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A CM3D Pseudo-Label Refinement

Many components in our CM3D pipeline rely on data-driven priors and can only provide rough 3D
estimates. We describe several strategies for improving our 3D psuedo-labels below.

Prompt Engineering. Although VLMs show impressive zero-shot performance, they struggle when
the prompted class is different from concepts encountered in their training data [19]. Following
prior work [11], we prompt Detic with the standard nuScenes class names and their synonyms (e.g.
{human, adult, person, pedestrian} for class pedestrian, and {car, sedan, SUV} for
class car). Specifically, we use the nuScenes annotator guide to understand how nuScenes defines
each class and generate synonyms accordingly. As shown in Fig. 2, Detic predicts class names
and 2D bounding boxes for each image, along with confidence scores for each detection. We then
perform non-maximum suppression (NMS) to remove redundant predictions across synonyms. In-
terestingly, Detic is unable to accurately detect classes like barrier even with carefully designed
prompts, suggesting that prompting with synonyms is insufficient for certain ambiguously defined
classes [19].

Mask Erosion. Although instance segmentations from SAM [57] are often accurate, we find that
background LiDAR points near object boundaries can significantly impact medoid estimation [67].
We employ mask erosion to remove noisy LiDAR points near mask boundaries. These points are
often unreliable because of depth discontinuities and minor errors in sensor calibration.

LiDAR Accumulation. LiDAR sweeps are notoriously sparse at range, making it difficult to distin-
guish foreground-vs-background. Therefore, the community has adopted the practice of accumulat-
ing multiple ego-motion compensated LiDAR sweeps when training 3D detectors [1]. We adopt the
same practice in our pseudo-label generation pipeline for two reasons. First, accumulating multiple
sweeps makes our medoid estimate more robust to outliers. Second, it biases the medoid towards
the surface of the object, making medoid compensation (discussed next) more reliable.

Medoid Compensation. We find that predicted medoids are radially biased toward the ego vehicle
because LiDAR points are denser on visible surfaces of objects as perceived from the ego vehicle. To
compensate for this bias, we “push” all predictions radially away from the ego vehicle by a distance
proportional to the object’s size as follows:

Let C be the medoid of the object in the global coordinate frame, E be the center of the ego ve-
hicle with respect to the global coordinate frame, and 6 be the heading of the object in the global
coordinate frame. We define a vector CE = E — C, and « as the global slope angle of this

vector, i.e., a = arctan S

P CE
d = min (’
61/; = C_"y — d - sin(«). We find that this simple geometric trick works surprisingly well in practice.

Y ) As shown in Figure 5, we “push” the medoid back by distance

w
2 sin(a—0)

, 2cos(la70) D Therefore, our new medoid is ¢, = C,, — d - cos(a) and

Non-Maximum Suppression. nuScenes uses six RGB cameras to capture a 360° view of the envi-
ronment, where neighboring cameras capture overlapping regions. Naively generating pseudo-labels
across cameras can produce repeated detections for the same instance. Therefore, we perform non-
maximum suppression (NMS) in the overlapping regions [68] after medoid compensation to remove
duplicate detections.

Late Fusion. Recall, we define the center of each predicted cuboid to be the medoid of the LiDAR
points within an instance mask, the dimensions (length, width, height) as reported by ChatGPT
when prompted with the class name, and the orientation to be aligned with lane geometry provided
by an HD map. Therefore, the quality of our pseudo-label generation pipeline is entirely dependent
on the accuracy of our shape and orientation priors. In contrast, SAM3D [61] does not use priors
for shape and orientation estimation, but rather directly estimates a rotated cuboid from a BEV
perspective point cloud. Although SAM3D does not predict semantics, we find that its rotation and
shape estimates are often more accurate than our priors. Therefore, we propose a simple late-fusion
strategy to combine the best attributes of both zero-shot predictions.


https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/instructions_nuscenes.md
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(a) Baseline (a) After Medoid Compensation

Figure 5: Medoid Compensation. We find that all predicted medoids (shown in blue) tend to
be radially biased toward the ego vehicle. This is because the LiDAR pointcloud only captures the
visible surface of the car and not its full shape. To compensate for this bias, we “push” all predictions
radially away, i.e., along the line connecting the center of the ego vehicle and the object medoid by
a distance proportional to the object’s size. The corrected medoid is shown in yellow. Empirically,
we show that this geometric trick improves mAP by 1.6% and NDS by 2.1%, respectively.

For a given timestep, we greedily match our zero-shot predictions with SAM3D’s predictions us-
ing 2D BEV IoU. Spatially matching CM3D and SAM3D predictions yields three categories of
detections: matched detections, unmatched CM3D detections (without corresponding SAM3D de-
tections), and unmatched SAM3D detections (without corresponding CM3D detections). We dis-
card unmatched SAM3D detections since these are likely false positives because distinguishing
foreground-vs-background with LiDAR-only cues is difficult [69].

Fusion of matched predictions from two independent detectors requires their scores to be compa-
rable, Therefore, we use a class-agnostic implementation of score calibration as defined in [70].
Specifically, we scale the logits for SAM3D using a scaling factor 7 (obtained by grid search on a
val-set), i.e., confidence value ¢ = o (logit/T). We construct a new set of fused detections by select-
ing the size and orientation from the more confident detection (SAM3D vs. CM3D) after calibration
and use the semantic class predicted by CM3D (since CM3D can more accurately predict semantics
with RGB images). Finally, we add all unmatched CM3D predictions to the set of fused predictions,
unchanged.

Implementation Details. When generating pseudo-labels with CM3D, we use all Detic predictions
with a confidence greater than 10% and use an IoU threshold of 0.75 for 2D NMS. We use a 3 x 3
kernel for mask erosion and accumulate the past 3 LiDAR frames for densification. Note that this
is different from the usual 10-frame accumulation in nuScenes since 10-frame LiDAR pointcloud
accumulation creates long “tails” for moving objects, and leads to inaccurate medoid predictions.
For 3D NMS, we use class-specific distance-based thresholds defined in [62].

When training all detectors with pseudo-labels, we employ standard augmentation techniques (ex-
cept for copy-paste augmentation, see Appendix C). Following established practices, we aggregate
the past 10 sweeps for LiDAR densification using the provided ego-vehicle poses. We train Cen-
terPoint and BEVFusion using the same hyperparameters prescribed by their respective papers. For
CenterPoint, we first train the detector for 20 epochs with CM3D pseudo-labels and fine-tune the
detector for 20 epochs using the limited set of annotations. For BEVFusion, we first pre-train the
LiDAR-only branch using CM3D pseudo-labels for 20 epochs and fine-tune the LiDAR-only branch
for 20 epochs using the limited set of annotations. We train the fusion model (RGB + LiDAR) for 6
epochs using the limited amount of labeled training data. Lastly, we fine-tune all models using self-
training. Specifically, we use the fine-tuned model to generate new pseudo-labels on the unlabeled
portion of the train-set and retrain the detector on the entire train-set (including the limited set of
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Table 2: Ablation on Pseudo-Label Generation. We analyze the impact of each component over
the baseline (cf. Fig 2). Importantly, we find that prompt engineering, medoid compensation, and
non-maximum suppression have the greatest impact.

Method mAP 1 NDS 1

Baseline 18.6 17.8
+ Prompt Engineering 19.7 (+1.1) 18.4 (+0.6)
+ LiDAR Accumulation 20.0 (+0.3) 18.6 (+0.2)
+ Mask Erosion 20.2 (+0.2) 19.1 (+0.5)
+ Medoid Compensation 21.8 (+1.6) 21.3 (+2.1)
+ Non-Maximal Suppression 22.8 (+1.0) 21.9 (+0.6)
+ Late Fusion 23.0 (+0.2) 22.1 (+0.2)

Table 3: Self-Training vs. Longer Training Schedule. We evaluate the impact of training BEV-
Fusion + CM3D with a longer-training schedule (2x Schedule, 3x Schedule, and 4x Schedule) and
with multiple rounds of self-training (R1, R2, and R3). We note that one round of self training (R1)
improves over BEVFusion + CM3D w/ 4x Schedule, suggesting that self-training provides greater
benefit than simply training for longer. Further, additional rounds of self-training (R2 and R3) pro-
vides modest, but diminishing improvements.

Training Data Method mAP 1 NDS 1
SimIPU [8] 39.1 458
PRC [9] + BEVDistill [66] 41.0 47.5
CALICO [9] 41.7 479
BEVFusion [63] + CM3D w/ 1x Schedule 48.6 47.8
5% BEVFusion [63] + CM3D w/ 2x Schedule 49.3 49.5
BEVFusion [63] + CM3D w/ 3x Schedule 49.9 50.4
BEVFusion [63] + CM3D w/ 4x Schedule 50.3 51.1
BEVFusion [63] + CM3D w/ 1x Schedule + R1 Self-Training 50.8 522
BEVFusion [63] + CM3D w/ 1x Schedule + R2 Self-Training 51.1 52.5
BEVFusion [63] + CM3D w/ 1x Schedule + R3 Self-Training 51.3 52.6

ground truth labels and pseudo-labels) from scratch. We ablate self-training further in Appendix B.
We conduct all experiments on 8 RTX 3090 GPUs.

Ablation Study. We ablate our pseudo-label generation algorithm to determine how each compo-
nent improves the baseline. As discussed above, we find that medoid compensation has the greatest
impact on pseudo-label quality, improving mAP by 1.6% and NDS by 2.1%. Tuning the Detic text
prompts by including synonyms also improves results significantly. Finally, the 3D distance-based
NMS helps remove duplicates present in the overlapping regions of the ring cameras and increases
the mAP by 1%.

B Ablation on Self-Training

To further understand the impact of self-training, we investigate two questions: (1) Does self-training
provide any improvement over long-training schedules and (2) how does self-training improve NDS?

Self-Training Algorithm. Given K% annotated training data and (1-K%) unlabeled training data
with CM3D pseudo-labels, we first pre-train a randomly initialized detector on (1-K%) pseudo-
labels, fine-tune on K% annotated data, and use the resulting fine-tuned model to re-label the (1-
K%) unlabeled training data. We iterative refine the (1-K%) pseudo-labels through multiple rounds
of self-training. Importantly, we randomly initialize the detector after each round of self-training
and pseudo-label generation to simplify training. We find that even one round of self-training sig-
nificantly improves NDS when fine-tuning detectors with limited annotations. Additional rounds of
self-training provide limited improvements.
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Table 4: Analysis NDS Sub-Metric Errors. We find that all sub-component metrics of NDS are
improved with three rounds of self-training. Notably, improved mAP, and reduced orientation, at-
tribute, and velocity estimation errors contribute the most to the NDS results. Surprisingly, self-
training does not significantly improve size estimation, suggesting that our ChatGPT shape priors
are relatively robust.

Maetric (%) BEVFusion [63] + CM3D w/o Self-Training w/ R3 Self-Training
mAP 1 48.6 51.3
mATE | 33.8 322
mASE | 26.8 26.2
mAOE | 60.7 41.1
mAVE | 136.8 100.3
mAAE | 43.0 30.2
NDS 1 47.8 52.6

Self-Training vs. Longer Training Schedules. We compare the performance of BEVFusion w/
CM3D trained with a 1x schedule (20 epochs LiDAR-only branch pre-training with CM3D pseudo-
labels, 20 epochs LiDAR-only branch fine-tuning with K% annotated data, and 6 epochs multi-
modal fine-tuning with K% annotated data), 2x schedule, 3x schedule, and 4x schedule in Table
3. Although performance improves when training detectors for longer, self-training (even for one
round) significantly improves more than longer training schedules.

Self-Training Improves All Components of NDS. Next, we compare the NDS sub-metrics for
BEVFusion + CM3D with and without self-training in Table 4. Notably, we find that self-training
improves all sub-metrics. We posit that self training improves classification accuracy and contributes
to better mAP and lower attribute error. Similarly, we posit that self-training reduces pseudo-label
bias for orientation and velocity estimation.

C Ablation on Copy-Paste Augmentation

State-of-the-art 3D detectors are often trained with copy-paste augmentation to improve detection
accuracy for rare classes like bicycle or construction vehicle. Specifically, rare instances
are pasted onto a LiDAR sweep to artificially increase the number of objects. Since our cross-
modal 3D detection distillation pipeline creates an explicit 3D bounding box, we can easily apply
copy-paste augmentation during pre-training as well. However, given that our pseudo-labels are
noisy, is copy-paste augmentation worth it? We train CenterPoint with and without copy-paste
augmentation during pre-training and fine-tuning (on 5% of the training data) to ablate its impact.
We find that turning augmentation off during pre-training and turning augmentation on during fine-
tuning yields the best mAP. Notably, using copy-paste augmentation for both pre-training and fine-
tuning performs the worst. Intuitively, copy-pasting noisy pseudo-labels will decrease the signal-to-
noise ratio, leading to worse initialization. In contrast, copy-paste augmentation during fine-tuning
improves performance in limited-data regimes because we are effectively increasing the size of the
dataset.

Table 5: Ablation on Copy-Paste Augmentation. We evaluate different permutations of training
CenterPoint with and without copy-paste augmentation during pre-training and fine-tuning. Impor-
tantly, we find that turning off copy-paste augmentation during pre-training and turning it on during
fine-tuning achieves the best performance.
Pre-train Fine-tune Modality mAP 1 NDS 1
w/ Copy-Paste Augmentation w/ Copy-Paste Augmentation

X X L 453 45.6
X v L 46.7 46.1
v X L 46.1 46.4
v v L 44.7 44.5
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Table 6: nuScenes Class Agnostic Evaluation. We evaluate class-agnostic performance of CM3D
pseudo-labels for fair comparison with prior work. We find that our method significantly outper-
forms LISO-TF by 14.5% AP.

Method Modality AP 1 NDS 1 mATE | mAOE | mASE |
DBSCAN [25] L 0.8 10.9 0.980 3.120 0.962
RSF [71] L 1.9 18.3 0.774 1.003 0.507
Oyster-CP [72] L 9.1 21.5 0.784 1.514 0.521
Oyster-TF [72] L 9.3 233 0.708 1.564 0.448
LISO-CP [40] L 10.9 224 0.750 1.062 0.409
LISO-TF [40] L 13.4 27.0 0.628 0.938 0.408
CM3D (Ours) L+C 27.9 27.6 0.592 0.872 0.428

D nuScenes Class Agnostic Evaluation

In the main paper, we present nuScenes detection results for CM3D pseudo-labels averaged over 10
classes. However, prior pseudo-label generation methods only evaluate class-agnostic performance
[40]. For fair comparison with prior work, we evaluate CM3D pseudo-labels without differentiating
between classes in Table 6. We find that our approach outperforms prior work by 14.5% AP and
0.6% NDS, highlighting the benefit of using foundational priors and multi-modal inputs. In addition,
prior works use motion cues from scene flow to generate object proposals for moving objects [39].
In contrast, our approach localizes both static and moving objects and classifies them using VLMs.

E Replacing Detic with GroundingDINO

We ablate the impact of different VLMs on pseudo-label quality and downstream detection accuracy.
Recall, our pseudo-label generation pipeline first prompts a VLM detector with class names (e.g.
car, bus, truck) to generate 2D box proposals. We switch out Detic [15] for GroundingDINO
[18] in Table 7. First, we find that CM3D w/ Detic generates better pseudo-labels than CM3D w/
GroundingDINO (23.0 mAP vs. 18.0 mAP). Surprisingly, we find that models pre-trained with
Detic-based pseudo-labels achieve higher mAP, while models pre-trained with GroundingDINO-
based pseudo-labels achieve higher NDS.

Table 7: Comparison Between VLMs for Pseudo-Label Generation. CM3D w/ Detic generates
better pseudo-labels than CM3D with GroundingDINO (23.0 mAP vs. 18.0 mAP). Surprisingly,
we find that models pre-trained with Detic-based pseudo-labels achieve higher mAP, while models
pre-trained with GroundingDINO-based pseudo-labels achieve higher NDS.

Training Data Method Modality mAP 1 NDS 1
SAM3D [61] L 1.7 2.4
CM3D w/ Detic (Ours) L+C 23.0 22.1
0% CM3D w/ GroundingDINO (Ours) L+C 18.0 19.7
CenterPoint [62] + CM3D w/ Detic (Ours) L 16.7 214
CenterPoint [62] + CM3D w/ GroundingDINO (Ours) L 16.0 21.2
CenterPoint [62] + Rand. Init. L 33.1 37.4
5% CenterPoint [62] + CM3D w/ Detic (Ours) L 46.1 46.4
CenterPoint [62] + CM3D w/ GroundingDINO (Ours) L 42.9 52.3
CenterPoint [62] + Rand. Init. L 41.1 48.0
10% CenterPoint [62] + CM3D w/ Detic (Ours) L 50.8 49.2
CenterPoint [62] + CM3D w/ GroundingDINO (Ours) L 49.8 56.7
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Table 8: Chat-GPT Shape Prior. We compare the average 3D shapes of objects in nuScenes (de-
noted by {Width, Length, Height}) with predicted 3D shapes from ChatGPT. Impressively, Chat-

GPT provides reasonable 3D object extents.

Class Name Real Shape Prior ChatGPT Shape Prior
Car {1.91,4.62, 1.68} {1.80,4.50, 1.50}
Truck {2.38, 6.89, 2.60} {2.60, 8.00, 3.60}
Bus {2.59,11.47,3.81} {2.50, 12.00, 4.00}
Trailer {2.29, 10.20, 3.70} {2.60, 12.00, 3.60}

Construction Vehicle

{2.47,5.5,2.38}

{2.00, 4.50, 2.50}

Pedestrian {0.60,0.73, 176} {0.40, 0.70, 1.70}
Motorcycle {0.76, 1.95, 1.57} {0.80, 2.10, 1.70}
Bicycle {0.63, 1.82, 139} {0.60, 1.80, 1.40}

Traffic Cone
Barrier

{0.42,0.43,0.70}
{0.60, 2.32, 1.06}

{0.30,0.30, 0.70}
{0.50, 1.20, 0.90}

F Comparing ChatGPT Priors vs. Real Shape Priors

We determine the shape (e.g. width, length, and height) of a class by prompting a large language
model (ChatGPT) with the following:

“What are the average sizes in meters (values can be floats) of the following object classes? Give
the answer in the form of a JSON file using the following format: [width (side to side), length (front
to back), height]

Object classes: car, truck, bus, trailer, construction_vehicle, pedestrian, motorcycle, bicycle, traf-
fic_cone, traffic_barrier.

Do not answer with anything other than the JSON output.”

Despite not having access to our specific 3D training data, LLMs have seen many descriptions of
object shapes in their training data and can offer plausible 3D sizes for common objects. We compare
shape priors from ChatGPT with anchor boxes derived from the training data in Table 8.

G More Qualitative Results

We present additional qualitative results comparing the predictions from BEVFusion trained from
scratch on 5% data (top), BEVFusion + CM3D (middle), and BEVFusion + CM3D w/ Self-Training
(bottom). Please see Figure 6 for detailed analysis.

Table 9: Zero-Shot Waymo 3D Detection. CM3D marginally improves over SAM3D’s LiDAR-
only predictions even though it has access to both RGB and LiDAR. However, pre-training a LIDAR-
only detector (CenterPoint) on CM3D psuedo-labels extracted from the train-set significantly im-
proves accuracy, illustrating the benefit of cross-modal learning. Importantly, we note that lower
performance for pedestrian and cyclist can be attributed to the stricter matching criteria used
by WOD. Specifically, a detection is considered a true positive only if it overlaps with the ground
truth with 3D IOU greater than 0.7 for vehicle and 0.5 for other classes.

Method Test Vehicle Pedestrian Cyclist
Modality | APT APH{ | AP1T APH{ | AP{T APH1
SAM3D L 19.1 13.0 0.0 0.0 0.0 0.0
CM3D (Ours) L+C 19.4 13.4 0.2 0.1 0.7 0.5
CenterPoint + CM3D (Ours) L 23.7 17.5 0.1 0.1 2.6 1.3
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Figure 6: More Qualitative Results. We present additional qualitative results comparing the pre-
dictions from BEVFusion trained from scratch on 5% data (top), BEVFusion + CM3D (middle),
and BEVFusion + CM3D w/ Self-Training (bottom). Ground truth bounding boxes are shown in
green, and predictions are shown in blue. Across all three examples, we find that the model trained
from scratch produces many high confidence false positives. Pre-training BEVFusion with CM3D
pseudo-labels improves performance by reducing the number of false positives. However, many
of the predictions have incorrect orientation estimates. Lastly, we find that self-training improves
orientation estimation.

Table 10: Waymo 3D Detection Results. We report Level-2 mAP and mAPH averaged over 3
classes (Vehicle, Pedestrian, and Cyclist). CM3D consistently improves over random initial-
ization. However, we find that our method performs slightly worse than prior LIDAR-only methods
like PRC. Notably, we are unable to train our model for the same number of epochs as prior work
due to time constraints, but expect that our method will improve with further training.

Training Data Method Modality mAP 1 mAPy 1
Train Test
SAM3D L L 6.4 4.3
0% CM3D (Ours) L+C L+C 6.8 4.7
CenterPoint [62] + CM3D (Ours) L+C L 8.8 6.2
SECOND [73] + Rand. Init. L L 53.1 49.1
FixMatch [74] (SECOND Backbone) L L 55.8 51.5
ProficientTeachers [75] (SECOND Backbone) L L 58.6 54.2
CenterPoint [62] + Rand. Init. L L 63.2 61.0
20% PointContrast [6] L L 65.2 62.6
ProposalContrast [7] L L 66.3 63.7
PRC [9] L L 68.6 65.5
CenterPoint [62] + CM3D (Ours) L+C L 67.6 64.4

H Evaluating CM3D on Waymo

We evaluate our method on the Waymo Open Dataset [2] in Table 9. Following prior work, we
report mAP [65] and mAPH [2] (a custom metric proposed by Waymo that incorporates heading).
For fair comparison with SAM3D [61], we only evaluate predictions between 0 and 30 meters
from the ego-vehicle. Notably, SAM3D achieves significantly better performance on Waymo than
nuScenes, likely due to Waymo’s greater point density. Importantly, SAM3D only produces class-
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Table 11: nuScenes BEV Map Segmentation Results. Although BEVFusion + CM3D is pre-
trained on noisy 3D bounding boxes, it performs better on BEV map segmentation than random
initialization! However, our method performs worse than other state-of-the-art methods. This sug-
gests that aligning pre-training and fine-tuning tasks improves semi-supervised performance for the
target task (cf. Table 1) at the cost of generalizing to other downstream tasks.

Training Data Method mlIOU 1
BEVFusion [63] + Rand. Init. 36.3
SimIPU [8] 38.5
5% PRC [9] + BEVDistill [66] 40.9
CALICO [9] 42.0
BEVFusion [63] + CM3D (Ours) 38.5
BEVFusion [63] + Rand. Init. 43.8
SimIPU [8] 45.1
10% PRC [9] + BEVDistill [66] 46.4
CALICO [9] 47.3
BEVFusion [63] + CM3D (Ours) 44 .4

Table 12: Distilling Multi-Modal 3D Psuedo-Labels to RGB-based 3D Detectors. We train the
camera-only branch of BEVFusion with CM3D pseudo-labels. Although distilling CM3D detec-
tions into BEVFusion-C performs considerably worse than BEVFusion-L + CM3D and BEVFusion
+ CM3D , we demonstrate that our shelf-supervised framework allows us to distill multi-modal
information from expensive RGB + LiDAR sensors into models trained with cheaper RGB-only
Sensors.

Training Data Method Modality mAP 1 NDS 1
Train Test
CM3D L+C L+C 23.0 22.1
0% BEVFusion-L [62] + CM3D L+C L 16.7 21.4
(Unsupervised) BEVFusion-C [63] + CM3D L+C C 11.7 16.1
BEVFusion [63] + CM3D L+C L+C 20.6 23.3

agnostic boxes and assigns the class Vehicle to all predictions. Therefore, it achieves 0 AP for
both Pedestrian and Cyclist. In contrast, CM3D explicitly predicts semantic classes using RGB
images. However, we find that our approach only achieves marginal improvement over SAM3D. We
attribute this to Waymo’s evaluation metric and sensor setup.

Unlike nuScenes, which uses a distance-based threshold to match predictions with ground truth
boxes when computing mAP, Waymo uses a stricter matching criteria based on 3D IoU with high
thresholds of 0.7 for Vehicle and 0.5 for other classes. Recall that our size estimates are from
ChatGPT and our orientation estimates are derived from an HD map. These imprecise estimates
significantly harm detection accuracy since high IoU between predictions and ground truth boxes
requires precise size and orientation. Furthermore, the Waymo Open Dataset does not include rear-
facing cameras, making it impossible for CM3D to predict bounding boxes behind the ego-vehicle.
As a result, we find that our method is heavily dependent on late-fusion with SAM3D, which is able
to correct the size and orientation of CM3D pseudo-labels, and generate predictions for parts of the
scene without RGB information.

We pre-train CenterPoint with our pseudo-labels for 30 epochs and fine-tune the model for 30
epochs. We find that pre-training with CM3D pseudo-labels consistently improves over random
initialization. However, we find that our method performs slightly worse than prior LiDAR-only
methods like PRC. We posit that the lack of RGB camera coverage for more than 50% of each
LiDAR sweep, and our reliance on SAM3D’s class-agnostic pseudo-labels significantly diminishes
the benefit of our proposed approach.
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I Limitations and Future Work

We propose a simple cross-modal detection distillation framework that leverages paired multi-modal
data and vision-language models to generate zero-shot 3D bounding boxes. We demonstrate that pre-
training 3D detectors with our zero-shot 3D bounding boxes yields strong semi-supervised detection
accuracy. We discuss several limitations of our approach below.

Limitation: Aligning Pre-Training and Fine-Tuning Task Limits Generalizability. Contrastive
learning has been widely adopted for self-supervised learning because it encodes task-agnostic rep-
resentations that can be used for diverse downstream applications. In contrast, our approach uses
prior knowledge about the downstream task to design a suitable pretext task. While this works
well when the pre-training and fine-tuning tasks are well aligned, it does not provide a significant
improvement when this is not the case. We evaluate the generalization of BEVFusion pre-trained
on CM3D pseudo-labels for BEV map segmentation. Surprisingly, our pre-training strategy per-
forms better at BEV map segmentation than random initialization! However, our method performs
slightly worse than other state-of-the-art self-supervised methods methods. This suggests that align-
ing our pre-training and fine-tuning task can provide significant improvements (cf. Table 1 in the
main paper) at the cost of generalizability to diverse tasks. Future work should explore different
shelf-supervised pretext tasks to improve semi-supervised accuracy for diverse tasks in low data
settings.

Limitation: Orientation Estimation Requires HD Maps. Our proposed approach uses lane direc-
tion from HD maps to estimate vehicle orientation. This heuristic does not work well when vehicles
are turning into an intersection, for non-vehicles, and when HD maps are unavailable. Instead,
future work should explore using multi-object trackers to generate heading estimates from consecu-
tive detections [40]. We posit that this can improve NDS, and can potentially eliminate the need for
self-training.

Limitation: Data Sampling Strategy. Although our semi-supervised experiments follow the sug-
gested protocol in [7, 50, 9] and sample K% of the training data uniformly from the entire training
set, this may be unrealistic in practice. Sampling training data uniformly artificially inflates the di-
versity of training samples and is more time consuming to annotate than sampling training data from
consecutive frames. Future work should explore the semi-supervised setting with data sampled from
consecutive frames.

Future Work: Distilling Multi-Modal 3D Psuedo-Labels to RGB-based 3D Detectors. We re-
purposed our shelf-supervised framework to learn RGB-only 3D detectors, allowing us to distill
multi-modal information from expensive RGB + LiDAR sensors into models trained with cheaper
RGB-only sensors. Future work should explore ways of improving cross modal detection distillation
of RGB + LiDAR into RGB-only models.

Future Work: Combining Pretext Tasks to Improve Performance. Since our pre-training ap-
proach is entirely disjoint contrastive pre-training methods, we hypothesize that our pre-training
setup can be used in tandem with such methods to make more accurate predictions and improve
results. This may provide a middle-ground between task-agnostic contrastive learning and task-
specific pseudo-label pre-training.

17



465

467
468
469

470
471
472
473
474

475
476
477
478

479
480
481

482
483
484

485

487
488

489
490
491

492

494
495

496
497
498

499
500

501
502
503

504
505
506
507

508
509
510

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 11621-11631,
2020.

P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon,
A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov. Scalability in perception for
autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hart-
nett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays. Argoverse 2: Next generation datasets for
self-driving perception and forecasting. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks (NeurlPS Datasets and Benchmarks 2021), 2021.

K. Vedder, N. Peri, N. Chodosh, 1. Khatri, E. Eaton, D. Jayaraman, Y. Liu, D. Ramanan, and
J. Hays. Zeroflow: Fast zero label scene flow via distillation. arXiv preprint arXiv:2305.10424,
2023.

W. Chen, A. Edgley, R. Hota, J. Liu, E. Schwartz, A. Yizar, N. Peri, and J. Purtilo. Re-
bound: An open-source 3d bounding box annotation tool for active learning. arXiv preprint
arXiv:2303.06250, 2023.

S. Xie, J. Gu, D. Guo, C. R. Qi, L. Guibas, and O. Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. In Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part Il 16, pages 574-591.
Springer, 2020.

J. Yin, D. Zhou, L. Zhang, J. Fang, C.-Z. Xu, J. Shen, and W. Wang. Proposalcontrast: Unsu-
pervised pre-training for lidar-based 3d object detection. In European Conference on Computer
Vision, pages 17-33. Springer, 2022.

Z.Li,Z. Chen, A. Li, L. Fang, Q. Jiang, X. Liu, J. Jiang, B. Zhou, and H. Zhao. Simipu: Simple
2d image and 3d point cloud unsupervised pre-training for spatial-aware visual representations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 1500—
1508, 2022.

J. Sun, H. Zheng, Q. Zhang, A. Prakash, Z. M. Mao, and C. Xiao. Calico: Self-supervised
camera-lidar contrastive pre-training for bev perception. arXiv preprint arXiv:2306.00349,
2023.

B. Wilson, Z. Kira, and J. Hays. 3d for free: Crossmodal transfer learning using hd maps.
arXiv preprint arXiv:2008.10592, 2020.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748-8763. PMLR, 2021.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,
B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new ap-
proach to self-supervised learning. Advances in neural information processing systems, 33:
21271-21284, 2020.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9729-9738, 2020.

18



511
512
513

514
515

516
517
518

519
520
521

522
523
524

529
530
531

532
533
534

535
536
537

538
539

541

542
543

544
545
546

547
548
549

550
551
552

553
554

[14] Z.Zhang, R. Girdhar, A. Joulin, and I. Misra. Self-supervised pretraining of 3d features on any
point-cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 10252-10263, 2021.

[15] X.Zhou, R. Girdhar, A. Joulin, P. Krdhenbiihl, and I. Misra. Detecting twenty-thousand classes
using image-level supervision. In ECCV, 2022.

[16] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. In International Conference on Machine
Learning, pages 12888-12900. PMLR, 2022.

[17] L. H. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L. Zhang, J.-
N. Hwang, et al. Grounded language-image pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10965-10975, 2022.

[18] S.Liu, Z.Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023.

[19] A. Madan, N. Peri, S. Kong, and D. Ramanan. Reyvisiting few-shot object detection with
vision-language models. arXiv preprint arXiv:2312.14494, 2023.

[20] A. Osep, T. Meinhardt, F. Ferroni, N. Peri, D. Ramanan, and L. Leal-Taixé. Better call sal:
Towards learning to segment anything in lidar. arXiv preprint arXiv:2403.13129, 2024.

[21] M. Najibi, J. Ji, Y. Zhou, C. R. Qi, X. Yan, S. Ettinger, and D. Anguelov. Unsupervised 3d
perception with 2d vision-language distillation for autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8602-8612, 2023.

[22] Y. Liu, L. Kong, J. Cen, R. Chen, W. Zhang, L. Pan, K. Chen, and Z. Liu. Segment any
point cloud sequences by distilling vision foundation models. Advances in Neural Information
Processing Systems, 36, 2024.

[23] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Motion-based detection and tracking
in 3d lidar scans. In 2016 IEEE international conference on robotics and automation (ICRA),
pages 4508-4513. IEEE, 2016.

[24] K. Wong, S. Wang, M. Ren, M. Liang, and R. Urtasun. Identifying unknown instances for
autonomous driving. In Conference on Robot Learning, pages 384-393. PMLR, 2020.

[25] L. Mclnnes, J. Healy, and S. Astels. hdbscan: Hierarchical density based clustering. The
Journal of Open Source Software, 2(11):205, 2017.

[26] J. Cen, P. Yun, J. Cai, M. Y. Wang, and M. Liu. Open-set 3d object detection. In 2021
International Conference on 3D Vision (3DV), pages 869-878. IEEE, 2021.

[27] H. Tian, Y. Chen, J. Dai, Z. Zhang, and X. Zhu. Unsupervised object detection with lidar clues.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5962-5972, 2021.

[28] A. Collet, S. S. Srinivasay, and M. Hebert. Structure discovery in multi-modal data: a region-
based approach. In 2011 IEEE International Conference on Robotics and Automation, pages
5695-5702. IEEE, 2011.

[29] G. M. Garcia, E. Potapova, T. Werner, M. Zillich, M. Vincze, and S. Frintrop. Saliency-
based object discovery on rgb-d data with a late-fusion approach. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1866—1873. IEEE, 2015.

[30] J. Shin, R. Triebel, and R. Siegwart. Unsupervised discovery of repetitive objects. In 2010
IEEE International Conference on Robotics and Automation, pages 5041-5046. IEEE, 2010.

19



555
556
557

558
559
560

561

563

564
565
566

567
568
569
570

571
572
573

574

576

577
578
579

580
581

582
583

584
585
586
587

588
589

590
591
592

593
594
595

596
597
598

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

L. Ma and G. Sibley. Unsupervised dense object discovery, detection, tracking and recon-
struction. In Computer Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part II 13, pages 80-95. Springer, 2014.

L. Ma, M. Ghafarianzadeh, D. Coleman, N. Correll, and G. Sibley. Simultaneous localization,
mapping, and manipulation for unsupervised object discovery. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1344-1351. IEEE, 2015.

D. Kochanov, A. OSep, J. Stiickler, and B. Leibe. Scene flow propagation for semantic mapping
and object discovery in dynamic street scenes. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1785-1792. IEEE, 2016.

S. Choudhary, A. J. Trevor, H. I. Christensen, and F. Dellaert. Slam with object discovery,
modeling and mapping. In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1018-1025. IEEE, 2014.

Y. You, K. Luo, C. P. Phoo, W.-L. Chao, W. Sun, B. Hariharan, M. Campbell, and K. Q.
Weinberger. Learning to detect mobile objects from lidar scans without labels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1130-1140,
2022.

E. Herbst, X. Ren, and D. Fox. Rgb-d object discovery via multi-scene analysis. In 2071
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4850-4856.
IEEE, 2011.

E. Herbst, P. Henry, X. Ren, and D. Fox. Toward object discovery and modeling via 3-d
scene comparison. In 2011 IEEE international conference on robotics and automation, pages
2623-2629. IEEE, 2011.

M. Najibi, J. Ji, Y. Zhou, C. R. Qi, X. Yan, S. Ettinger, and D. Anguelov. Motion inspired
unsupervised perception and prediction in autonomous driving. In European Conference on
Computer Vision, pages 424-443. Springer, 2022.

J. Seidenschwarz, A. OSep, F. Ferroni, S. Lucey, and L. Leal-Taixé. Semoli: What moves
together belongs together. arXiv preprint arXiv:2402.19463, 2024.

S. Baur, F. Moosmann, and A. Geiger. Liso: Lidar-only self-supervised 3d object detection.
arXiv preprint arXiv:2403.07071, 2024.

A. Sanghi. Info3d: Representation learning on 3d objects using mutual information maximiza-
tion and contrastive learning. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XXIX 16, pages 626-642. Springer,
2020.

J. Sauder and B. Sievers. Self-supervised deep learning on point clouds by reconstructing
space. Advances in Neural Information Processing Systems, 32, 2019.

O. Poursaeed, T. Jiang, H. Qiao, N. Xu, and V. G. Kim. Self-supervised learning of point
clouds via orientation estimation. In 2020 International Conference on 3D Vision (3DV), pages
1018-1028. IEEE, 2020.

J. Hou, B. Graham, M. NieBner, and S. Xie. Exploring data-efficient 3d scene understanding
with contrastive scene contexts. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15587-15597, 2021.

Z. Zhang, Y. Dong, Y. Liu, and L. Yi. Complete-to-partial 4d distillation for self-supervised
point cloud sequence representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 17661-17670, 2023.

20



599
600
601

602
603
604

605
606
607

608
609

610
611
612

613
614

615

617
618
619

620
621
622

623
624
625

626
627
628

629
630

631
632

633
634

635
636
637

638
639

640
641
642

[46] R. Chen, Y. Liu, L. Kong, X. Zhu, Y. Ma, Y. Li, Y. Hou, Y. Qiao, and W. Wang. Clip2scene:
Towards label-efficient 3d scene understanding by clip. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 7020-7030, 2023.

[47] J.Hou, S. Xie, B. Graham, A. Dai, and M. NieBner. Pri3d: Can 3d priors help 2d representation
learning? In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 5693-5702, 2021.

[48] S. Lal, M. Prabhudesai, I. Mediratta, A. W. Harley, and K. Fragkiadaki. Coconets: Contin-
uous contrastive 3d scene representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12487-12496, 2021.

[49] L. Li and M. Heizmann. A closer look at invariances in self-supervised pre-training for 3d
vision. In European Conference on Computer Vision, pages 656—673. Springer, 2022.

[50] X. Tian, H. Ran, Y. Wang, and H. Zhao. Geomae: Masked geometric target prediction for self-
supervised point cloud pre-training. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13570-13580, 2023.

[51] A.v.d.Oord,Y.Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[52] C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[53] S.Huang, Y. Xie, S.-C. Zhu, and Y. Zhu. Spatio-temporal self-supervised representation learn-
ing for 3d point clouds. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 6535-6545, 2021.

[54] C. Sautier, G. Puy, S. Gidaris, A. Boulch, A. Bursuc, and R. Marlet. Image-to-lidar self-
supervised distillation for autonomous driving data. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 9891-9901, 2022.

[55] A. Mahmoud, J. S. Hu, T. Kuai, A. Harakeh, L. Paull, and S. L. Waslander. Self-supervised
image-to-point distillation via semantically tolerant contrastive loss. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7102-7110, 2023.

[56] Y. Liu, L. Kong, J. Cen, R. Chen, W. Zhang, L. Pan, K. Chen, and Z. Liu. Segment any point
cloud sequences by distilling vision foundation models. arXiv preprint arXiv:2306.09347,
2023.

[57] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[58] J. Cen, Z. Zhou, J. Fang, W. Shen, L. Xie, D. Jiang, X. Zhang, Q. Tian, et al. Segment anything
in 3d with nerfs. Advances in Neural Information Processing Systems, 36, 2024.

[59] Q. Shen, X. Yang, and X. Wang. Anything-3d: Towards single-view anything reconstruction
in the wild. arXiv preprint arXiv:2304.10261, 2023.

[60] Y. Chen, J. Liu, X. Zhang, X. Qi, and J. Jia. Voxelnext: Fully sparse voxelnet for 3d object
detection and tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21674-21683, 2023.

[61] D. Zhang, D. Liang, H. Yang, Z. Zou, X. Ye, Z. Liu, and X. Bai. Sam3d: Zero-shot 3d object
detection via segment anything model. arXiv preprint arXiv:2306.02245, 2023.

[62] T. Yin, X. Zhou, and P. Krahenbuhl. Center-based 3d object detection and tracking. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11784—
11793, 2021.

21



643
644
645

647
648

649
650
651
652

653
654

655
656

658
659

660
661

662
663

664
665
666

667
668
669

670
671
672

673
674
675

676
677
678

[63] Z.Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, and S. Han. Bevfusion: Multi-task multi-
sensor fusion with unified bird’s-eye view representation. In IEEE International Conference
on Robotics and Automation (ICRA), 2023.

[64] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal loss for dense object detection.
In Proceedings of the IEEE international conference on computer vision, pages 2980-2988,
2017.

[65] T.-Y.Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision—-ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740—
755. Springer, 2014.

[66] Z. Chen, Z. Li, S. Zhang, L. Fang, Q. Jiang, and F. Zhao. Bevdistill: Cross-modal bev distilla-
tion for multi-view 3d object detection. arXiv preprint arXiv:2211.09386, 2022.

[67] T. Yin, X. Zhou, and P. Krihenbiihl. Multimodal virtual point 3d detection. Advances in Neural
Information Processing Systems, 34:16494—-16507, 2021.

[68] T. Wang, X. Zhu, J. Pang, and D. Lin. Fcos3d: Fully convolutional one-stage monocular
3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 913-922, 2021.

[69] N. Peri, A. Dave, D. Ramanan, and S. Kong. Towards long-tailed 3d detection. In Conference
on Robot Learning, pages 1904-1915. PMLR, 2023.

[70] Y. Ma, N. Peri, S. Wei, W. Hua, D. Ramanan, Y. Li, and S. Kong. Long-tailed 3d detection via
2d late fusion. arXiv preprint arXiv:2312.10986, 2023.

[71] D. Deng and A. Zakhor. Rsf: Optimizing rigid scene flow from 3d point clouds without
labels. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 1277-1286, January 2023.

[72] L. Zhang, A.J. Yang, Y. Xiong, S. Casas, B. Yang, M. Ren, and R. Urtasun. Towards unsuper-
vised object detection from lidar point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9317-9328, 2023.

[73] Y. Yan, Y. Mao, and B. Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10), 2018. ISSN 1424-8220. doi:10.3390/s18103337. URL https://www.mdpi.com/
1424-8220/18/10/3337.

[74] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel, E. D. Cubuk, A. Ku-
rakin, and C.-L. Li. Fixmatch: Simplifying semi-supervised learning with consistency and
confidence. Advances in neural information processing systems, 33:596-608, 2020.

[75] J. Yin, J. Fang, D. Zhou, L. Zhang, C.-Z. Xu, J. Shen, and W. Wang. Semi-supervised 3d
object detection with proficient teachers. In European Conference on Computer Vision, pages
727-743. Springer, 2022.

22


http://dx.doi.org/10.3390/s18103337
https://www.mdpi.com/1424-8220/18/10/3337
https://www.mdpi.com/1424-8220/18/10/3337
https://www.mdpi.com/1424-8220/18/10/3337

