
A CM3D Pseudo-Label Refinement249

Many components in our CM3D pipeline rely on data-driven priors and can only provide rough 3D250

estimates. We describe several strategies for improving our 3D psuedo-labels below.251

Prompt Engineering. Although VLMs show impressive zero-shot performance, they struggle when252

the prompted class is different from concepts encountered in their training data [19]. Following253

prior work [11], we prompt Detic with the standard nuScenes class names and their synonyms (e.g.254

{human, adult, person, pedestrian} for class pedestrian, and {car, sedan, SUV} for255

class car). Specifically, we use the nuScenes annotator guide to understand how nuScenes defines256

each class and generate synonyms accordingly. As shown in Fig. 2, Detic predicts class names257

and 2D bounding boxes for each image, along with confidence scores for each detection. We then258

perform non-maximum suppression (NMS) to remove redundant predictions across synonyms. In-259

terestingly, Detic is unable to accurately detect classes like barrier even with carefully designed260

prompts, suggesting that prompting with synonyms is insufficient for certain ambiguously defined261

classes [19].262

Mask Erosion. Although instance segmentations from SAM [57] are often accurate, we find that263

background LiDAR points near object boundaries can significantly impact medoid estimation [67].264

We employ mask erosion to remove noisy LiDAR points near mask boundaries. These points are265

often unreliable because of depth discontinuities and minor errors in sensor calibration.266

LiDAR Accumulation. LiDAR sweeps are notoriously sparse at range, making it difficult to distin-267

guish foreground-vs-background. Therefore, the community has adopted the practice of accumulat-268

ing multiple ego-motion compensated LiDAR sweeps when training 3D detectors [1]. We adopt the269

same practice in our pseudo-label generation pipeline for two reasons. First, accumulating multiple270

sweeps makes our medoid estimate more robust to outliers. Second, it biases the medoid towards271

the surface of the object, making medoid compensation (discussed next) more reliable.272

Medoid Compensation. We find that predicted medoids are radially biased toward the ego vehicle273

because LiDAR points are denser on visible surfaces of objects as perceived from the ego vehicle. To274

compensate for this bias, we “push” all predictions radially away from the ego vehicle by a distance275

proportional to the object’s size as follows:276

Let ~C be the medoid of the object in the global coordinate frame, ~E be the center of the ego ve-277

hicle with respect to the global coordinate frame, and ✓ be the heading of the object in the global278

coordinate frame. We define a vector ~CE = ~E � ~C, and ↵ as the global slope angle of this279

vector, i.e., ↵ = arctan
⇣

~CEy

~CEx

⌘
. As shown in Figure 5, we “push” the medoid back by distance280

d = min
⇣��� w

2 sin(↵�✓)

��� ,
��� l
2 cos(↵�✓)

���
⌘

. Therefore, our new medoid is ~C 0
x = ~Cx � d · cos(↵) and281

~C 0
y = ~Cy � d · sin(↵). We find that this simple geometric trick works surprisingly well in practice.282

Non-Maximum Suppression. nuScenes uses six RGB cameras to capture a 360� view of the envi-283

ronment, where neighboring cameras capture overlapping regions. Naively generating pseudo-labels284

across cameras can produce repeated detections for the same instance. Therefore, we perform non-285

maximum suppression (NMS) in the overlapping regions [68] after medoid compensation to remove286

duplicate detections.287

Late Fusion. Recall, we define the center of each predicted cuboid to be the medoid of the LiDAR288

points within an instance mask, the dimensions (length, width, height) as reported by ChatGPT289

when prompted with the class name, and the orientation to be aligned with lane geometry provided290

by an HD map. Therefore, the quality of our pseudo-label generation pipeline is entirely dependent291

on the accuracy of our shape and orientation priors. In contrast, SAM3D [61] does not use priors292

for shape and orientation estimation, but rather directly estimates a rotated cuboid from a BEV293

perspective point cloud. Although SAM3D does not predict semantics, we find that its rotation and294

shape estimates are often more accurate than our priors. Therefore, we propose a simple late-fusion295

strategy to combine the best attributes of both zero-shot predictions.296
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Figure 5: Medoid Compensation. We find that all predicted medoids (shown in blue) tend to
be radially biased toward the ego vehicle. This is because the LiDAR pointcloud only captures the
visible surface of the car and not its full shape. To compensate for this bias, we “push” all predictions
radially away, i.e., along the line connecting the center of the ego vehicle and the object medoid by
a distance proportional to the object’s size. The corrected medoid is shown in yellow. Empirically,
we show that this geometric trick improves mAP by 1.6% and NDS by 2.1%, respectively.

For a given timestep, we greedily match our zero-shot predictions with SAM3D’s predictions us-297

ing 2D BEV IoU. Spatially matching CM3D and SAM3D predictions yields three categories of298

detections: matched detections, unmatched CM3D detections (without corresponding SAM3D de-299

tections), and unmatched SAM3D detections (without corresponding CM3D detections). We dis-300

card unmatched SAM3D detections since these are likely false positives because distinguishing301

foreground-vs-background with LiDAR-only cues is difficult [69].302

Fusion of matched predictions from two independent detectors requires their scores to be compa-303

rable, Therefore, we use a class-agnostic implementation of score calibration as defined in [70].304

Specifically, we scale the logits for SAM3D using a scaling factor ⌧ (obtained by grid search on a305

val-set), i.e., confidence value c = �(logit/⌧). We construct a new set of fused detections by select-306

ing the size and orientation from the more confident detection (SAM3D vs. CM3D) after calibration307

and use the semantic class predicted by CM3D (since CM3D can more accurately predict semantics308

with RGB images). Finally, we add all unmatched CM3D predictions to the set of fused predictions,309

unchanged.310

Implementation Details. When generating pseudo-labels with CM3D, we use all Detic predictions311

with a confidence greater than 10% and use an IoU threshold of 0.75 for 2D NMS. We use a 3 ⇥ 3312

kernel for mask erosion and accumulate the past 3 LiDAR frames for densification. Note that this313

is different from the usual 10-frame accumulation in nuScenes since 10-frame LiDAR pointcloud314

accumulation creates long “tails” for moving objects, and leads to inaccurate medoid predictions.315

For 3D NMS, we use class-specific distance-based thresholds defined in [62].316

When training all detectors with pseudo-labels, we employ standard augmentation techniques (ex-317

cept for copy-paste augmentation, see Appendix C). Following established practices, we aggregate318

the past 10 sweeps for LiDAR densification using the provided ego-vehicle poses. We train Cen-319

terPoint and BEVFusion using the same hyperparameters prescribed by their respective papers. For320

CenterPoint, we first train the detector for 20 epochs with CM3D pseudo-labels and fine-tune the321

detector for 20 epochs using the limited set of annotations. For BEVFusion, we first pre-train the322

LiDAR-only branch using CM3D pseudo-labels for 20 epochs and fine-tune the LiDAR-only branch323

for 20 epochs using the limited set of annotations. We train the fusion model (RGB + LiDAR) for 6324

epochs using the limited amount of labeled training data. Lastly, we fine-tune all models using self-325

training. Specifically, we use the fine-tuned model to generate new pseudo-labels on the unlabeled326

portion of the train-set and retrain the detector on the entire train-set (including the limited set of327
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Table 2: Ablation on Pseudo-Label Generation. We analyze the impact of each component over
the baseline (cf. Fig 2). Importantly, we find that prompt engineering, medoid compensation, and
non-maximum suppression have the greatest impact.

Method mAP " NDS "
Baseline 18.6 17.8

+ Prompt Engineering 19.7 (+1.1) 18.4 (+0.6)
+ LiDAR Accumulation 20.0 (+0.3) 18.6 (+0.2)
+ Mask Erosion 20.2 (+0.2) 19.1 (+0.5)
+ Medoid Compensation 21.8 (+1.6) 21.3 (+2.1)
+ Non-Maximal Suppression 22.8 (+1.0) 21.9 (+0.6)
+ Late Fusion 23.0 (+0.2) 22.1 (+0.2)

Table 3: Self-Training vs. Longer Training Schedule. We evaluate the impact of training BEV-
Fusion + CM3D with a longer-training schedule (2x Schedule, 3x Schedule, and 4x Schedule) and
with multiple rounds of self-training (R1, R2, and R3). We note that one round of self training (R1)
improves over BEVFusion + CM3D w/ 4x Schedule, suggesting that self-training provides greater
benefit than simply training for longer. Further, additional rounds of self-training (R2 and R3) pro-
vides modest, but diminishing improvements.

Training Data Method mAP " NDS "
SimIPU [8] 39.1 45.8
PRC [9] + BEVDistill [66] 41.0 47.5
CALICO [9] 41.7 47.9
BEVFusion [63] + CM3D w/ 1x Schedule 48.6 47.8

5% BEVFusion [63] + CM3D w/ 2x Schedule 49.3 49.5
BEVFusion [63] + CM3D w/ 3x Schedule 49.9 50.4
BEVFusion [63] + CM3D w/ 4x Schedule 50.3 51.1
BEVFusion [63] + CM3D w/ 1x Schedule + R1 Self-Training 50.8 52.2
BEVFusion [63] + CM3D w/ 1x Schedule + R2 Self-Training 51.1 52.5
BEVFusion [63] + CM3D w/ 1x Schedule + R3 Self-Training 51.3 52.6

ground truth labels and pseudo-labels) from scratch. We ablate self-training further in Appendix B.328

We conduct all experiments on 8 RTX 3090 GPUs.329

Ablation Study. We ablate our pseudo-label generation algorithm to determine how each compo-330

nent improves the baseline. As discussed above, we find that medoid compensation has the greatest331

impact on pseudo-label quality, improving mAP by 1.6% and NDS by 2.1%. Tuning the Detic text332

prompts by including synonyms also improves results significantly. Finally, the 3D distance-based333

NMS helps remove duplicates present in the overlapping regions of the ring cameras and increases334

the mAP by 1%.335

B Ablation on Self-Training336

To further understand the impact of self-training, we investigate two questions: (1) Does self-training337

provide any improvement over long-training schedules and (2) how does self-training improve NDS?338

Self-Training Algorithm. Given K% annotated training data and (1-K%) unlabeled training data339

with CM3D pseudo-labels, we first pre-train a randomly initialized detector on (1-K%) pseudo-340

labels, fine-tune on K% annotated data, and use the resulting fine-tuned model to re-label the (1-341

K%) unlabeled training data. We iterative refine the (1-K%) pseudo-labels through multiple rounds342

of self-training. Importantly, we randomly initialize the detector after each round of self-training343

and pseudo-label generation to simplify training. We find that even one round of self-training sig-344

nificantly improves NDS when fine-tuning detectors with limited annotations. Additional rounds of345

self-training provide limited improvements.346
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Table 4: Analysis NDS Sub-Metric Errors. We find that all sub-component metrics of NDS are
improved with three rounds of self-training. Notably, improved mAP, and reduced orientation, at-
tribute, and velocity estimation errors contribute the most to the NDS results. Surprisingly, self-
training does not significantly improve size estimation, suggesting that our ChatGPT shape priors
are relatively robust.

Metric (%) BEVFusion [63] + CM3D w/o Self-Training w/ R3 Self-Training
mAP " 48.6 51.3
mATE # 33.8 32.2
mASE # 26.8 26.2
mAOE # 60.7 41.1
mAVE # 136.8 100.3
mAAE # 43.0 30.2
NDS " 47.8 52.6

Self-Training vs. Longer Training Schedules. We compare the performance of BEVFusion w/347

CM3D trained with a 1x schedule (20 epochs LiDAR-only branch pre-training with CM3D pseudo-348

labels, 20 epochs LiDAR-only branch fine-tuning with K% annotated data, and 6 epochs multi-349

modal fine-tuning with K% annotated data), 2x schedule, 3x schedule, and 4x schedule in Table350

3. Although performance improves when training detectors for longer, self-training (even for one351

round) significantly improves more than longer training schedules.352

Self-Training Improves All Components of NDS. Next, we compare the NDS sub-metrics for353

BEVFusion + CM3D with and without self-training in Table 4. Notably, we find that self-training354

improves all sub-metrics. We posit that self training improves classification accuracy and contributes355

to better mAP and lower attribute error. Similarly, we posit that self-training reduces pseudo-label356

bias for orientation and velocity estimation.357

C Ablation on Copy-Paste Augmentation358

State-of-the-art 3D detectors are often trained with copy-paste augmentation to improve detection359

accuracy for rare classes like bicycle or construction vehicle. Specifically, rare instances360

are pasted onto a LiDAR sweep to artificially increase the number of objects. Since our cross-361

modal 3D detection distillation pipeline creates an explicit 3D bounding box, we can easily apply362

copy-paste augmentation during pre-training as well. However, given that our pseudo-labels are363

noisy, is copy-paste augmentation worth it? We train CenterPoint with and without copy-paste364

augmentation during pre-training and fine-tuning (on 5% of the training data) to ablate its impact.365

We find that turning augmentation off during pre-training and turning augmentation on during fine-366

tuning yields the best mAP. Notably, using copy-paste augmentation for both pre-training and fine-367

tuning performs the worst. Intuitively, copy-pasting noisy pseudo-labels will decrease the signal-to-368

noise ratio, leading to worse initialization. In contrast, copy-paste augmentation during fine-tuning369

improves performance in limited-data regimes because we are effectively increasing the size of the370

dataset.371

Table 5: Ablation on Copy-Paste Augmentation. We evaluate different permutations of training
CenterPoint with and without copy-paste augmentation during pre-training and fine-tuning. Impor-
tantly, we find that turning off copy-paste augmentation during pre-training and turning it on during
fine-tuning achieves the best performance.

Pre-train Fine-tune Modality mAP " NDS "
w/ Copy-Paste Augmentation w/ Copy-Paste Augmentation

7 7 L 45.3 45.6
7 3 L 46.7 46.1
3 7 L 46.1 46.4
3 3 L 44.7 44.5
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Table 6: nuScenes Class Agnostic Evaluation. We evaluate class-agnostic performance of CM3D
pseudo-labels for fair comparison with prior work. We find that our method significantly outper-
forms LISO-TF by 14.5% AP.

Method Modality AP " NDS " mATE # mAOE # mASE #
DBSCAN [25] L 0.8 10.9 0.980 3.120 0.962
RSF [71] L 1.9 18.3 0.774 1.003 0.507
Oyster-CP [72] L 9.1 21.5 0.784 1.514 0.521
Oyster-TF [72] L 9.3 23.3 0.708 1.564 0.448
LISO-CP [40] L 10.9 22.4 0.750 1.062 0.409
LISO-TF [40] L 13.4 27.0 0.628 0.938 0.408
CM3D (Ours) L + C 27.9 27.6 0.592 0.872 0.428

D nuScenes Class Agnostic Evaluation372

In the main paper, we present nuScenes detection results for CM3D pseudo-labels averaged over 10373

classes. However, prior pseudo-label generation methods only evaluate class-agnostic performance374

[40]. For fair comparison with prior work, we evaluate CM3D pseudo-labels without differentiating375

between classes in Table 6. We find that our approach outperforms prior work by 14.5% AP and376

0.6% NDS, highlighting the benefit of using foundational priors and multi-modal inputs. In addition,377

prior works use motion cues from scene flow to generate object proposals for moving objects [39].378

In contrast, our approach localizes both static and moving objects and classifies them using VLMs.379

E Replacing Detic with GroundingDINO380

We ablate the impact of different VLMs on pseudo-label quality and downstream detection accuracy.381

Recall, our pseudo-label generation pipeline first prompts a VLM detector with class names (e.g.382

car, bus, truck) to generate 2D box proposals. We switch out Detic [15] for GroundingDINO383

[18] in Table 7. First, we find that CM3D w/ Detic generates better pseudo-labels than CM3D w/384

GroundingDINO (23.0 mAP vs. 18.0 mAP). Surprisingly, we find that models pre-trained with385

Detic-based pseudo-labels achieve higher mAP, while models pre-trained with GroundingDINO-386

based pseudo-labels achieve higher NDS.387

Table 7: Comparison Between VLMs for Pseudo-Label Generation. CM3D w/ Detic generates
better pseudo-labels than CM3D with GroundingDINO (23.0 mAP vs. 18.0 mAP). Surprisingly,
we find that models pre-trained with Detic-based pseudo-labels achieve higher mAP, while models
pre-trained with GroundingDINO-based pseudo-labels achieve higher NDS.

Training Data Method Modality mAP " NDS "
SAM3D [61] L 1.7 2.4
CM3D w/ Detic (Ours) L + C 23.0 22.1

0% CM3D w/ GroundingDINO (Ours) L + C 18.0 19.7
CenterPoint [62] + CM3D w/ Detic (Ours) L 16.7 21.4
CenterPoint [62] + CM3D w/ GroundingDINO (Ours) L 16.0 21.2
CenterPoint [62] + Rand. Init. L 33.1 37.4

5% CenterPoint [62] + CM3D w/ Detic (Ours) L 46.1 46.4
CenterPoint [62] + CM3D w/ GroundingDINO (Ours) L 42.9 52.3
CenterPoint [62] + Rand. Init. L 41.1 48.0

10% CenterPoint [62] + CM3D w/ Detic (Ours) L 50.8 49.2
CenterPoint [62] + CM3D w/ GroundingDINO (Ours) L 49.8 56.7
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Table 8: Chat-GPT Shape Prior. We compare the average 3D shapes of objects in nuScenes (de-
noted by {Width, Length, Height}) with predicted 3D shapes from ChatGPT. Impressively, Chat-
GPT provides reasonable 3D object extents.

Class Name Real Shape Prior ChatGPT Shape Prior
Car {1.91, 4.62, 1.68} {1.80, 4.50, 1.50}
Truck {2.38, 6.89, 2.60} {2.60, 8.00, 3.60}
Bus {2.59, 11.47, 3.81} {2.50, 12.00, 4.00}
Trailer {2.29, 10.20, 3.70} {2.60, 12.00, 3.60}
Construction Vehicle {2.47, 5.5, 2.38} {2.00, 4.50, 2.50}
Pedestrian {0.60, 0.73, 1.76} {0.40, 0.70, 1.70}
Motorcycle {0.76, 1.95, 1.57} {0.80, 2.10, 1.70}
Bicycle {0.63, 1.82, 1.39} {0.60, 1.80, 1.40}
Traffic Cone {0.42, 0.43, 0.70} {0.30, 0.30, 0.70}
Barrier {0.60, 2.32, 1.06} {0.50, 1.20, 0.90}

F Comparing ChatGPT Priors vs. Real Shape Priors388

We determine the shape (e.g. width, length, and height) of a class by prompting a large language389

model (ChatGPT) with the following:390

“What are the average sizes in meters (values can be floats) of the following object classes? Give
the answer in the form of a JSON file using the following format: [width (side to side), length (front
to back), height]
Object classes: car, truck, bus, trailer, construction vehicle, pedestrian, motorcycle, bicycle, traf-
fic cone, traffic barrier.
Do not answer with anything other than the JSON output.”

391

Despite not having access to our specific 3D training data, LLMs have seen many descriptions of392

object shapes in their training data and can offer plausible 3D sizes for common objects. We compare393

shape priors from ChatGPT with anchor boxes derived from the training data in Table 8.394

G More Qualitative Results395

We present additional qualitative results comparing the predictions from BEVFusion trained from396

scratch on 5% data (top), BEVFusion + CM3D (middle), and BEVFusion + CM3D w/ Self-Training397

(bottom). Please see Figure 6 for detailed analysis.398

Table 9: Zero-Shot Waymo 3D Detection. CM3D marginally improves over SAM3D’s LiDAR-
only predictions even though it has access to both RGB and LiDAR. However, pre-training a LiDAR-
only detector (CenterPoint) on CM3D psuedo-labels extracted from the train-set significantly im-
proves accuracy, illustrating the benefit of cross-modal learning. Importantly, we note that lower
performance for pedestrian and cyclist can be attributed to the stricter matching criteria used
by WOD. Specifically, a detection is considered a true positive only if it overlaps with the ground
truth with 3D IOU greater than 0.7 for vehicle and 0.5 for other classes.
Method Test Vehicle Pedestrian Cyclist

Modality AP " APH " AP " APH " AP " APH "
SAM3D L 19.1 13.0 0.0 0.0 0.0 0.0
CM3D (Ours) L + C 19.4 13.4 0.2 0.1 0.7 0.5
CenterPoint + CM3D (Ours) L 23.7 17.5 0.1 0.1 2.6 1.3
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Figure 6: More Qualitative Results. We present additional qualitative results comparing the pre-
dictions from BEVFusion trained from scratch on 5% data (top), BEVFusion + CM3D (middle),
and BEVFusion + CM3D w/ Self-Training (bottom). Ground truth bounding boxes are shown in
green, and predictions are shown in blue. Across all three examples, we find that the model trained
from scratch produces many high confidence false positives. Pre-training BEVFusion with CM3D
pseudo-labels improves performance by reducing the number of false positives. However, many
of the predictions have incorrect orientation estimates. Lastly, we find that self-training improves
orientation estimation.

Table 10: Waymo 3D Detection Results. We report Level-2 mAP and mAPH averaged over 3
classes (Vehicle, Pedestrian, and Cyclist). CM3D consistently improves over random initial-
ization. However, we find that our method performs slightly worse than prior LiDAR-only methods
like PRC. Notably, we are unable to train our model for the same number of epochs as prior work
due to time constraints, but expect that our method will improve with further training.

Training Data Method Modality mAP " mAPH"
Train Test

SAM3D L L 6.4 4.3
0% CM3D (Ours) L + C L + C 6.8 4.7

CenterPoint [62] + CM3D (Ours) L + C L 8.8 6.2
SECOND [73] + Rand. Init. L L 53.1 49.1
FixMatch [74] (SECOND Backbone) L L 55.8 51.5
ProficientTeachers [75] (SECOND Backbone) L L 58.6 54.2
CenterPoint [62] + Rand. Init. L L 63.2 61.0

20% PointContrast [6] L L 65.2 62.6
ProposalContrast [7] L L 66.3 63.7
PRC [9] L L 68.6 65.5
CenterPoint [62] + CM3D (Ours) L + C L 67.6 64.4

H Evaluating CM3D on Waymo399

We evaluate our method on the Waymo Open Dataset [2] in Table 9. Following prior work, we400

report mAP [65] and mAPH [2] (a custom metric proposed by Waymo that incorporates heading).401

For fair comparison with SAM3D [61], we only evaluate predictions between 0 and 30 meters402

from the ego-vehicle. Notably, SAM3D achieves significantly better performance on Waymo than403

nuScenes, likely due to Waymo’s greater point density. Importantly, SAM3D only produces class-404
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Table 11: nuScenes BEV Map Segmentation Results. Although BEVFusion + CM3D is pre-
trained on noisy 3D bounding boxes, it performs better on BEV map segmentation than random
initialization! However, our method performs worse than other state-of-the-art methods. This sug-
gests that aligning pre-training and fine-tuning tasks improves semi-supervised performance for the
target task (cf. Table 1) at the cost of generalizing to other downstream tasks.

Training Data Method mIOU "
BEVFusion [63] + Rand. Init. 36.3
SimIPU [8] 38.5

5% PRC [9] + BEVDistill [66] 40.9
CALICO [9] 42.0
BEVFusion [63] + CM3D (Ours) 38.5
BEVFusion [63] + Rand. Init. 43.8
SimIPU [8] 45.1

10% PRC [9] + BEVDistill [66] 46.4
CALICO [9] 47.3
BEVFusion [63] + CM3D (Ours) 44.4

Table 12: Distilling Multi-Modal 3D Psuedo-Labels to RGB-based 3D Detectors. We train the
camera-only branch of BEVFusion with CM3D pseudo-labels. Although distilling CM3D detec-
tions into BEVFusion-C performs considerably worse than BEVFusion-L + CM3D and BEVFusion
+ CM3D , we demonstrate that our shelf-supervised framework allows us to distill multi-modal
information from expensive RGB + LiDAR sensors into models trained with cheaper RGB-only
sensors.

Training Data Method Modality mAP " NDS "
Train Test

CM3D L + C L + C 23.0 22.1
0% BEVFusion-L [62] + CM3D L + C L 16.7 21.4

(Unsupervised) BEVFusion-C [63] + CM3D L + C C 11.7 16.1
BEVFusion [63] + CM3D L + C L + C 20.6 23.3

agnostic boxes and assigns the class Vehicle to all predictions. Therefore, it achieves 0 AP for405

both Pedestrian and Cyclist. In contrast, CM3D explicitly predicts semantic classes using RGB406

images. However, we find that our approach only achieves marginal improvement over SAM3D. We407

attribute this to Waymo’s evaluation metric and sensor setup.408

Unlike nuScenes, which uses a distance-based threshold to match predictions with ground truth409

boxes when computing mAP, Waymo uses a stricter matching criteria based on 3D IoU with high410

thresholds of 0.7 for Vehicle and 0.5 for other classes. Recall that our size estimates are from411

ChatGPT and our orientation estimates are derived from an HD map. These imprecise estimates412

significantly harm detection accuracy since high IoU between predictions and ground truth boxes413

requires precise size and orientation. Furthermore, the Waymo Open Dataset does not include rear-414

facing cameras, making it impossible for CM3D to predict bounding boxes behind the ego-vehicle.415

As a result, we find that our method is heavily dependent on late-fusion with SAM3D, which is able416

to correct the size and orientation of CM3D pseudo-labels, and generate predictions for parts of the417

scene without RGB information.418

We pre-train CenterPoint with our pseudo-labels for 30 epochs and fine-tune the model for 30419

epochs. We find that pre-training with CM3D pseudo-labels consistently improves over random420

initialization. However, we find that our method performs slightly worse than prior LiDAR-only421

methods like PRC. We posit that the lack of RGB camera coverage for more than 50% of each422

LiDAR sweep, and our reliance on SAM3D’s class-agnostic pseudo-labels significantly diminishes423

the benefit of our proposed approach.424
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I Limitations and Future Work425

We propose a simple cross-modal detection distillation framework that leverages paired multi-modal426

data and vision-language models to generate zero-shot 3D bounding boxes. We demonstrate that pre-427

training 3D detectors with our zero-shot 3D bounding boxes yields strong semi-supervised detection428

accuracy. We discuss several limitations of our approach below.429

Limitation: Aligning Pre-Training and Fine-Tuning Task Limits Generalizability. Contrastive430

learning has been widely adopted for self-supervised learning because it encodes task-agnostic rep-431

resentations that can be used for diverse downstream applications. In contrast, our approach uses432

prior knowledge about the downstream task to design a suitable pretext task. While this works433

well when the pre-training and fine-tuning tasks are well aligned, it does not provide a significant434

improvement when this is not the case. We evaluate the generalization of BEVFusion pre-trained435

on CM3D pseudo-labels for BEV map segmentation. Surprisingly, our pre-training strategy per-436

forms better at BEV map segmentation than random initialization! However, our method performs437

slightly worse than other state-of-the-art self-supervised methods methods. This suggests that align-438

ing our pre-training and fine-tuning task can provide significant improvements (cf. Table 1 in the439

main paper) at the cost of generalizability to diverse tasks. Future work should explore different440

shelf-supervised pretext tasks to improve semi-supervised accuracy for diverse tasks in low data441

settings.442

Limitation: Orientation Estimation Requires HD Maps. Our proposed approach uses lane direc-443

tion from HD maps to estimate vehicle orientation. This heuristic does not work well when vehicles444

are turning into an intersection, for non-vehicles, and when HD maps are unavailable. Instead,445

future work should explore using multi-object trackers to generate heading estimates from consecu-446

tive detections [40]. We posit that this can improve NDS, and can potentially eliminate the need for447

self-training.448

Limitation: Data Sampling Strategy. Although our semi-supervised experiments follow the sug-449

gested protocol in [7, 50, 9] and sample K% of the training data uniformly from the entire training450

set, this may be unrealistic in practice. Sampling training data uniformly artificially inflates the di-451

versity of training samples and is more time consuming to annotate than sampling training data from452

consecutive frames. Future work should explore the semi-supervised setting with data sampled from453

consecutive frames.454

Future Work: Distilling Multi-Modal 3D Psuedo-Labels to RGB-based 3D Detectors. We re-455

purposed our shelf-supervised framework to learn RGB-only 3D detectors, allowing us to distill456

multi-modal information from expensive RGB + LiDAR sensors into models trained with cheaper457

RGB-only sensors. Future work should explore ways of improving cross modal detection distillation458

of RGB + LiDAR into RGB-only models.459

Future Work: Combining Pretext Tasks to Improve Performance. Since our pre-training ap-460

proach is entirely disjoint contrastive pre-training methods, we hypothesize that our pre-training461

setup can be used in tandem with such methods to make more accurate predictions and improve462

results. This may provide a middle-ground between task-agnostic contrastive learning and task-463

specific pseudo-label pre-training.464
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