base-
line (Maninis et al., 2019).

4.2 MAIN RESULTS

Figure 3 presents a comparison between our proposed SAK and representative baseline methods on
both PASCAL-Context and NYUD-v2 datasets, with all methods using the ViT-B backbones. On
PASCAL-Context, SAK greatly boosts the performance in Semseg and Parsing, achieving an over-
all improvement of 1.66% over the previous SOTA. On NYUD-v2, our method establishes a new
milestone across all four tasks, increasing the MTL Gain metric from the previous best of 6.33%
to 11.11%. We provide more comprehensive comparisons on both datasets using the ViT-L back-
bones in Tables 5 and 6, and ViT-S/Swin-S backbones in Appendix C. Our approach consistently
outperforms previous methods, achieving the best results on 7 out of 9 tasks and both MTL Gain
metrics. Notably, SAK significantly surpasses the SOTAs in MTL (BFCI (Zhang et al., 2023b),
MLoRE (Yang et al., 2024d)) by nearly 10% on NYUD-v2, all while using fewer parameters.
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Figure 3: Performance comparison on
two datasets, based on ViT-B backbones.
MTL Gain ∆m on two datasets are shown
in the legend, respectively.

Table 3: Ablation of proposed modules. ‘↑’: higher
is better; ‘↓’: lower is better; ‘∆m’: MTL Gain w.r.t.
single-task baseline. ‘Rep Sim’ denotes the average co-
sine similarity between the representations of student
and corresponding teachers on the ImageNet-1k vali-
dation set.

TSAP MoR Rep Semseg Parsing Saliency Normal Boundary
∆m% ↑Sim↑ mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

✘ ✘ 0.3344 80.97 69.71 84.64 14.11 72.82 -1.21
✔ ✘ 0.8708 81.26 69.92 84.31 14.45 71.41 -2.03
✔ ✔ 0.8708 81.65 72.38 84.87 14.05 73.23 -0.03

Table 4: Ablation of our two-stage training
paradigm. ‘Distill’: distillation loss; ‘Task’: task-
specific losses.

Stage1 Stage2 Semseg Parsing Saliency Normal Boundary
∆m% ↑Distill Task mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

✘ ✘ ✔ 76.76 65.26 84.39 13.98 70.37 -4.04
✘ ✔ ✔ 77.06 65.08 84.67 13.83 70.74 -3.63
✔ ✘ ✔ 80.48 71.16 85.04 13.92 72.60 -0.60
✔ ✔ ✔ 81.65 72.38 84.87 14.05 73.23 -0.03

Table 5: Comparison with state of the arts on PASCAL-Context, based on ViT-L backbones.

Model Backbone #Param Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Single-task baseline ViT-L 1573M 81.61 72.77 83.80 13.87 75.24 0.00
Multi-task baseline ViT-L 357M 79.26 68.28 84.16 14.06 71.59 -2.97

PAD-Net (Xu et al., 2018) ViT-L 330M 78.01 67.12 79.21 14.37 72.60 -4.95
MTI-Net (Vandenhende et al., 2020) ViT-L 851M 78.31 67.40 84.75 14.67 73.00 -3.81

ATRC (Brüggemann et al., 2021) ViT-L 340M 77.11 66.84 81.20 14.23 72.10 -4.71
InvPT (Ye & Xu, 2022) ViT-L 423M 79.03 67.61 84.81 14.15 73.00 -2.81

InvPT++ (Ye & Xu, 2024) ViT-L 421M 80.22 69.12 84.74 13.73 74.20 -1.19
TaskPrompter (Ye & Xu, 2023b) ViT-L 401M 80.89 68.89 84.83 13.72 73.50 -1.24

TaskExpert (Ye & Xu, 2023a) ViT-L 420M 80.64 69.42 84.87 13.56 73.30 -0.97
BFCI (Zhang et al., 2023b) ViT-L 477M 80.64 70.06 84.64 13.82 72.96 -1.32
3D-aware (Li et al., 2024a) ViT-L 430M 79.53 69.12 84.94 13.53 74.00 -1.08
TSP (Wang et al., 2024b) ViT-L 423M 81.48 70.64 84.86 13.69 74.80 -0.22

MLoRE (Yang et al., 2024d) ViT-L 407M 81.41 70.52 84.90 13.51 75.42 0.16
RADIO (Ranzinger et al., 2024b) ViT-L 372M 81.11 71.50 85.17 13.49 74.80 0.29

SAK (Ours) ViT-L 407M 84.01 76.99 84.65 13.82 76.27 2.30

4.3 IN-DEPTH ANALYSIS

We conduct extensive experiments to validate the effectiveness and generalization of our proposed
SAK framework. All experimental analyses are based on the ViT-B backbones for both teachers and
student and the PASCAL-Context dataset unless otherwise specified.

Ablation study. An ablation study is conducted to discern the individual contributions of the main
components in SAK, namely TSAP and MoR Router, as outlined in Table 3. We consider two model
variants: (1) a model without the TSAP and MoR Router modules (row 1), which corresponds to
the student distilled naively regardless of representation biases, as studied in Table 2; (2) a model
distilled with TSAP in the first stage but trained without MoR Routers in the second stage (row
2), where the biased representations from multiple VFMs are simply added together. Firstly, our
results confirm that our proposed TSAP effectively preserves the representation biases from the
teachers as indicated by a higher average similarity between the student and teachers. Additionally,
we prove that a simple fusion of diverse biased knowledge does not lead to an overall improvement
and may even fall behind compared to the student without biases. With the synergization of TSAP
and MoR Router, our proposed SAK not only preserves and reproduces the representation biases
after distillation but also optimally capitalizes on these biases to maximize multi-task performance.
The upper-bound results of teacher amalgamation are presented in Appendix C.

Table 4 reports another ablation on our training paradigm, highlighting the contributions of each
stage. The results show that Stage 1, which distills knowledge from VFM teachers on ImageNet,
is a primary factor of performance enhancement. Meanwhile, incorporating the distillation loss
during Stage 2 consistently boosts final outcomes, regardless of whether Stage 1 is applied. This
underscores the effectiveness of transferring specialized knowledge in the downstream data domain.
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Table 6: Comparison with state of the arts on NYUD-v2, based on ViT-L backbones.

Model Backbone #Param Semseg Depth Normal Boundary
∆m% ↑mIoU↑ RMSE↓ mErr↓ odsF↑

Single-task baseline ViT-L 1259M 54.19 0.5560 19.22 78.09 0.00
Multi-task baseline ViT-L 346M 52.42 0.5413 19.29 76.50 -0.76

InvPT (Ye & Xu, 2022) ViT-L 402M 53.56 0.5183 19.04 78.10 1.64
InvPT++ (Ye & Xu, 2024) ViT-L ∼402M 53.85 0.5096 18.67 78.10 2.65

TaskPrompter (Ye & Xu, 2023b) ViT-L 392M 55.30 0.5152 18.47 78.20 3.36
TaskExpert (Ye & Xu, 2023a) ViT-L 400M+ 55.35 0.5157 18.54 78.40 3.33

BFCI (Zhang et al., 2023b) ViT-L 400M+ 55.51 0.4930 18.47 78.22 4.46
3D-aware (Li et al., 2024a) ViT-L 409M 54.87 0.5006 18.55 78.30 3.74
TSP (Wang et al., 2024b) ViT-L 402M 55.39 0.4961 18.44 77.50 4.07

MLoRE (Yang et al., 2024d) ViT-L 552M 55.96 0.5076 18.33 78.43 4.26
RADIO (Ranzinger et al., 2024b) ViT-L 362M 59.32 0.4698 17.46 79.41 8.95

SAK (Ours) ViT-L 394M 63.18 0.4313 16.25 79.43 14.05
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Figure 4: Weights of different ex-
perts learned by MoR Routers.

Table 7: Performance w.r.t. different combinations of VFM
teachers. Integrating knowledge from three teachers leads to
the strongest overall performance.

Teachers Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Multi-task baseline 76.76 65.26 84.39 13.98 70.37 -4.04
DINOv2 79.05 69.55 84.29 14.07 71.14 -2.21

CLIP 80.12 67.57 83.81 14.41 70.62 -3.26
SAM 63.47 63.99 85.02 13.95 73.27 -6.74

DINOv2+CLIP 81.53 71.95 84.49 14.16 72.59 -0.60
DINOv2+CLIP+SAM 81.65 72.38 84.87 14.05 73.23 -0.03

Impact of teacher selection. To investigate whether knowledge from all teachers can be effectively
incorporated into the student model and how each teacher contributes to downstream tasks, we
experiment on different combinations of VFM teachers in Table 7. When using a single teacher,
SAK effectively learns the teacher’s representation bias, as the student distilled from DINOv2 or
CLIP performs well in segmentation tasks, while SAM’s student is better in tasks requiring finer
details. Combining DINOv2 and CLIP continues to improve segmentation tasks, potentially due to
their complementary strengths in localized feature learning and semantic understanding. Including
SAM further benefits all tasks, leading to the best overall results. We also visualize the gating
weights learned by our proposed MoR Routers at the lowest and highest levels in Figure 4. At the
lowest level, where VFM teachers share more general knowledge about the details, tasks tend to rely
on the shared TAS and SAM’s bias. Conversely, the representation biases become more pronounced
at higher levels; therefore, the teacher-specific representations are predominantly selected. Further
analysis is provided in Appendix D.3 and D.4.

Impact of downstream data size. To assess the robustness of multi-teacher VFM distillation meth-
ods, we conduct experiments using varying numbers of samples among {25%, 50%, 75%, 100%}
from the downstream dataset. As depicted in Figure 5, while all models show an upward trend as
the number of data samples increases, our SAK consistently outperforms the other two distillation
baselines across all settings. Particularly, SAK surpasses the second-best method by a clear margin
of over 3% in scenarios with substantially fewer samples such as merely 25%.

Scaling with model size. In Table 8, we explore the impact of scaling the backbone sizes of the
VFM teachers and student by forming various combinations. The results indicate that increasing the
capacity of the student model, while keeping the teacher models fixed (row 1 vs. row 2, row 3 vs.
row 4), yields remarkable improvements across nearly all tasks. Additionally, scaling up the teacher
models without altering the student (row 2 vs. 3) also proves beneficial. These results demonstrate
the versatility and robustness of our approach in adapting to models of varying sizes.

Compatibility with different decoders. It is worth noting that our SAK framework is flexible
and does not impose constraints on the design of the backbone, the adapters in TSAP, or the de-
coder heads. As shown in Table 9, we replace the simple head with the more complex MLoRE
decoder (Yang et al., 2024d). Even with a simple head, SAK surpasses MLoRE by 0.8%, and inte-
grating the MLoRE decoder further enhances overall performance by 1.72%.
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SAK is the most robust in downstream tasks.

Table 8: Performance w.r.t. different settings of
teacher and student sizes. SAK shows robustness
across teachers or students with varying capacities.

Backbone Semseg Parsing Saliency Normal Boundary
Teachers Student mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

ViT-B ViT-S 78.66 68.46 84.66 14.33 70.28
ViT-B ViT-B 81.65 72.38 84.87 14.05 73.23
ViT-L ViT-B 81.88 74.30 84.79 14.02 74.09
ViT-L ViT-L 84.01 76.99 84.65 13.82 76.27

Table 9: Performance of SAK integrated with
MLoRE. SAK further benefits from stronger decoders.

Enc. Dec. Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

ViT MLoRE 79.26 67.82 85.31 13.65 74.69 -0.83
SAK Simple 81.65 72.38 84.87 14.05 73.23 -0.03
SAK MLoRE 82.74 74.28 84.58 13.89 75.96 1.69

5 RELATED WORK

Knowledge Distillation of Vision Foundation Models. As large-scale generalists, Vision Foun-
dation Models (VFMs) show superior performance in various tasks with minimal tuning, such as
CLIP (Radford et al., 2021) for vision-language tasks, DINOv2 (Oquab et al., 2024) for fine-grained
recognition, and SAM (Kirillov et al., 2023) for promptable segmentation. To reduce their computa-
tional demands while preserving performance, knowledge distillation (Buciluǎ et al., 2006; Hinton
et al., 2014) has been widely adopted in compressing VFMs (Vemulapalli et al., 2024; Sun et al.,
2023; Yang et al., 2024a). More recently, multiple VFMs are distilled into a single student to com-
bine their strengths: SAM-CLIP (Wang et al., 2024a) merges CLIP into SAM via continual learning
and distillation. RADIO (Ranzinger et al., 2024b) learns from CLIP, DINOv2, and SAM to en-
hance performance on downstream tasks. Theia (Shang et al., 2024) further incorporates Depth
Anything (Yang et al., 2024b), showing advantages in robot learning. Different from the straightfor-
ward distillation in these methods, we adaptively transfer knowledge from multiple teachers while
retaining the unique representation biases to maximize their strengths for multiple tasks.

Multi-Task Learning. Multi-Task Learning (MTL) aims to train a single model capable of handling
multiple tasks simultaneously (Caruana, 1997; Zhang & Yang, 2021; Yu et al., 2024). MTL research
primarily falls into two categories: multi-task optimization (Kendall et al., 2018; Chen et al., 2018;
Yu et al., 2020) and model architecture design (Long et al., 2017; Wallingford et al., 2022; Lu et al.,
2024c). Considering vision tasks, most works center on designing architectures, which is further
divided into encoder-focused and decoder-focused methods (Vandenhende et al., 2021). Encoder-
focused methods develop encoders to extract features for different tasks (Misra et al., 2016; Ruder
et al., 2019; Gao et al., 2019), while decoder-focused methods introduce task-interaction modules in
decoder to better capture task-specific features (Ye & Xu, 2022; Xu et al., 2023c; Ye & Xu, 2023b).

Knowledge distillation has also been applied to enhance MTL (Li & Bilen, 2020; Jacob et al., 2023;
Ghiasi et al., 2021; Luo et al., 2020; Ye et al., 2019a). These methods train a multi-task model
to mimic multiple single-task teachers, allowing the student to gain richer information. Xu et al.
(2023d) propose directly distilling a small multi-task student from a large multi-task teacher. To
the best of our knowledge, our work is the first exploration of multi-task distillation with general-
purpose knowledge from task-agnostic VFM teachers, as opposed to task-related teachers trained on
target datasets.

6 CONCLUSION

Building on our analysis of the representation biases in VFMs, we introduce a novel framework
SAK, designed to improve multi-task learning by exploiting the complementary biases of multi-
ple VFMs. Through the integration of a Teacher-Agnostic Stem, Teacher-Specific Adapter Paths,
and Mixture-of-Representations Routers, SAK effectively preserves the unique representation bi-
ases during distillation, thereby enhancing both accuracy and robustness across multiple downstream
tasks. Our work opens possibilities for including more advanced teachers and students, and provides
a solid foundation for future advancements in multi-task visual learning with foundation models.
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The appendix is organized as follows:

• Appendix A provides an additional qualitative analysis of representation biases.
• Appendix B details the implementation, including the architecture design of the teacher and stu-

dent models (B.1), datasets (B.2), data augmentation techniques (B.3), evaluation metrics (B.4),
loss functions and their weights (B.5), and all training hyperparameters (B.6).

• Appendix C presents supplementary experimental results to complement the quantitative analysis
in the main paper. It also includes comparisons with state-of-the-art methods using additional
backbones, upper-bound results of teacher amalgamation, and an analysis of balancing distillation
loss and task-specific losses.

• Appendix D provides further discussions on several key aspects. Section D.1 examines the training
and inference efficiency of our approach. Section D.2 compares the Mixture-of-Experts concept
with our proposed Mixture-of-Representations. Section D.3 offers an in-depth analysis of VFM
teacher selection. In Section D.4, we demonstrate the flexibility of SAK in incorporating new
VFM teachers and addressing different downstream tasks. Section D.5 explores the conditions
under which SAK surpasses or falls short of VFM teachers in specific tasks. Additionally, we
evaluate SAK on single-task learning in Appendix D.6 for a more comprehensive analysis.

• Appendix E reviews related work on knowledge distillation, Vision Foundation Models, knowl-
edge distillation of Vision Foundation Models, and Multi-Task Learning.

• Appendix F provides qualitative results by visualizing task predictions.

A ADDITIONAL ANALYSIS OF REPRESENTATION BIASES
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Figure 6: Qualitative analysis of representation biases in three VFMs based on a pair of ma-
nipulated images. We visualize the representations by calculating the L2 norm, their differences in
response to content changes, and their semantic segmentation predictions. CLIP struggles to detect
small objects, as they resemble background tokens, leading to poor segmentation; in contrast, DI-
NOv2 excels in small object detection but confuses semantic features in complex scenarios, while
SAM emphasizes edges, enhancing pixel-level detail but limiting high-level understanding.

Based on our analysis in Section 2, we further delve into the representations generated by VFMs to
understand how the representation biases lead to different outcomes across tasks. In Figure 6, we
create a pair of manipulated images by selecting several cat images from the dataset and converting
them into dogs while preserving the same shape and pose using ControlNet (Zhang et al., 2023c).
We place various sizes of cats and dogs in a shared background image to compose complex and
challenging scenes. For the segmentation task, this ensures that the predictions should differ only in
labels, while the mask shapes remain the same. We visualize the representations by calculating the
L2 norm of each patch token and their representation differences.

The red boxes highlight why CLIP struggles to detect small objects, such as the smallest cat and dog.
In the representations, small objects exhibit a pattern similar to neighboring background tokens, indi-
cating that CLIP assigns them the same level of importance as the background. Consequently, CLIP
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fails to segment these small objects and also struggles to generate precise masks for medium-sized
objects, as shown in the cyan boxes. Conversely, DINOv2 performs better at detecting small objects
by leveraging representations where these objects receive more attention than the background. How-
ever, its semantic understanding is limited in complex scenarios. For instance, DINOv2 confuses
the heads of the cat and dog in the cyan boxes, even though this is the most distinguishable feature
between the two animals. SAM displays different behaviors, with its representations concentrating
more on the edges in the images instead of the entire objects, which explains its strength in capturing
pixel-level details and weakness in high-level knowledge, as mentioned in our quantitative analysis.
When examining the differences between the representations of the two images, CLIP appears more
sensitive to changes in the main objects than DINOv2 and SAM, further underscoring its semantic
focus. We also observe the phenomenon of register tokens (Darcet et al., 2024) in CLIP’s represen-
tation, where these artifacts correspond to areas the model deems low-informative background.

Additionally, we extend our findings by providing insightful explanations that link the underlying
causes (differences in training paradigms) and effects (variations in downstream performance) of the
representation biases:

• DINOv2 excels at capturing features across multiple scales, stemming from its combination of
image-level contrastive objective (Caron et al., 2021) and patch-level reconstructive objective
iBOT (Zhou et al., 2022). Although it lacks semantic-based supervision, its general-purposed
visual representations exhibit powerful generalization capability for most downstream tasks.

• CLIP is trained by aligning the image and text embeddings of numerous image-text pairs through
contrastive learning, which incorporates rich semantic knowledge from language domain that en-
hances image-level understanding. However, CLIP tends to prioritize prominent objects in an
image while overlooking smaller ones, because (1) the alignment only considers the global class
token (patch tokens are optimized implicitly), and (2) the image captions mainly focus on pri-
mary contents. This possibly accounts for its lower performance compared to DINOv2 in our
quantitative experiments.

• SAM’s representation bias can be explained by two reasons. First, SAM is supervised by the
promptable segmentation task, considering solely the object masks and ignoring their semantic
labels. Second, SAM operates with an input resolution of 1,024 in both training and inference,
producing nearly four times more patches than other models. Consequently, SAM is adept at
capturing pixel-level details and detecting object edges, but is poor at perceiving the semantics of
multiple objects.

B IMPLEMENTATION DETAILS

B.1 MODELS

Architecture. We use DINOv2 (Oquab et al., 2024), CLIP (Radford et al., 2021), and SAM (Kirillov
et al., 2023) as our VFM teachers, with pretrained models from timm (Wightman, 2019). For CLIP,
we utilize the OpenCLIP (Cherti et al., 2023) reproduction in our experiments. The model names
of the VFMs and multi-teacher VFM distillation baselines, RADIO (Ranzinger et al., 2024b)1 and
Theia (Shang et al., 2024)2, are listed in Table 10. For the Teacher-Agnostic Stem in the SAK
student model, we employ ViT-S, ViT-B, and ViT-L backbones, initialized with pretrained weights
from timm. While we keep the CLS tokens in the model, we only use patch tokens as representations
for both the teachers and student models. Other modules in the student are trained from scratch. The
adapters in the Teacher-Specific Adapter Path use a channel reduction ratio of 4.

Input resolution. As detailed in Table 1, the VFMs are pretrained on diverse image resolutions.
Additionally, RADIO-B is pretrained on 768 × 768, RADIO-L is pretrained on 1024 × 1024, and
Theia on 224 × 224. In our experiments, we use a unified input size for all models, except SAM.
In the first stage, we use an input size of 384 × 384, while in the second stage, the input size is set
to 512 × 512 for PASCAL-Context and 448 × 576 for NYUD-v2. For SAM, we pad and resize all
images to 1024×1024. Feature maps from all models are interpolated to 1/4 of the output resolution
before being decoded by the heads for a fair comparison.

1https://github.com/NVlabs/RADIO
2https://huggingface.co/collections/theaiinstitute/

theia-66a7a6ae80a707547c358cce
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Table 10: Model zoo of VFMs and multi-teacher VFM distillation methods.

Model Platform Backbone Name

ViT (Dosovitskiy et al., 2021) timm
ViT-S/16 vit_small_patch16_384

ViT-B/16 vit_base_patch16_384

ViT-L/16 vit_large_patch16_384

DINOv2 (Oquab et al., 2024) timm
ViT-B/14 vit_base_patch14_dinov2

ViT-L/14 vit_large_patch14_dinov2

CLIP (Radford et al., 2021)
timm

ViT-B/16 vit_base_patch16_clip_384

OpenCLIP (Cherti et al., 2023) ViT-L/14 vit_large_patch14_clip_336

SAM (Kirillov et al., 2023) timm
ViT-B/16 samvit_base_patch16

ViT-L/16 samvit_large_patch16

RADIO (Ranzinger et al., 2024b) torch hub
ViT-B/16 NVlabs/RADIO/radio_v2.5-b

ViT-L/16 NVlabs/RADIO/radio_v2.5-l

Theia (Shang et al., 2024) huggingface
ViT-S/16 theaiinstitute/theia-small-patch16-224-cdiv

ViT-B/16 theaiinstitute/theia-base-patch16-224-cdiv

Teacher/student mismatch. Since we have VFM teachers operating with different input and patch
sizes (14 or 16), their intermediate representations have different spatial resolutions. Take an input
size of 512× 512 as an example, DINOv2-B/14 teacher outputs a 36× 36 map, CLIP-B/16 outputs
a 32 × 32 map, SAM-B/16 outputs a 64 × 64 map, while the student based on ViT-B/16 outputs a
32 × 32 map. Moreover, the number of channels may differs between teachers and students when
using distinct backbones, such as 1024 for ViT-L teacher and 768 for ViT-B student. To align the
student’s representations with the teachers’, we introduce an upsampling layer to match the spatial
resolution, and a linear layer for channel mapping when necessary. Note that the linear layer is only
required during distillation, adding no overhead to the inference.

B.2 DATASETS

In the first stage, we perform knowledge distillation using the ImageNet-1k dataset (Deng et al.,
2009; Russakovsky et al., 2015), which contains 1.2 million images. Only the images are used,
without any category labels. To evaluate multi-task learning performance, we use two bench-
mark datasets in the second stage: PASCAL-Context (Mottaghi et al., 2014) and NYUD-v2 (Sil-
berman et al., 2012). PASCAL-Context contains 4,998 training samples and 5,105 testing sam-
ples, annotated for five tasks of semantic segmentation (‘Semseg’), human parsing (‘Parsing’),
saliency detection (‘Saliency’), surface normal estimation (‘Normal’), and object boundary detection
(‘Boundary’). Among them, the surface normal and saliency labels are supplemented by previous
work (Maninis et al., 2019). Meanwhile, NYUD-v2 consists of 795 images for training and 654
images for testing, all from indoor scenes. It provides labels for four tasks: semantic segmentation,
monocular depth estimation (‘Depth’), surface normal estimation, and object boundary detection.

B.3 DATA AUGMENTATION

In the first stage, we apply standard image augmentation techniques, including random resizing
and cropping to 384 × 384, along with random horizontal flipping. For the downstream datasets,
we follow the established data augmentation protocols from previous studies (Maninis et al., 2019;
Kanakis et al., 2020; Ye & Xu, 2022). We use random scaling with factor between 0.5 and 2.0,
random cropping to the required input resolution (512 × 512 for PASCAL-Context and 448 × 576
for NYUD-v2), random horizontal flipping, and random color jittering. Image normalization is also
applied throughout both the training and evaluation phases.

B.4 EVALUATION METRICS

We adopt evaluation metrics in previous methods (Ye & Xu, 2022). Specifically, we measure se-
mantic segmentation and human parsing using the mean Intersection over Union (mIoU). Saliency
detection is evaluated by the maximum F-measure (maxF). Surface normal estimation is evaluated
by the mean error (mErr) of angles. Object boundary detection is evaluated by the optimal-dataset-
scale F-measure (odsF) (Martin et al., 2004), implemented with the SEISM package (Pont-Tuset
& Marques, 2015). The maximum allowed mis-localization for odsF is set to 0.0075 for PASCAL-
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Context and 0.011 for NYUD-v2. Monocular depth estimation is evaluated by the Root Mean Square
Error (RMSE).

To assess overall performance, we calculate the MTL Gain by determining the average relative
difference of multi-task method compared to the single-task baseline (Maninis et al., 2019). The
formula is as follows:

∆m =
1

T

T∑
t=1

(−1)lt
Mt −MST,t

MST,t
, (7)

where T is the number of tasks, Mt and MST,t represent the performance of task t for the multi-task
method and the single-task baseline, respectively. The value of lt = 1 if a lower value means better
performance for task t, and lt = 0 otherwise.

B.5 LOSS FUNCTIONS AND WEIGHTS

Following previous practices in the field (Maninis et al., 2019; Kanakis et al., 2020; Ye & Xu, 2022),
our method employs task-specific loss functions. For semantic segmentation and human parsing, we
use the cross-entropy loss, while for saliency detection, we apply the balanced cross-entropy loss.
Surface normal estimation and monocular depth estimation are optimized using the L1 loss. For
edge detection, we use the weighted binary cross-entropy loss, with a weight of 0.95 to positive
pixels and 0.05 to negative ones. To balance multiple task losses, we compute a weighted sum of the
task-specific losses. The loss weights for Semseg, Parsing, Saliency, Normal, Boundary, and Depth
tasks are set to 1, 2, 5, 10, 50, and 1, respectively.

B.6 TRAINING

As outlined in Section 3.4, the first stage trains the student model, which consists of the TAS and
TSAP modules, with the distillation loss. Then in the second stage, we add the MoR Routers and
prediction heads, training the entire student model with a combination of distillation loss and task-
specific losses. The loss balancing factor γ in Equation 6 is set as 1.0 for simplicity. Note that VFM
teachers are always frozen in both stages. The detailed hyperparameter configurations are listed in
Table 11. For the first stage, we follow the setup of RADIO (Ranzinger et al., 2024b) for optimizer,
learning rate, LR scheduler, and distillation loss in Equation 5, while adopting Theia’s (Shang et al.,
2024) batch size configuration since we use the same dataset. To enhance training efficiency, we
reduce the number of epochs. For the second stage follows the identical hyperparameters used in
prior multi-task learning works (Ye & Xu, 2022; 2023b; Yang et al., 2024d). We implement our
methodology with PyTorch (Paszke et al., 2019) and run experiments on NVIDIA H100 GPUs with
96G VRAM.

Table 11: Training hyperparameters setup.

Hyperparameters Stage 1 Stage 2
#GPUs 8 2

Total batch size 128 4
Optimizer AdamW AdamW

Base learning rate 1e-3 2e-5
LR scheduler cosine poly
Weight decay 1e-2 1e-6

Steps 30 epochs 40,000 iterations
Warmup 2 epochs 0

Gradient clipping 0 10

C ADDITIONAL EXPERIMENTAL RESULTS

Quantitative analysis of representation biases. In Figure 1, we provide a quantitative analy-
sis of the representation biases of VFMs, here we present the complete results in Table 12. The
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‘ST Full’ and ‘MT Full’ results of ViT is used as the single-task and multi-task baseline in other
comparisons, respectively. We also include the multi-teacher VFM distillation methods, RADIO
and Theia, along with our proposed SAK for comparison. In the ‘Freeze’ setting of SAK, we
freeze the Teacher-Agnostic Stem and Teacher-Specific Adapter Paths, and tune the Mixture-of-
Representations Routers and prediction heads during the second stage. The results indicate that
SAK outperforms all three VFMs and two baselines, achieving superior overall performance and
more balanced improvements across the five tasks.

Table 12: Quantitative results of VFMs and multi-teacher VFM distillation baselines on PASCAL-
Context. We consider three fine-tuning methods: ‘ST Full’ for fine-tuning the entire model in a
single-task setting, ‘MT Full’ for fine-tuning the entire model in a multi-task setting, and ‘Freeze’
for freezing the backbone while training only the decoder heads, resulting in the same results for
both single-task and multi-task settings.

Model Fine-tune #Train Param Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

ViT (Dosovitskiy et al., 2021)
ST Full 462M 80.25 70.54 84.54 13.57 74.22 0.00
MT Full 116M 76.76 65.26 84.39 13.98 70.37 -4.04
Freeze 30M 71.36 56.08 81.06 17.17 64.03 -15.19

DINOv2 (Oquab et al., 2024)
ST Full 462M 80.77 68.62 85.30 13.24 78.55 1.42
MT Full 116M 77.89 70.57 84.89 13.62 74.27 -0.56
Freeze 30M 81.18 74.38 80.48 16.85 70.83 -5.39

CLIP (Radford et al., 2021)
ST Full 462M 79.83 67.16 84.65 13.39 74.93 -0.58
MT Full 116M 76.84 65.87 84.61 13.91 70.50 -3.66
Freeze 30M 78.33 65.31 81.48 16.84 67.43 -9.33

SAM (Kirillov et al., 2023)
ST Full 474M 71.13 68.03 86.52 13.26 79.51 -0.63
MT Full 118M 66.39 65.65 85.38 13.74 77.20 -4.09
Freeze 30M 49.11 59.85 81.10 16.21 75.89 -15.05

RADIO (Ranzinger et al., 2024b) MT Full 128M 78.06 68.13 85.18 13.59 72.64 -1.53
Freeze 30M 81.42 71.71 82.43 16.21 72.91 -4.12

Theia (Shang et al., 2024) MT Full 115M 76.51 67.53 84.38 14.56 70.34 -4.33
Freeze 30M 62.09 54.50 81.69 16.87 63.70 -17.45

SAK (Ours) MT Full 134M 81.65 72.38 84.87 14.05 73.23 -0.03
Freeze 36M 80.61 71.15 83.34 15.22 71.94 -3.07

Detailed results corresponding to Figure 3. We also provide the details of Figure 3 in Tables 13
and 14 with additional state of the arts in multi-task learning included. SAK is distilled from VFM
teachers based on ViT-L backbones. On PASCAL-Context, our approach outcomes a positive MTL
Gain ∆m, surpassing the single-task baseline—a groundbreaking improvement not achieved by
other models, even those with complex task interaction modules designed particularly for MTL. On
both datasets, SAK not only outperforms RADIO and Theia but also surpasses the multi-task SOTAs
with significant margins, all while utilizing a simple architecture and considerably fewer parameters.

Table 13: Comparison with state of the arts on PASCAL-Context, based on ViT-B backbones. For
models not providing exact number of parameters in the paper or source code, we estimate their
parameter counts.

Model Backbone #Param Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Single-task baseline ViT-B 462M 80.25 70.54 84.54 13.57 74.22 0.00
Multi-task baseline ViT-B 116M 76.76 65.26 84.39 13.98 70.37 -4.04

InvPT (Ye & Xu, 2022) ViT-B 176M 77.33 66.62 85.14 13.78 73.20 -2.28
InvPT++ (Ye & Xu, 2024) ViT-B ∼176M 76.95 66.89 85.12 13.54 73.30 -1.92

TaskPrompter (Ye & Xu, 2023b) ViT-B 418M 79.00 67.00 85.05 13.47 73.50 -1.24
TaskExpert (Ye & Xu, 2023a) ViT-B 347M 78.45 67.38 84.96 13.55 72.30 -1.73

BFCI (Zhang et al., 2023b) ViT-B 230M 77.98 68.19 85.06 13.48 72.98 -1.31
MLoRE (Yang et al., 2024d) ViT-B 259M 79.26 67.82 85.31 13.65 74.69 -0.83

RADIO (Ranzinger et al., 2024b) ViT-B 128M 78.06 68.13 85.18 13.59 72.64 -1.53
Theia (Shang et al., 2024) ViT-B 115M 76.51 67.53 84.38 14.56 70.34 -4.33

SAK (Ours) ViT-B 134M 81.88 74.30 84.79 14.02 74.09 0.83

Comparison with state of the arts using additional backbones. As depicted in Tables 15 and
16, we extend our comparison to state of the arts based on the ViT-S backbones. Additionally, we
include models using the Swin-S backbones, though they are substantially larger in model size com-
pared to ours. Here SAK is distilled from VFM teachers based on ViT-B backbones. Our approach
consistently delivers the best performance on both datasets, with particularly strong improvements
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Table 14: Comparison with state of the arts on NYUD-v2, based on ViT-B backbones.

Model Backbone #Param Semseg Depth Normal Boundary
∆m% ↑mIoU↑ RMSE↓ mErr↓ odsF↑

Single-task baseline ViT-B 369M 51.15 0.5792 19.77 77.35 0.00
Multi-task baseline ViT-B 110M 49.27 0.5823 19.92 75.88 -1.72

InvPT (Ye & Xu, 2022) ViT-B 161M 50.30 0.5367 19.00 77.60 2.47
InvPT++ (Ye & Xu, 2024) ViT-B ∼161M 49.79 0.5318 18.90 77.10 2.40

TaskPrompter (Ye & Xu, 2023b) ViT-B 160M+ 50.40 0.5402 18.91 77.60 2.49
ECS (Shoouri et al., 2023) ViT-B 122M 50.46 0.5332 18.42 77.89 3.53
BFCI (Zhang et al., 2023b) ViT-B 200M+ 51.14 0.5186 18.92 77.98 3.89
TSP (Wang et al., 2024b) ViT-B 160M+ 51.22 0.5301 18.78 76.90 3.26

SEM (Huang et al., 2024a) ViT-B - 51.34 0.5222 18.95 77.60 3.67
RADIO (Ranzinger et al., 2024b) ViT-B 122M 55.03 0.5186 18.49 77.97 6.33

Theia (Shang et al., 2024) ViT-B 109M 51.80 0.5367 19.70 76.08 1.83
SAK (Ours) ViT-B 126M 59.93 0.4942 17.60 78.60 11.11

in segmentation tasks. The slight underperformance in boundary detection and depth estimation can
be attributed to the architectural differences between ViT and Swin Transformer (Liu et al., 2021c).

Table 15: Comparison with state of the arts on PASCAL-Context, based on ViT-S and Swin-S back-
bones. Note that ViT-S backbone has 22M parameters while Swin-S backbone has 50M parameters.

Model Backbone #Param Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Single-task baseline ViT-S 117M 77.59 66.58 84.60 14.16 70.95 0.00
Multi-task baseline ViT-S 29M 73.94 61.22 83.96 14.89 67.03 -4.84

TaskPrompter (Ye & Xu, 2023b) ViT-S 132M 76.57 63.22 84.54 13.93 70.60 -1.06
TaskExpert (Ye & Xu, 2023a) ViT-S 55M 75.04 62.68 84.68 14.22 68.80 -2.50
MLoRE (Yang et al., 2024d) ViT-S 44M 75.64 62.65 84.70 14.43 69.81 -2.36

MQTransformer (Xu et al., 2023a) Swin-S 57M+ 71.25 60.11 84.05 14.74 71.80 -4.29
DeMT (Xu et al., 2023c) Swin-S 54M 72.01 58.96 83.20 14.57 72.10 -4.31

DeMTG (Xu et al., 2023b) Swin-S 55M+ 71.54 61.49 83.70 14.90 72.20 -3.99
ATMPNet (Sirejiding et al., 2024a) Swin-S 50M+ 70.58 61.17 83.96 14.41 73.15 -3.32

TFUT (Xin et al., 2024b) Swin-S 63M+ 72.49 63.24 84.06 14.42 73.50 -2.09
Theia (Shang et al., 2024) ViT-S 29M 70.82 62.71 83.95 14.87 67.52 -5.03

SAK (Ours) ViT-S 34M 78.66 68.46 84.66 14.33 70.28 0.43

Table 16: Comparison with state of the arts on NYUD-v2, based on ViT-S and Swin-S backbones.

Model Backbone #Param Semseg Depth Normal Boundary
∆m% ↑mIoU↑ RMSE↓ mErr↓ odsF↑

Single-task baseline ViT-S 94M 48.11 0.5911 20.27 75.17 0.00
Multi-task baseline ViT-S 28M 45.87 0.6626 20.55 74.44 -4.78

MQTransformer (Xu et al., 2023a) Swin-S 57M 49.18 0.5785 20.81 77.00 1.03
DeMT (Xu et al., 2023c) Swin-S 53M 51.50 0.5474 20.02 78.10 4.89

DeMTG (Xu et al., 2023b) Swin-S 55M 52.23 0.5599 20.05 78.40 4.81
ATMPNet (Sirejiding et al., 2024a) Swin-S 50M+ 51.82 0.5526 20.11 78.27 4.78

TFUT (Xin et al., 2024b) Swin-S 63M 50.04 0.5419 20.08 78.30 3.99
Theia (Shang et al., 2024) ViT-S 28M 46.54 0.6047 20.95 74.59 -2.42

SAK (Ours) ViT-S 32M 54.30 0.5785 19.67 76.58 4.96

Detailed results corresponding to Table 3. In Table 3, we use a higher similarity between the
student and teachers to validate the effectiveness of our SAK in preserving representation biases.
The detailed breakdown of these similarity calculations for each VFM teacher is listed in Table 17.
The substantially higher similarity scores further confirm our claim.

Detailed results corresponding to Figure 5. In Figure 5, we investigate the impact of downstream
data size by experimenting with different percentages of samples from the PASCAL-Context dataset.
From the detailed results in Table 18, we can confidently conclude that SAK is a more robust method
compared to the multi-task baseline and multi-teacher VFM distillation methods. Besides the knowl-
edge transferred from VFM teachers through the large-scale ImageNet dataset during the first stage,
the more specialized knowledge distilled in the second stage further benefits SAK’s robustness and
generalization to diverse data sizes.
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Table 17: Cosine similarity between the representations of student and corresponding teachers on
the ImageNet-1k validation set.

TSAP DINOv2 CLIP SAM Avg
✘ 0.3566 0.5159 0.1306 0.3344
✔ 0.8615 0.9138 0.8369 0.8707

Table 18: Performance w.r.t. different percentages of downstream dataset. MTL Gain is computed
w.r.t. single-task baseline trained on full dataset.

Data Percentage Model Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

25%

Multi-task baseline 72.10 59.71 81.40 15.63 68.87 -10.32
RADIO (Ranzinger et al., 2024b) 73.47 63.18 81.94 15.13 71.49 -7.43

Theia (Shang et al., 2024) 71.12 63.65 81.73 15.57 69.18 -9.20
SAK (Ours) 80.09 69.77 81.47 15.28 72.32 -4.02

50%

Multi-task baseline 74.95 60.65 83.04 14.72 69.59 -7.42
RADIO (Ranzinger et al., 2024b) 76.23 63.90 83.67 14.27 72.07 -4.70

Theia (Shang et al., 2024) 74.60 64.01 83.19 14.89 69.84 -6.70
SAK (Ours) 81.33 70.19 83.35 14.54 72.71 -1.95

75%

Multi-task baseline 75.17 61.23 84.08 14.15 70.04 -6.00
RADIO (Ranzinger et al., 2024b) 76.82 64.26 84.59 13.76 72.29 -3.42

Theia (Shang et al., 2024) 74.98 64.57 83.83 14.64 70.04 -5.88
SAK (Ours) 81.32 70.51 84.33 14.28 73.01 -1.16

100%

Multi-task baseline 76.76 65.26 84.39 13.98 70.37 -4.04
RADIO (Ranzinger et al., 2024b) 78.06 68.13 85.18 13.59 72.64 -1.53

Theia (Shang et al., 2024) 76.51 67.53 84.38 14.56 70.34 -4.33
SAK (Ours) 81.65 72.38 84.87 14.05 73.23 -0.03

Upper-bound results of teacher amalgamation. To evaluate the upper-bound performance of
amalgamating the VFM teachers, we build an upper-bound model using the frozen encoders of three
VFM teachers—DINOv2, CLIP, and SAM—along with a learnable ViT encoder as a surrogate
for the Teacher-Agnostic Stem (TAS). All components employ a ViT-B backbone. For fusing the
representations, we explore three strategies: element-wise addition, channel concatenation, and our
proposed Mixture-of-Representations (MoR).

Table 19: Comparison with upper-bound models on PASCAL-Context, based on ViT-B backbones.

Model Fuse #Param MACs Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

Upper-bound
Addition 378M 1091G 80.27 71.44 84.74 13.82 72.69 -0.47
Concat 820M 7661G 82.26 73.85 84.63 13.98 75.55 1.21
MoR 384M 1097G 80.58 72.73 84.88 14.05 74.01 0.02

SAK (Ours) MoR 134M 544G 81.65 72.38 84.87 14.05 73.23 -0.03

Table 19 shows that a naive addition of representations fails to fully leverage the teachers’ knowl-
edge, as mentioned in the introduction and further supported by our ablation study in Section 4.3
and Table 3. While channel concatenation mitigates this limitation and leads to upper-bound perfor-
mance, it comes at the cost of a significant increase in parameter count and computational overhead
due to the expanded dimensionality of the fused representations. In contrast, our MoR approach
surpasses addition by 0.5% while maintaining comparable parameters and MACs, thereby demon-
strating its effectiveness even in this alternative setup.

Compared to these upper-bound models, our SAK outperforms the naive addition with around 1/3
of the parameters and half of the computational cost. This further validates the effectiveness and
efficiency of our method.

Balancing distillation loss and task losses. In the second training stage, we apply a combination of
distillation loss and task-specific losses, weighted by the balancing factor γ introduced in Equation 6.
We explore the impact of this factor on the final prediction results in Table 20, using teachers and
student based on ViT-B backbones. As the balancing factor increases, We observe raising accuracy
in segmentation and boundary detection tasks, while performance in saliency detection and surface
normal estimation diminishes. This suggests that segmentation and boundary detection rely heavily
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on knowledge distilled from the VFM teachers, whereas the other two tasks depend more on domain-
specific details provided by downstream supervision, resulting in a seesaw phenomenon. Though a
factor of 2.0 yields the best overall performance, we use a default value of 1.0 for simplicity.

Table 20: Performance w.r.t. different values of balancing factor γ.

γ
Semseg Parsing Saliency Normal Boundary

∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑
0.5 81.19 71.98 84.95 14.01 73.06 -0.22

0.75 81.46 72.22 84.91 14.03 73.17 -0.10
1.0 81.65 72.38 84.87 14.05 73.23 -0.03

1.25 81.76 72.51 84.84 14.06 73.29 0.03
1.5 81.84 72.62 84.81 14.08 73.33 0.06
2.0 81.92 72.78 84.74 14.11 73.37 0.07
2.5 81.97 72.88 84.68 14.14 73.39 0.06
3.0 81.99 72.95 84.62 14.17 73.39 0.03
4.0 82.01 73.01 84.53 14.22 73.38 -0.05

Gating weights learned by MoR Routers. We present the complete version of Figure 4 in Figure 7,
along with the results from NYUD-v2 in Figure 8. A similar observation across both datasets is that
all tasks tend to depend on the shared TAS representations at lower levels. Conversely, at higher
levels, the gating weights for each task diverge, showing varied dependencies on different experts.
This demonstrate that the biases from different VFM teachers are adaptively leveraged by the tasks,
allowing the model to optimize performance through selective representation fusion.
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Figure 7: Gating weights of different experts learned by MoR Routers on PASCAL-Context.
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Figure 8: Gating weights of different experts learned by MoR Routers on NYUD-v2.
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D ADDITIONAL DISCUSSIONS

D.1 MODEL EFFICIENCY

Training cost. Since SAK employs a multi-teacher distillation framework, the iterative forwarding
of VFM teachers inevitably increases training costs, which cannot be overlooked. However, this
process is a common requirement for all multi-teacher distillation methods, and when compared to
other baselines, such as RADIO, SAK demonstrates remarkable efficiency.

In Table 21, we calculate the number of parameters and computational costs for teachers and students
in RADIO and SAK, both using a ViT-L backbone for the student. The results show that RADIO
incurs 2.5 times the parameters and forwarding costs of SAK. Additionally, RADIO’s larger input
size of 1,024 introduces more tokens in the representations, further reducing the backward efficiency.
Hence, SAK shows significantly lower demands in RAM, GPU memory, training time, and storage.

Table 21: Comparison with RADIO on number of parameters and computational cost (measured by
MACs, Multiply–accumulate operations) of all teachers and students. The calculation is based on
students with ViT-L backbones for both methods. SAK uses VFM teachers with ViT-L backbones.

RADIO teachers and students Input size #Param MACs SAK teachers and students Input size #Param MACs
DFN CLIP-H/14 378 631M 460G DINOv2-L/14 384 304M 221G

SigLIP-SO400M/14 384 413M 300G OpenCLIP-L/14 384 304M 221G
DINOv2-g/14 224 1135M 291G SAM-L/16 1024 307M 1308G

SAM-H/16 1024 636M 2730G
RADIOv2.5-L/16 1024 320M 1240G SAK-L/16 384 343M 198G

Sum over all teachers and student 3135M 5021G Sum over all teachers and student 1258M 1948G

Moreover, as listed in Table 29, RADIO is trained on the large-scale DataComp-1B dataset (Gadre
et al., 2023) (1.4B images) with 614M total samples seen. In contrast, SAK is trained on ImageNet-
1k dataset (1.2M images) with only 36M samples seen, further highlighting the efficiency of SAK
in training and memory costs.

Inference cost. It is important to note that our framework does not require teachers during infer-
ence. Instead, the representations distilled from the teachers are generated directly by the lightweight
TSAP modules, which introduce minimal additional parameters and computational overhead. To
provide a clearer perspective, we present the number of parameters and computational cost intro-
duced by our modules when integrated into the ViT-B or ViT-L backbone. Table 22 indicates that
each TSAP branch accounts for less than 5% of the backbone’s parameters and computations (4M
vs. 86M parameters, 4G vs. 88G MACs with ViT-B). Similarly, each MoR Router is as lightweight
as 2M parameters and 2G MACs, even with the larger ViT-L backbone.

Table 22: Number of parameters and computational cost when integrating different components into
SAK, based on ViT-B or ViT-L backbone. The calculation is based on a student corresponding to
three teachers on the five-task PASCAL-Context dataset.

Model #Param MACs Model #Param MACs
ViT-B/16 86M 88G ViT-L/16 304M 311G

+TSAP (3 branches) 98M 100G +TSAP (3 branches) 344M 351G
+MoR (5 tasks) 104M 106G +MoR (5 tasks) 354M 362G

D.2 DIFFERENCES BETWEEN MOE AND MOR

Unlike Mixture-of-Experts (MoE) used in previous multi-task learning (Yang et al., 2024d; Chen
et al., 2023; Liang et al., 2022; Ye & Xu, 2023a) or general-purpose models (Shazeer et al., 2017;
Jacobs et al., 1991), where the experts are typically homogeneous during optimization, the experts
in our Mixture-of-Representation (MoR) approach consist of representations distilled from various
VFM teachers as well as the TAS. These experts inherently possess different knowledge, making
them heterogeneous by design. As a result, the MoR Router does not require a balanced routing
because task-specific routers dynamically weigh and combine the most relevant representations for
each task. Empirically, we do not encounter any difficulties in training the MoR Routers. This
approach ensures that the router effectively synergizes the complementary strengths of the diverse
representations to optimize performance for different tasks.
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D.3 VFM TEACHER SELECTION

Principles of VFM teacher selection. It is well-established that DINOv2, CLIP, and SAM are
among the most widely used Vision Foundation Models. Prior baselines RADIO and Theia also
employ them for experiments. Besides, RADIO uses DFN CLIP (Fang et al., 2024) and SigLIP (Zhai
et al., 2023), both of which are improved models derived from CLIP. However, as shown in the
Table 23, DFN CLIP and SigLIP fail to attain comparable outcomes to CLIP. For this reason, we
choose to adhere to CLIP when selecting teachers.

Table 23: Comparison of CLIP, DFN CLIP, and SigLIP on PASCAL-Context, based on ViT-B
backbones.

Model Fine-tune Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

CLIP (Radford et al., 2021) MT Full 76.84 65.87 84.61 13.91 70.50 -3.66
Freeze 78.33 65.31 81.48 16.84 67.43 -9.33

DFN CLIP (Fang et al., 2024) MT Full 75.19 63.78 84.63 14.00 70.57 -4.77
Freeze 69.35 53.48 81.36 17.24 64.85 -16.24

SigLIP (Zhai et al., 2023) MT Full 75.32 63.57 84.67 14.00 70.50 -4.81
Freeze 51.72 45.34 77.93 18.35 60.33 -26.61

Theia utilizes ViT (pretrained on ImageNet) and Depth Anything (Yang et al., 2024b) as additional
teachers. Since the Teacher-Agnostic Stem in SAK is initialized with an ImageNet-pretrained ViT
backbone, we do not include ViT as an additional teacher to reduce training costs. While Depth
Anything is a high-impact VFM, we leave its exploration for future work.

Additionally, we avoid using very large models, e.g., ViT-H or ViT-g based, in our experiments due
to constraints in computational resources (RADIO uses 64 GPUs, while we can only use 8 GPUs).
It is worth noting that SAK is a highly flexible framework, capable of integrating and benefiting
further from more powerful VFM teachers, making it adaptable to various settings.

Sensitivity of SAK to VFM teacher selection. We supplement another analysis with a SAK student
distilled from DINOv2 and SigLIP teachers, with ViT-B backbones for both teachers and student. As
shown in Table 24, compared with the student distilled from DINOv2 and CLIP teachers (presented
in Table 7), it exhibits better performance on three out of five tasks, while achieving comparable
overall accuracy, further underscoring the robustness and adaptability of our method.

Table 24: Performance w.r.t. different combinations of VFM teachers on PASCAL-Context.

Teachers Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

DINOv2+CLIP 81.53 71.95 84.49 14.16 72.59 -0.60
DINOv2+SigLIP 81.41 71.03 84.62 14.06 72.92 -0.63

D.4 FRAMEWORK EXTENSION

As highlighted in our introduction, SAK is a highly flexible framework that can be easily adjusted
to add new teachers or new downstream tasks.

Adding new VFM teachers. When adding a new teacher, we freeze the existing TAS and TSAP
modules to preserve the knowledge transferred from the previous teachers A new TSAP module
is then introduced and distilled for the new teacher, facilitating efficient adaptation. In the second
stage, we train on the downstream dataset with all VFM teachers and tune the entire student model.

We conduct an experiment by incorporating a new SigLIP teacher into a student already distilled
from DINOv2, CLIP, and SAM. As shown in Table 25, including SigLIP teacher boosts perfor-
mance on Semseg and Normal tasks and yields competitive results on Saliency and Boundary tasks.
However, since SigLIP encodes knowledge similar to CLIP during pretraining and does not surpass
CLIP on the benchmark, it is reasonable that it could not lead to further improvements. Moreover,
the additional representations may increase the difficulty for the MoR Routers in learning optimal
weights, potentially accounting for the degradation in human parsing.
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Table 25: Performance of SAK with additional SigLIP teacher on PASCAL-Context.

Teachers Semseg Parsing Saliency Normal Boundary
∆m% ↑mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

DINOv2+CLIP+SAM 81.65 72.38 84.87 14.05 73.23 -0.03
+SigLIP 81.78 70.66 84.85 14.02 73.21 -0.45

Adding different tasks. Additionally, when applying to different downstream tasks, it is only nec-
essary to add task-specific decoders and perform the second-stage training (with distillation) or
fine-tuning (without distillation), as the first-stage distillation is agnostic to the downstream tasks.
This process is significantly more efficient than the first stage. Meanwhile, we can readily remove
a branch of TSAP if it is no longer necessary, without affecting the functionality of the TAS or
other TSAP branches, ensuring the modularity and adaptability of our design. We have also shown
in Figure 5 and its accompanying analysis that SAK exhibits strong robustness and generalization
capability in downstream tasks.

D.5 COMPARISON OF SAK WITH TEACHERS

Why cannot SAK outperform teachers at every task? Firstly, performance loss is inevitable dur-
ing distillation, since our distillation process is lightweight compared to the extensive pretraining
of VFM teachers. As detailed in Table 1, our VFM teachers are pretrained on large-scale datasets
containing hundreds to thousands of times more image samples than the ImageNet-1k dataset used
for distillation. Moreover, the Teacher-Specific Adapter Path, designed to preserve teachers’ bi-
ases, utilizes a standard and simple architecture with less than 5% of the backbone’s parameters and
computations. Consequently, it is reasonable that the distilled SAK cannot fully inherit teachers’
knowledge when compressing three teacher models into a single student of similar model size, ac-
counting for why our approach cannot outperform the teachers on their proficient tasks. We believe
that leveraging larger datasets could further enhance knowledge transfer during distillation and ben-
efit downstream tasks. Another reason is that SAM operates at a higher input resolution of 1,024,
rather than 512 for other models, which bolsters its strength in tasks like boundary detection that
rely heavily on fine image details.

Why can SAK outperform teachers on specific tasks? The observed superiority of SAK over
teachers stems from our motivation to synergize the complementary strengths of teachers. Com-
plementarity exists not only across tasks but also within tasks. Take semantic segmentation as an
example, as illustrated in Figure 1 and qualitative analysis in Section 2.2, DINOv2 excels at cap-
turing localized features but CLIP offers strong object-level understanding with its rich semantic
knowledge from the language domain. SAM produces exceptional fine-grained pixel-level masks
due to its higher resolution. Additional analysis of representations in Appendix A further supports
these observations. By preserving the intra-task representation biases during distillation and amal-
gamating them using proposed Mixture-of-Representations, SAK achieves improved performance.

Another contributing factor is the balance between common knowledge and task-specific informa-
tion. Regarding saliency estimation and surface normal estimation, three VFM teachers perform
suboptimally when frozen, as they lack downstream task-specific information. Though fine-tuning
can alleviate this limitation, it results in degradation of accuracy in segmentation tasks for DINOv2
and CLIP, as shown in the Table 12. This trade-off, known as the negative transfer problem in multi-
task learning (Vandenhende et al., 2021; 2020), highlights the challenge of balancing task-specific
and pretrained knowledge.

In contrast, SAK preserves the representation biases of the frozen teachers within the TSAP mod-
ules while leveraging the TAS to learn shared knowledge and downstream information. This dis-
entanglement ensures knowledge diversity without mutual interference. Moreover, MoR Routers
dynamically weigh and combine the most relevant representations for each task, bridging the gap
between general-purpose knowledge and task-specific characteristics.

30



Published as a conference paper at ICLR 2025

D.6 EVALUATION ON ADDITIONAL TASKS

First, we emphasize that our work is less targeted at single-task learning. Instead, our key motivation
lies in the inherent representation biases of VFMs, which result in advantages and disadvantages
across different vision tasks. Our SAK synergizes these complementary biases to enhance multi-task
learning. Therefore, the tasks we evaluated are defined by the datasets, since each image sample
must be labeled for every task included. Nevertheless, we also provide additional evaluations on
single-task learning, specifically for classification, depth estimation, and vision-language learning,
to offer a more comprehensive analysis.

Linear classification. Following the setup of DINOv2, we evaluate linear probing on the ImageNet-
1k dataset. We freeze the backbones and train a linear classifier and the MoR Routers of SAK using
the same hyperparameters as DINOv2. For comparison, we also evaluate the VFM teachers and
RADIO, while reporting Theia’s result from its original paper.

Table 26 shows that SAK outperforms the two baselines, despite a performance gap compared to
the DINOv2 and CLIP teachers due to inevitable loss during distillation. It is worth noting that
RADIO uses more powerful teachers, including DINOv2-g/14-reg (accuracy 87.1), while Theia
uses DINOv2-L/14 teacher (accuracy 86.3).

Table 26: Comparison with VFMs and baselines on linear classification on ImageNet-1k, reported
by Top-1 accuracy on the validation set. We freeze the backbone and perform linear probing at
resolution of 224.

Model Backbone Accuracy↑
DINOv2 (Oquab et al., 2024) ViT-B/14 84.5
CLIP (Radford et al., 2021) ViT-B/16 84.7
SAM (Kirillov et al., 2023) ViT-B/16 46.9

RADIO (Ranzinger et al., 2024b) ViT-B/16 78.2
Theia (Shang et al., 2024) ViT-B/16 75.2

SAK (Ours) ViT-B/16 79.1

Depth estimation. We also evaluate the monocular depth estimation task on the NYUd dataset (Sil-
berman et al., 2012) (note it is different from the NYUDv2 dataset used in our primary experiments),
which is the proficient task of DINOv2. We follow the evaluation protocol (Li et al., 2024b) used
by DINOv2 and use the identical experimental setups and decode heads (lin. 1 and lin. 4). Since
DINOv2 does not provide a complete codebase for this task, we reproduce the pipeline. We also
evaluate ViT, SAM, Theia, and include baselines reported in the DINOv2 paper, namely Open-
CLIP (Cherti et al., 2023), MAE (He et al., 2022), and DINO (Caron et al., 2021).

As demonstrated in Table 27, while SAK does not fully match the teacher’s performance due to
inevitable loss during distillation and different patch size, it surpasses other foundation models and
baselines, even those with larger backbones. Moreover, the effectiveness of synergizing multiple
VFM teachers is clearly evidenced by the results, as distillation from three teachers improves SAK’s
performance, bringing it closer to the upper bound of the teacher.

Table 27: Comparison with VFMs and baselines on monocular depth estimation on NYUd. We
freeze the backbone and perform linear probing on top of one (lin. 1) or four (lin. 4) layers.

Model Backbone lin. 1 lin. 4
RMSE ↓ RMSE ↓

ViT (Dosovitskiy et al., 2021) ViT-B/16 1.118 1.117
SAM (Kirillov et al., 2023) ViT-B/16 0.678 0.652
Theia (Shang et al., 2024) ViT-B/16 0.644 0.629

OpenCLIP (Cherti et al., 2023) ViT-G/14 0.541 0.510
MAE (He et al., 2022) ViT-H/14 0.517 0.483

DINO (Caron et al., 2021) ViT-B/8 0.555 0.539
DINOv2 (Teacher upper bound) ViT-B/14 0.399 0.362

DINOv2 (Our reproduced) ViT-B/14 0.406 0.366
SAK (Distilled from DINOv2) ViT-B/16 0.482 0.463

SAK (Distilled from 3 teachers) ViT-B/16 0.450 0.436
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Vision-language learning. To evaluate the performance of multi-modal learning, we follow the
setup of RADIO (Ranzinger et al., 2024b) and integrate SAK into LLaVA-1.5 (Liu et al., 2024b;a).
We freeze the Teacher-Agnostic Stem and Teacher-Specific Adapter Path, and fine-tune only the
MoR Router. We evaluate three VQA tasks – GQA, POPE, and VQAv2 – at resolutions of 432 and
512, consistent with RADIO. We also include DINOv2-L, CLIP-L, and SAM-H for comparison.

Table 28 shows that while SAK is trained on significantly less data, and with smaller VFM teachers,
it achieves comparable performance to the teachers and RADIO on GQA and POPE. The perfor-
mance gap on VQAv2 is largely attributable to the simplicity of our distillation setup, which priori-
tizes training efficiency. Regarding dataset scale, as listed in Table 1 and Table 29, all VFM teachers
and RADIO use large-scale datasets, e.g., DINOv2 uses 142M images, CLIP uses 400M, RADIO
uses 1.4B. In contrast, our SAK distillation relies on ImageNet-1k, which has only 1.2M images.
This limited dataset diversity could significantly impact performance on VQA tasks, which require
extensive training data.

Table 28: Comparison with VFMs and RADIO on vision-language learning, based on LLaVA-
1.5 (Liu et al., 2024a) with GQA, POPE, and VQAv2 datasets.

Model Backbone Resolution GQA POPE VQAv2
DINOv2 (Oquab et al., 2024) ViT-L/14 336 62.11 87.72 76.42
CLIP (Radford et al., 2021) ViT-L/14 336 62.20 86.09 78.49
SAM (Kirillov et al., 2023) ViT-H/16 1024 49.92 81.76 57.65

RADIO (Ranzinger et al., 2024b)
ViT-B/16 432 62.09 85.87 77.24

512 62.70 86.59 78.03

ViT-L/16 432 62.89 86.13 79.44
512 63.58 86.66 80.04

SAK (Ours)
ViT-B/16 432 60.84 85.50 72.80

512 60.75 85.84 74.10

ViT-L/16 432 62.01 86.03 75.31
512 62.32 86.75 75.48

Meanwhile, RADIO employs larger VFM teachers, including DFN CLIP-H, SigLIP-SO400M,
DINOv2-g, and SAM-H, which result in 2.5 times the parameters and forwarding costs of SAK
with teachers based on ViT-L, shown in Table 21. RADIO also uses a larger resolution of 1,024
during its distillation (in LLaVA experiments, the image resolution is 432 or 512), enhancing image
information extraction but at a substantial increase in forwarding and backwarding costs. Consid-
ering these factors, it is reasonable that SAK cannot outperform RADIO in VLM applications. We
believe that with access to larger-scale datasets and more powerful teachers during distillation, SAK
could achieve competitive or superior results.

E ADDITIONAL RELATED WORK

E.1 KNOWLEDGE DISTILLATION

Knowledge Distillation (KD) is a model compression technique where a smaller student model
learns from a larger teacher model, typically using the teacher’s output logits as soft targets to guide
training (Buciluǎ et al., 2006; Hinton et al., 2014; Ba & Caruana, 2014; Beyer et al., 2022). To im-
prove knowledge transfer, some studies have proposed using intermediate representations (Romero
et al., 2015; Ahn et al., 2019; Heo et al., 2019; Zagoruyko & Komodakis, 2017). Multi-teacher
knowledge distillation has also been explored, where knowledge is transferred from multiple teacher
models simultaneously or progressively to improve the student’s generalization (Sau & Balasubra-
manian, 2016; You et al., 2017; Fukuda et al., 2017; Wen et al., 2024; Cao et al., 2023; Roth et al.,
2024). Another branch of work, known as knowledge amalgamation, combines knowledge from
multiple teachers tackling different tasks into a student that learns the union of all tasks (Shen et al.,
2019a;b; Luo et al., 2019; Ye et al., 2019b; Vongkulbhisal et al., 2019; Thadajarassiri et al., 2021;
2023). Such methods mainly unify classification tasks from multiple domains. In contrast, our ap-
proach addresses multiple heterogeneous vision tasks (e.g., semantic segmentation, surface normal
estimation) simultaneously.

32



Published as a conference paper at ICLR 2025

E.2 VISION FOUNDATION MODELS

Vision Foundation Models (VFMs) are large-scale, general-purpose vision models trained on mas-
sive datasets, demonstrating exceptional performance across a wide range of downstream tasks,
particularly when generalizing to unseen tasks and domains. Some VFMs are trained with specific
tasks, such as ViT (Dosovitskiy et al., 2021), DeiT (Touvron et al., 2021), and Swin Transformer (Liu
et al., 2021c) for image classification, Segment Anything Model (SAM) (Kirillov et al., 2023; Ravi
et al., 2025) for promptable segmentation, and Depth Anything (Yang et al., 2024b;c) for monocular
depth estimation. Others are trained with pretext tasks agnostic to downstream tasks. For instance,
CLIP (Radford et al., 2021) and its derivatives (Zhai et al., 2023) align features of image-text pairs,
DINOv2 (Oquab et al., 2024) employs self-supervised learning, and Pang et al. (2024) even uses
Large Language Model (LLM) as a visual encoder. These models have shown strong capabilities in
diverse visual tasks, including low-shot classification, open-vocabulary recognition, semantic seg-
mentation, and visual question answering (VQA).

Previous studies have reported similar conclusions as our studied representation biases when eval-
uating VFMs on different tasks (Ranzinger et al., 2024b; Zong et al., 2024; Kar et al., 2024; Tong
et al., 2024a;b). Therefore, several existing works have sought to leverage multiple VFMs to en-
hance downstream performance. Typically, they extract image features from multiple VFMs and
then concatenate or fuse these features (Lin et al., 2023; Kar et al., 2024; Zong et al., 2024; Tong
et al., 2024a;b; Man et al., 2024; Shlapentokh-Rothman et al., 2024). While this approach can
improve visual encoding capability, it comes with a major drawback: running inference across mul-
tiple vision encoders drastically increases computational costs, as well as the memory and storage
requirements due to large-scale parameters. Additionally, Zong et al. (2024) highlights that biased
information from VFMs can lead to performance degradation when using a simple fusion method.

E.3 KNOWLEDGE DISTILLATION OF VISION FOUNDATION MODELS

Due to their large sizes and extensive training data requirements, vision foundation models are typi-
cally computationally intensive to train from scratch. Therefore, distilling VFMs into smaller mod-
els with knowledge distillation techniques has become a popular topic (Liu et al., 2024c; Vemula-
palli et al., 2024; Sun et al., 2023; Yang et al., 2024a; Zhang et al., 2024a). For example, several
works (Zhang et al., 2023a; Zhou et al., 2023; Zhang et al., 2024b; Wang et al., 2023; Songa et al.,
2024) have derived lightweight versions of SAM. More recently, research has explored distilling
multiple VFMs into a single student model (Ranzinger et al., 2024b; Shang et al., 2024; Sariyildiz
et al., 2024; Ranzinger et al., 2024a), which is closely related to our approach. Besides the differ-
ences already discussed in the main paper, we further provide a detailed comparison in Table 29.
RADIO uses strong teachers with substantially larger scales and capacities, for instance, DINOv2-g
has 1,100M parameters. Theia also uses a ViT-H teacher with 632M parameters, double the size of
ViT-L. Moreover, RADIO is trained on a dataset over 1,000 times larger than ImageNet-1k, even
with larger input resolutions and a greater number of total samples seen. Despite the relatively lower
training cost, our proposed SAK demonstrates superior outcomes on downstream tasks, exceeding
both baselines by notable margins.

Table 29: Comparison with multi-teacher VFM distillation methods w.r.t. training paradigms and
the downstream MTL Gain ∆m on the PASCAL-Context and NYUD-v2 dataset, respectively. All
student models use ViT-B backbones and the same decoder heads.

Model RADIO (Ranzinger et al., 2024b) Theia (Shang et al., 2024) SAK (Ours)

Teachers
DFN CLIP-H, SigLIP-SO400M,

ViT-H, DINOv2-L, CLIP-L DINOv2-L, OpenCLIP-L, SAM-L
DINOv2-g, SAM-H

Dataset DataComp-1B ImageNet-1k ImageNet-1k
Dataset Size 1.4B 1.2M 1.2M
Resolution 768 224 384
#Samples 614M 60M 36M
∆m% -1.53, 6.33 -4.33, 1.83 0.83, 11.11
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E.4 MULTI-TASK LEARNING

Multi-Task Learning (MTL) aims to train a single model to learn multiple tasks simultane-
ously (Caruana, 1997; Ruder, 2017; Crawshaw, 2020; Zhang & Yang, 2021; Yu et al., 2024). MTL
research primarily falls into two categories: multi-task optimization (Kendall et al., 2018; Liu et al.,
2021b; Ye et al., 2021; Chen et al., 2018; Yu et al., 2020; Wang et al., 2021; Liu et al., 2021a; Javaloy
& Valera, 2022; Chen et al., 2020; Sener & Koltun, 2018; Guo et al., 2018; Lu et al., 2024a) and
model architecture design (Ruder et al., 2019; Long et al., 2017; Huang et al., 2024b; Wallingford
et al., 2022; Mallya et al., 2018; Huang et al., 2018; Rosenbaum et al., 2018; Meyerson & Miikku-
lainen, 2018; Yang & Hospedales, 2017; Bragman et al., 2019).

In multi-task dense prediction, most works focus on designing architecture, which can be further
divided into encoder-focused and decoder-focused methods (Vandenhende et al., 2021). Encoder-
focused methods develop shared encoders to extract features for different tasks, employing tech-
niques like feature fusion (Misra et al., 2016; Ruder et al., 2019; Gao et al., 2019), attention (Liu
et al., 2019), branched networks (Brüggemann et al., 2020; Guo et al., 2020; Vandenhende et al.,
2019; Lu et al., 2017; Raychaudhuri et al., 2022), and mixture-of-experts (Liang et al., 2022; Chen
et al., 2023; Ye & Xu, 2023a). Decoder-focused methods, on the other hand, design complicated
decoders to extract task-specific features by modeling task interactions (Xu et al., 2018; Zhang et al.,
2019; Zhou et al., 2020; Zhang et al., 2018; Brüggemann et al., 2021; Vandenhende et al., 2020; Ye
& Xu, 2024; Xu et al., 2023c;b; Ye & Xu, 2023b; Zhang et al., 2021; Xu et al., 2022; Sirejiding
et al., 2023; Xu et al., 2023a; Sirejiding et al., 2024b; Xin et al., 2024b; Sirejiding et al., 2024a;
Lin et al., 2024; Huang et al., 2024a; Zhang et al., 2023b; Wang et al., 2024b). Additional topics
include task-conditional models (Maninis et al., 2019; Kanakis et al., 2020; Sun et al., 2021; Lu
et al., 2024c;b), efficient adaptation (Liu et al., 2022; Xin et al., 2024a; Agiza et al., 2024; Wang
et al., 2024c), efficient computation (Neseem et al., 2023; Shoouri et al., 2023; Aich et al., 2023),
regularization (Yang et al., 2023; Li et al., 2024a), and generative modeling (Bao et al., 2022; Qiu
et al., 2024).

F ADDITIONAL QUALITATIVE RESULTS

To provide an intuitive comparison between the proposed SAK, VFM teachers, and existing meth-
ods, we visualize the task predictions of frozen VFM teachers, RADIO, Theia, and our model with
examples from PASCAL-Context and NYUD-v2, as shown in Figures 9, 10 (the same image used
in Figure 1), and 11. All methods use ViT-B backbones, with RADIO and Theia fully fine-tuned on
the downstream dataset to ensure a fair comparison. Our model noticeably generates better details
and fewer errors, especially in semantic segmentation, saliency estimation, and depth estimation.

34



Published as a conference paper at ICLR 2025

Image Semseg Parsing Saliency Normal Boundary

G
T

D
IN

O
v2

C
L

IP
SA

M
R

A
D

IO
T

he
ia

SA
K

Figure 9: Qualitative results compared with VFM teachers and distillation methods on PASCAL-
Context.
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Figure 10: Qualitative results compared with VFM teachers and distillation methods on PASCAL-
Context. Note chair and sofa in semantic segmentation.
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Image Semseg Depth Normal Boundary
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Figure 11: Qualitative results compared with VFM teachers and distillation methods on NYUD-v2.
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