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ABSTRACT

The progress of autonomous web navigation has been hindered by the depen-
dence on billions of exploratory interactions via online reinforcement learning,
and domain-specific model designs that make it difficult to leverage generaliza-
tion from rich out-of-domain data. In this work, we study data-driven offline
training for web agents with vision-language foundation models. We propose an
instruction-following multimodal agent, WebGUM, that observes both webpage
screenshots and HTML pages and outputs web navigation actions, such as click
and type. WebGUM is trained by jointly finetuning an instruction-finetuned lan-
guage model and a vision encoder with temporal and local perception on a large
corpus of demonstrations. We empirically demonstrate this recipe improves the
agent’s ability of grounded multimodal perception, HTML comprehension, and
multi-step reasoning, outperforming prior works by a significant margin. On the
MiniWoB, we improve over the previous best offline methods by more than 45.8%,
even outperforming online-finetuned SoTA, humans, and GPT-4-based agent. On
the WebShop benchmark, our 3-billion-parameter model achieves superior perfor-
mance to the existing SoTA, PaLM-540B. Furthermore, WebGUM exhibits strong
positive transfer to the real-world planning tasks on the Mind2Web. We also collect
347K high-quality demonstrations using our trained models, 38 times larger than
prior work, and make them available to promote future research in this direction.

1 INTRODUCTION

Web navigation is a class of sequential decision making problems where agents interact with web
interfaces following user instructions (Shi et al., 2017; Liu et al., 2018; Gur et al., 2019). Common web
navigation tasks include, for example, form filling (Diaz et al., 2013), information retrieval (Nogueira
& Cho, 2016; Adolphs et al., 2022), or sending emails via a sequence of interactions with computer
interface such as click or type (Figure 1). Recently, there has been a growing interest in developing
agents to automate these actions and free humans from repetitive interactions (Mazumder & Riva,
2020; Li et al., 2020; Shvo et al., 2021).

Most prior works studied web navigation problems as online RL to learn the optimal action distribution
with task-specific models from scratch (Liu et al., 2018; Gur et al., 2019; Jia et al., 2019; Humphreys
et al., 2022). However, online RL requires massive trials-and-errors and is often infeasible in
practice since the failure in web navigation would result in undesirable consequences; for instance,
wrong password may lead to account freeze, and sending email to the wrong person could be
problematic in a business scene. In contrast, offline training from the static dataset enables safe
development of web agents, but the performance has been sub-optimal compared to those online
RL counterparts (Humphreys et al., 2022; Gur et al., 2022). Furthermore, many of the prior works
was unable to leverage rich out-of-domain data for generalization, as they usually use specialized
models to explicitly handle the hierarchical structures of document object model (DOM) and their
dependencies, for example, with LSTM (Gur et al., 2019; 2021), self-attention (Liu et al., 2018), or
GNN (Jia et al., 2019). And many of them only output a fixed set of categorical actions (Humphreys
et al., 2022), which is unfavorable for truly open-ended web navigation in the real world.
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Figure 1: Example episode on MiniWoB++ (Shi et al., 2017; Liu et al., 2018) (email-inbox-forward-nl).
The agent clicks the email from the proper sender, and types the correct receiver to forward that email, to satisfy
the given instruction (e.g. Find Gisele’s email and forward it to Siana, please). WebGUM makes use of both
HTML and image screenshot information to adapt a pre-trained instruction-finetuned foundation model to solve
challenging web-based tasks.

Recently, foundation models (Bommasani et al., 2021), especially large language models
(LLM) (Brown et al., 2020; Chowdhery et al., 2022), have demonstrated superior performance
in commonsense, symbolic, arithmetic, and multi-step logical reasoning (Wei et al., 2022b;c; Kojima
et al., 2022). These models enable transformative generalization and are capable of solving wide
ranges of interactive decision making problems in the wild, including but not limited to task planning
in robotics (Huang et al., 2022a;b; Shah et al., 2022; Ahn et al., 2022), board game (Meta Fundamental
Al Research Diplomacy Team et al., 2022), web-based retrieval and browser crawling (Nakano et al.,
2021; Yao et al., 2022b; Zaheer et al., 2022).

In this work, we leverage pre-trained vision and language foundation models and introduce a
competitive offline learning recipe for autonomous web agents: First, we hypothesize that grounded
spatial understanding is important for web navigation (Humphreys et al., 2022; Toyama et al., 2021)
and thus enables our agent to observe both HTML and screenshots by combining a language model
and a ViT (Dosovitskiy et al., 2020), from semantically rich multimodal tokens that perceive local and
temporal information. Second, we observe that web navigation tasks are by nature instruction-
following and thus base the language model on an instruction-tuned LLM (Wei et al., 2022a;
Chung et al., 2022; Ouyang et al., 2022; Iyer et al., 2022) instead of self-supervisedly pre-trained
LLMs (Raffel et al., 2020; Brown et al., 2020) as in Gur et al. (2022). Third, we collect a large
multimodal corpus, with both HTML and screenshots, to finetune the language model and ViT
jointly. Fourth, our model outputs action in free-form text. These four key pieces together give
us a multimodal web agent, which we call Web navigation via Grounded Understanding Models
or WebGUM in short. As shown in Figure 1, our model takes in a command for a web-based task
via a natural language instruction (e.g., in an email client, Find Gisele’s email and forward it to
Siana, please.) and uses multimodal observations of the computer interface to complete the task via a
sequence of computer actions.

On MiniWoB++ (Shi et al., 2017; Liu et al., 2018), a simulated web navigation environment bench-
mark, WebGUM outperforms previous best offline approaches trained with HTML inputs (Gur et al.,
2022) by 45.8%, and even the best existing online RL approaches (Humphreys et al., 2022), despite
being trained fully offline with much fewer experiences. WebGUM also shows better performance
than humans and private-LLM-based agents (Kim et al., 2023; Sun et al., 2023). We perform extensive
ablations and analysis in Section 5 to demonstrate WebGUM'’s advantages in (1) temporal and local
multimodal perception, (2) dataset and model size scaling, (3) better HTML understanding,
and (4) ability of multi-step reasoning. WebGUM grounds vision and HTML understanding on
the computer interface, which is critical for solving multi-step tasks with dynamic page transitions
or tasks that require visual contexts, such as booking flights (+50%), shape recognition (+22%), or
crawling social media (+21%). Using instruction-finetuned language models (Chung et al., 2022),
compared to using vanilla models (Raffel et al., 2020), improves the success rate on MiniWoB++ by
25%, and is especially adept at handling the unknown composition of the tasks or out-of-distribution
HTML inputs synthesized with realistic perturbations. On the WebShop benchmark (Yao et al.,
2022a), we demonstrate that the capability of multi-step reasoning (Wei et al., 2022c¢) in language
models enables better performance than existing state-of-the-art few-shot PaALM-540B (Yao et al.,
2022b; Chowdhery et al., 2022), while our model only has 3 billion parameters. WebGUM exhibits
strong positive transfer to the real-world action prediction tasks on the Mind2Web while surpassing
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Figure 2: Overview of WebGUM, our multimodal encoder-decoder model. It takes screenshots, action history,
instruction, and HTML as inputs. Image observations are embedded to tokens via pre-trained vision transformer
(ViT) (Dosovitskiy et al., 2020). Visual tokens contain rich temporal information from recent H-step (H = 2)
and local information from 16 x 16-size patches. Multimodal language-image tokens are fed into pre-trained T5
encoder-decoder models (Raffel et al., 2020), and are jointly trained to predict executable actions in text formats.

GPT-4. Finally, we collect 347K multimodal expert demonstrations on MiniWoB++, 38 times larger
than the existing unimodal dataset (Liu et al., 2018), and make these publicly available for future
research . We believe that incorporating foundation models for efficient offline training is a scalable
approach towards real-world web automation where online interactions are prohibitively costly.

2 RELATED WORK

Web Navigation Among many proposed benchmarks for autonomous web navigation (Toyama
et al., 2021; Burns et al., 2022; Yao et al., 2022a), one of the most inclusive and representative
benchmark to test the capability of autonomous agents is MiniWoB++ (Shi et al., 2017; Liu et al.,
2018), which consists of a set of simulated websites with various user instructions from primitive
tasks to complex multi-step decision making tasks, such as sending emails or booking flights. Prior
works have tried to solve this benchmark using a variety of techniques; Liu et al. (2018) and Gur
et al. (2019; 2021) leverage the guidance during online RL from high-level workflow (Liu et al.,
2018) or curriculum learning (Gur et al., 2019; 2021), which should be, however, designed per task,
and then would not be scalable methods. Other approaches have employed supervised learning (SL)
with a large million-scale dataset and following RL-finetuning (Humphreys et al., 2022), or SL with
LLM-based agents (Gur et al., 2022). Offline SL agents often suffer from sub-optimal behavior, and
online RL with tremendous exploratory experiences has been critical for proficient navigation on
the web (Humphreys et al., 2022), which is, however, difficult to conduct in real websites as there is
typically no reward signal and interactions are prohibitively costly. As shown in Appendix I, many of
these approaches depend on task-specific hierarchical structures of DOM (Jia et al., 2019; He et al.,
2020), tailored architectures to encode their dependencies such as LSTM (Gur et al., 2019; 2021),
self-attention (Liu et al., 2018), or GNN (Jia et al., 2019), and task-dependent categorical output
space (Humphreys et al., 2022), which could not handle open-ended multi-task settings similar to
real world, or incorporate pre-trained models. In contrast, we remove such web-specific architectures
and convert web navigation into visual question-answering format (text, image — text), which allows
us to leverage pre-trained foundation models (Chung et al., 2022; Dosovitskiy et al., 2020) as rich
prior knowledge on the web, and then to learn the capable agents even with offline training.

Large Language Models for Web Navigation Concurrently, private-LLM-based agents, such as
InstructGPT (text-davinci-003) (Ouyang et al., 2022) and GPT-3.5-turbo, have achieved competitive
performance to RL-fintuned models and humans by leveraging a handful of few-shot demonstra-
tions with self-improvement (Kim et al., 2023), code generation (Sun et al., 2023), and structured
prompts (Zheng et al., 2023). In contrast, WebGUM focuses on multimodality and finetuning with
domain-specific data. With those, we show very competitive performance compared to PaLM-540B
with only 3 billion parameters. WebGUM can also handle long HTML observation tasks, such as
book-flight or choose-date-hard, where agents that rely on in-context few-shot learning
tend to run out of input tokens. In addition, our models do not requires ad-hoc prompt engineering.

1https ://console.cloud.google.com/storage/browser/gresearch/webllm
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Methods Modality Pre-trained Models Offline Dataset Success Rate
CC-Net (SL) DOM-+Image ResNet v 2400K 32.0%
WebN-T5 HTML T5-XL v 12K 48.4%

HTML+Image Flan-T5-Base,ViT-B16 v 2.8K 61.1%
WebGUM (Ours) HTML Flan-T5-XL v 401K 88.7%

HTML+Image Flan-T5-XL,ViT-B16 v 401K 94.2%
WGE DOM - X 12K+ 64.6%
CC-Net (SL+RL) DOM-+Image ResNet X 2400K+ 93.5%
Human - - - - 93.5%
RCI HTML GPT-3.5-turbo ICL ~0.1K 90.6%
AdaPlanner HTML text-davinci-003 ICL ~0.1K 92.9%
RCI HTML GPT-4 ICL ~0.1K 94.0%
Synapse HTML GPT-3.5-turbo ICL ~0.1K 98.5%

Table 1: Average success rate on MiniWoB++. We refer to Zheng et al. (2023) for the baseline performances. See
Appendix G for the detailed scores. WebGUM outperforms the previous finetuned-LLM with 3B parameters (Gur
et al., 2022), which is the best among offline methods, even with 2.8K dataset and Base-size model (310M pa-
rameters). Scaling dataset and model size, WebGUM beats the online RL-finetuned state-of-the-art (Humphreys
et al., 2022) despite fully offline training, and exceeds humans or LLM-based agents with GPT-4 (Kim et al.,
2023). “+” in Dataset column means extra billions of frames are required during the online RL phase.

In Appendix B, We discuss additional related works on multimodal large-scale models and foundation
models for decision making.

3 PRELIMINARIES

We formulate autonomous web navigation as a deterministic sequential decision making problem:;
composed of a state space S, action space 4, deterministic transition function 7' : § x A — S,
instruction space G, reward function (or episodic success criteria) r : S x G x A — {0,1}. At
each time step ¢, the agent follows a parameterized policy conditioned on previous states and actions
T:S8X - XSEXAX - x AxG — A, and transits to the next state: s;1+1 = T'(s¢, a;). This
Xt Xt
process continues until the agent reaches the terminal state (e.g. Submit button is clicked) or the
max time step is exceeded. An episode is treated as a success if given instruction g is satisfied (i.e.
r(s¢,g,a:) = 1), and as a failure if the agent takes a invalid action or reaches a wrong terminal state.

In autonomous web navigation, the state s; € S is a web page consisting of the raw HTML as a text
sequence and a screenshot as an image. Following prior works (Shi et al., 2017; Liu et al., 2018;
Gur et al., 2019; 2021), we assume the constraint action space: function (selector, text).
function is either click or type, selector is an integer index that can uniquely specify the
element, and text is a text input for type function.

Figure 1 presents an example episode of MiniWoB (Shi et al., 2017), which involves multi-step
decision making. To meet the given instruction, the agent clicks an email from the proper sender and
types the correct receiver to forward that email. MiniWoB also has primitive behavioral tasks such as
clicking buttons or entering texts. For the examples of WebShop (Yao et al., 2022a), see Appendix L.

4 WEBGUM

4.1 MULTIMODAL TRANSFORMER MODELS WITH TEMPORAL AND LOCAL PERCEPTION

In this work, we follow Gur et al. (2022) to use T5 (Raffel et al., 2020), an encoder-decoder
architecture, for HTML-based web navigation, as its bi-directional nature could be a good fit for the
tree structure of HTML and the architecture has been shown to scale well. We combine T5 with
a vision transformer (ViT) (Dosovitskiy et al., 2020) for multimodality as illustrated in Figure 2.
Specifically, we use the ViT to map image observations (screenshots) into image tokens. The ViT
is pre-trained on ImageNet-21K classification (Deng et al., 2009). The T5 encoder then consumes
both visual and HTML tokens in a unified manner, and the decoder predicts actions in text. See
Appendix C for more implementation details.
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Figure 3: (Left) Average success rate with white/random image inputs. The results imply that WebGUM
successfully leverages multimodal information from temporal and local perception tokens. (Right) Top-10
performance improvement among MiniWoB++ by adding image modality to HTML. We subtract the success rates
to compute absolute improvement: (SR of WebGUM (HTML+Image)) - (SR of WebGUM(HTML)).
Image modality is leveraged for multi-step tasks with dynamic page transitions or tasks that require visual
concept understanding (e.g. book—-flight or click-shape). See Appendix G and L for the details.

Encoding Temporal and Local Visual Tokens For language models to be aware of task temporal
information and local scene recognition, the encoder considers multimodal tokens extracted from
a history of patched screenshots (H = 2 steps). Temporal visual tokens contribute to predict
the consistent actions in a multi-step tasks. To better extract spatial and semantic information
across the local parts of websites, our ViT encodes one local token per patch rather than global
one per image (i.e. CLS-token). We divide an input image into 16 x 16 patches — giving a total of
14 x 14 (number of patches) x 2 (temporal window) = 392 visual tokens. We crop the screenshots
of MiniWoB++ to remove the yellow instruction part, and the image size becomes 160 x 160. We
pad cropped images with white pixels to fit them into 224 x 224; the default input size for ViT.

4.2 INSTRUCTION-FINETUNED LARGE LANGUAGE MODELS

We base our language model on Flan-T5 (Chung et al., 2022), an instruction-finetuned T5, as
opposed to using a vanilla pre-trained T5 as in Gur et al. (2022). Flan-TS5 is finetuned with large-
scale instruction-following format problems and chain-of-thought examples across a variety of
domains, including reasoning or programming. Considering that web navigation is inherently an
instruction-following task, we hypothesize that carefully trained instruction-finetuned models could
generalize well to enhance the alignment with user instruction and zero-shot reasoning in the web-
navigation, interactive decision making context. For the same reason, we also hypothesize that these
high-performing instruction-finetuned models enable better sample efficiency and downstream perfor-
mance, and thus are well-suited for offline learning. We further finetune the Flan-T5 language model
and the ViT vision encoder jointly (Figure 2) on a large corpus of instruction-following multimodal
web navigation data, which we describe in Section 4.3. In Section 5, we empirically demonstrate that
this instruction-finetuned recipe improves HTML comprehension, multi-step reasoning and decision
making significantly.

4.3 LARGE-SCALE DATA COLLECTION WITH LANGUAGE MODEL AGENTS

Recent successes of foundation models are largely powered by internet-scale data (Brown et al.,
2020; Radford et al., 2021; Chen et al., 2022; Wang et al., 2023). While large amount of data is
critical, for web navigation domain, there is only a small public dataset for MiniWoB++, consisting
of 12K episodes of human demonstration (Liu et al., 2018). Moreover, the dataset only consists of
DOM observations and lacks any visual features, which might limit the fine spatial perception of
the elements on the page. A large-scale multimodal dataset, including screenshots of websites, is
required to build a better navigation policy at scale.

To collect a huge amount of multimodal behavioral dataset on MiniWoB++, we leverage the finetuned-
LLM policy from Gur et al. (2022), instead of human demonstrators (Liu et al., 2018; Humphreys
et al., 2022). This significantly reduces the cost to construct a new dataset by leveraging the prior
success of autonomous agents. We first rollout a LLM policy with 100 episodes per task, which
results in a 2.8K successful episodes. Then, we finetune Flan-T5-XL models with this small dataset
and run those with 10,000 episodes per task. Lastly, we collect additional 54K demonstrations
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different dataset size (middle) and model architectures (right). In dataset and model size results, X-axis is a
logarithmic scale. (left) While the effects of various pre-trained ViT with different datasets or self-supervised
objectives are marginal, employing both temporal and local perception tokens is critical for the performance.
(middle & right) As for both HTML and multimodal models, we could observe the scaling effect: the larger
the dataset and model size are, the higher the success rates are. The results also prove that decoder-only
Flan-PalLM-8B is not as good as similar-size encoder-decoder models.

with Synapse (Zheng et al., 2023), a private-LLM-based agents with prompting, for the tasks where
the finetuned-LLM may not complete well. Such efforts result in a multi-task dataset with 401K
(347+54K) episodes including HTML and screenshots at each step. See Appendix F for more details.

5 RESULTS

We test our method on MiniWoB++ (Shi et al., 2017; Liu et al., 2018) with 100 evaluation episodes
per task, taking the average success rate over 56 tasks taken from Gur et al. (2022). Table 1 shows
that WebGUM, with a small 2.8K dataset and Base-size model (310M parameters), significantly
outperforms previous offline methods for web navigation (Humphreys et al., 2022; Gur et al., 2022).
While they used 2.4 million episodes or 3 billion parameters, WebGUM could improve the data
and parameter efficiency to achieve superior performance in offline regime, which is realized by
the problem simplification of web navigation in order to leverage temporal-local visual perception
and instruction-finetuned LLMs as strong inductive bias on web environments. In addition, scaling
dataset and model size, WebGUM achieves 94.2% success rate?, exceeding the previous best offline
model, WebN-T5 (Gur et al., 2022), by over 45.8% and even surpassing the online RL-finetuned
SoTA, CC-Net (Humphreys et al., 2022) (+0.7%), despite our fully offline training and much fewer
data. Moreover, WebGUM surpasses humans and recent LLM-based agents, such as RCI (Kim et al.,
2023) and AdaPlanner (Sun et al., 2023), even with GPT-4 (OpenAl, 2023). The per-task comparison
and error analysis (Appendix G, L) imply that there is room for improvement in complex reasoning
tasks requiring memory such as guess—-number.

In the following sections, we perform extensive and precise ablations of WebGUM to clearly identify
the source of improvement. Especially, we will demonstrate the contribution of (1) temporal and
local multimodal perception (Section 5.1), architectures and pre-trained models, and (2) dataset
and model size scaling (Section 5.2). We will also point out (3) better HTML comprehension
(Section 5.3) and (4) capability of multi-step reasoning (Section 5.4) from instruction-finetuned
LLMs. Furthermore, we prove that WebGUM can be transferable to the real-world tasks (Section 5.5).

5.1 TEMPORAL AND LOCAL VISUAL PERCEPTION FOR GROUNDED WEB NAVIGATION

To verify the importance of image modality, we design three ablations: (i) input replacement, (ii)
removing visual perception tokens, and (iii) employing different pre-trained ViT. We first replace
image observations with completely white images, and with randomly sampled MiniWoB++ screen-
shots taken in the initial states at test time. For visual token and pre-trained ViT ablations, we prepare
various pre-trained weights with ImageNet-21K (IN) + AugReg (Steiner et al., 2022), JFT-300M (Sun
etal., 2017), or JFT-3B (Zhai et al., 2022), and with self-supervised objectives such as CLIP (Radford
et al., 2021), MAE (He et al., 2021), or DINO (Caron et al., 2021), and then finetune Base-size
models as a proxy of larger-size models (Hoffmann et al., 2022) to reduce the computational costs.

2Videos are available at ht tps://sites.google.com/view/mm-webnav/
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Figure 5: (Left) Example of compositional evaluation on MiniWoB++. We combine two different tasks
(click-1link and click-button) into a single sequential task (c1ick-1link_click-button) at test
time (see Appendix H). (Right) Average success rate on 6 compositional MiniWoB tasks. WebGUM generalizes
combinational tasks better than Gur et al. (2022) and Zheng et al. (2023), a SOTA LLM-agent in MiniWoB++.
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Figure 6: (Left) Example of input perturbation for MiniWoB++ evaluation, taken from click-button. We
prepare three different types of perturbations at test time: adding extra HTML at the top of the original input
HTML (left) or at the bottom (middle), and adding task-irrelevant attributes in each element (right) such as
coordinate information (left, right, top, bottom). (Right) Average success rate of perturbation evaluation on
MiniWoB++. The results reveal that while all the methods are affected by input corruptions to some extent,
WebGUM, especially with multimodality, achieves significantly better performances than previous method.

In Figure 3 (left), the performance of the model with white images is comparable to the unimodal
model. Presumably because the model with randomly-taken images may accidentally contain the
images from the target task, WebGUM (random) slightly surpasses WebGUM (white). These results
prove WebGUM successfully obtains grounded vision and HTML understanding by leveraging
temporal and local fine perception. In the visual token ablation, Figure 4 (left) shows that combining
both temporal and local visual tokens (66.1%) improves the performance than temporal (64.2%)
or local tokens only (64.0%). Interestingly, the effects of different pre-trained ViT are marginal,
compared to visual tokens, which highlights our contribution on designing suitable architecture for
multimodal web navigation.

We also compare per-task performance gaps caused by adding vision modality to language models.
Figure 3 (right) presents top-10 absolute performance improvement, suggesting WebGUM leverages
visual inputs for multi-step tasks with dynamic page transitions (e.g. book—-flight; +50%) or
tasks requiring visual context understanding (e.g. click-shape; +22%) (see Appendix G and L).

5.2 SCALING EFFECT IN DATASET AND MODEL SIZE

In this section, we show the importance of scaling up the dataset and model size in WebGUM, similar
to the observations in the language and vision domain (Shoeybi et al., 2019; Kaplan et al., 2020; Rae
et al., 2021; Wei et al., 2022b; Chowdhery et al., 2022). To investigate data scaling, we prepare three
dataset: minimal 2.8K demonstrations, 347K demonstrations, and its 20%-size demonstrations (68K),
and then finetune Flan-T5-Base with them. Figure 4 (middle) proves that increasing dataset size leads
to the improvement of success rate. Because multimodal models benefit from the scaling more, the
larger dataset size might be more crucial in multimodal models, which also supports our attempts
to construct large-scale multimodal dataset for web navigation. Notably, Base-size WebGUM with
2.8K episodes already achieves 55.7%/66.1%, surpassing previous best SL models (49.8%/55.6% we
trained with 347K episodes). This surprising data efficiency comes from the sufficient inductive bias
and alignment with the user intentions in instruction-finetuned LLMs.

In addition to dataset size, Figure 4 (right) shows that the performance of WebGUM improves as
the number of parameters in T5 model increases from Base (220M) to XXL (11B). These results
also reveal that scaling the models might be more important than the dataset; the low-capacity
model may cap the performance at a lower level. In contrast, decoder-only Flan-PaLM-8B only
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achieves 72.8% success, comparable to WebGUM-Large (770M), which emphasizes the advantage
of encoder-decoder models in web navigation. See Appendix D for further details.

5.3 BETTER HTML COMPREHENSION FROM INSTRUCTION-FINETUNED LLMS

We have demonstrated that instruction-finetuned LLMs outperforms vanilla LLMs in web navigation.
To analyze the effect of instruction-finetuning more precisely, we here focus on the capability of
HTML understanding. Since instruction-finetuned LLMs perform well on many NLP tasks with
content comprehension (Chung et al., 2022; Iyer et al., 2022), web navigation should also benefit
from them. As a test bed for HTML comprehension, we investigate (1) generalization to unseen
compositions of known tasks, and (2) robustness to the realistic input perturbations, which are also
important challenges for the web agents to be deployed on the real-world internet. We also provide the
base language model comparison on a standard HTML comprehension benchmark, WebSRC (Chen
et al., 2021d) in Appendix E, where Flan-T5 achieves better EM/F1 scores than TS5 after finetuning.

For the compositional tasks, we pick up 4 c1ick-“something” (link, button, checkboxes, dialog)
tasks and make 6 combinations of these by naively stitching with 2 or 3 tasks (e.g. Figure 5). See
Appendix H for further details. The results show that WebGUM with HTML and image inputs
outperforms prior finetuned-LLM (Gur et al., 2022) and Synapse (Zheng et al., 2023), a SoTA LLM
agent in MiniWoB++, which implies WebGUM has obtained better reading skills for web navigation
and could transfer them to handle unseen HTML in compositional tasks robustly.

To test the robustness against input corruptions, we test three different realistic perturbations; adding
extra HTML at the top or bottom of the original HTML, and adding attributes of coordinates (left,
right, top, bottom; they are unrelated to solving the tasks) in each element of HTML at test time.
These perturbations often happen in the real world due to the renewal or API changes, not to mention
unknown websites, but rule-based pre-processing may not fully cover them. The results show that
while all the methods are affected by the input corruptions to some extent, WebGUM, with both
HTML and HTML plus image modalities, achieves significantly better performances than Gur et al.
(2022). Notably, WebGUM outperforms prior finetuned LLM (+ 56.2% in multimodal and +33.4%
in unimodal models) even when extra distracted attributes are added to HTML. They support our
hypothesis: instruction-finetuning imporves HTML comprehension in LL.Ms, which enables the
downstream agents to deal with out-of-distribution inputs or tasks robustly.

5.4 ABILITY OF MULTI-STEP REASONING AS A PRIOR FOR INTERACTIVE DECISION MAKING

Another notable feature in instruction-finetuned LLMs
is an ability of multi-step reasoning (Chung et al., 2022).

We hypothesize this reasoning capability would play an =~ _Methods Training Models Score _Success Rate
. . . . L Rule - - 45.6 9.6%
important role as a prior for interactive decision mak- ' SL BARLBERT 599 201%
ing. To decouple the evaluation of reasoning capability =~ IL+RL ~ SL+RL ~ BART.BERT 624 28.7%

. . h Act In-context PalLM-540B 62.3 30.1%
from visual page perception, HTML understanding, and ~ geact In-context PaLM-540B  66.6 40.0%
the benchmark simulator (MiniWoB++), we extensively ~ webN-Ts  sL T5-XL 61.0 29.8%
evaluate our WebGUM on WebShop (Yao et al., 2022a), _WebGuM St FlanTS-XL 675 45.0%

another online-shopping website simulator with a large Table 2: Average score and success rate on Web-
amount of real-world product data. Because it requires Shop (Yao et al., 2022a). WebGUM achieves
complex multi-step decisions considering previous con- 43.0% success, outperforming baseline methods
texts for item comparison, WebShop is suitable for in- including ReAct, a prompted PaLM-540B. We
vestigating the capability of multi-step reasoning from refer Yao etal. (2022b) for the baselines.
instruction-finetuned LLM in depth (Yao et al., 2022a;b). WebShop provides a user instruction that
describes the features of item (e.g. I need a long clip-in hair extension which is natural looking, and
price lower than 20.00 dollars). The agents should search, compare and choose a proper product
that matches the given instruction. The performance score is evaluated by the percentage of required
attributes covered by the chosen product, and if the product meets all the requirements, that episode
is labeled a success. See Appendix K for further details.

Table 2 shows that WebGUM achieves 45.0% success, significantly outperforming not only simple
baselines, such as supervised imitation learning (IL), IL plus RL-finetuing and WebN-T5 (by more
than 15%), but also recent prompt-based LLM agents, including ReAct (Yao et al., 2022b) (i.e.
PalLM-540B (Chowdhery et al., 2022) with one-shot prompt and reasoning annotations), while our
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Cross-Task Cross-Website Cross-Domain
Train Ele. Acc Op.F1 StepSR SR Ele.Acc Op.F1 StepSR SR Ele.Acc Op.F1 StepSR SR
GPT-4 ICL 41.6 60.6 362 20 358 511 30.1 2.0 37.1 46.5 264 20
MindAct-Large SL 53.4 75.7 503 7.1 39.2 67.1 353 1.1 39.7 67.2 373 27
MindAct-XL SL 55.1 757 520 52 42.0 65.2 389 5.1 42.1 66.5 39.6 29
WebGUM-Large (ours) SL 553 789 519 175 43.6 703 393 5.1 42.8 70.6 402 29
WebGUM-XL (ours) SL 57.2 80.3 537 85 453 70.9 416 52 439 722 414 32

Table 3: Action prediction evaluation in real-world Mind2Web dataset. We adopt the top-50 candidate generation
results and direct QA formulation by following Deng et al. (2023). WebGUM, transferred from MiniWoB,
demonstrates superior performance to MindAct and GPT-4 across task/website/domain generalization.

model only has 3 billion parameters. Due to the consistent reasoning and enhanced alignment with
user intentions, WebGUM could compare the products with backtracking, and choose proper options
(see Appendix L). Our results imply that ability of multi-step reasoning in Flan-T5 works as strong
and transferable prior knowledge for downstream decision making.

5.5 STRONG TRANSFER TO REAL-WORLD ACTION PREDICTION

Lastly, we demonstrate the applicability of WebGUM to real-world problems. We test WebGUM on
Mind2Web (Deng et al., 2023), a real-world demonstration dataset with about 2K instructions on 137
websites. In the action prediction tasks, we transfer WebGUM finetuned for MiniWoB++ with 401K
dataset into real-world Mind2Web by further finetuning with the training set. WebGUM takes top-50
relevant HTML snippet candidates, instructions, and action history as inputs and outputs next actions
by predicting the element id, operations (e.g. click, type), and values. Table 3 reveals that WebGUM,
transferred from MiniWoB, achieves superior performance to MindAct-Large/XL and even GPT-4 in
all the categories (cross-task/website/domain). Because both MindAct and WebGUM are based on
Flan-T5, these results support that WebGUM exhibits strong positive transfer to real-world tasks.

6 DISCUSSION AND LIMITATION

Throughout the paper, we present an effective and practical methodology to simplify web navigation
into offline training in order to leverage the inductive bias of web environments in instruction-finetuned
LLMs. While WebGUM exhibits positive transferability to real-world problems in Mind2Web, we
leave it as future work to scale multimodal foundation models into the deployment for real-world
web navigation (Gur et al., 2023).

We collect and release a multimodal expert dataset with 347K episodes on MiniWoB++. However,
this is still far from internet-scale dataset that is necessary for generalist models. Collecting behavioral
data at scale by iterative data-collection and deployment (Ghosh et al., 2021; Matsushima et al.,
2021; Li et al., 2022a) might be a key for practical interactive agents. Since our approach — taking
raw HTML and screenshots as inputs and predicting parsable actions in text — only has minimal
assumptions which constraint model architectures, it might be applicable to any advanced LLMs
or open-ended situations. While WebGUM could deal with out-of-distribution compositional and
perturbed tasks in a robust manner, human-level broader generalization to the diverse real websites or
instructions is still a hard problem to be resolved.

7 CONCLUSION

We develop Web navigation via Grounded Understanding Models (WebGUM), learning an instruction-
following visual language foundation model for web navigation. WebGUM significantly improves
the success rate on MiniWoB, compared to previous offline-trained SoTA from 48.4% to 94.2%.
Our detailed ablations show that temporal and local visual tokens capture dynamic transition and
visual context of the page, and that instruction-finetuned language models significantly improves
web navigation performance due to the better HTML comprehension and capability of multi-step
reasoning. Multi-step reasoning enables more robust generalization to out-of-distribution tasks,
and outperforms PaLM-540B in WebShop. WebGUM also demonstrates strong positive transfer to
real-world action prediction tasks in Mind2Web. Furthermore, we scale the existing MiniWoB dataset
into multimodal 347K expert demonstrations, about 38 times larger than before. We believe that our
work is an significant step towards building more capable and scalable models for autonomous web
navigation.
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APPENDIX

A BROADER IMPACTS

While WebGUM is evaluated only in realistic web simulators (Shi et al., 2017; Liu et al., 2018;
Yao et al., 2022a), we should carefully conduct it if we deploy the autonomous web agent on the
real-world Internet because of security and safety reasons. For instance, the wrong password may
cause an account freeze, and emailing the wrong person is problematic in a business scene. Training
with online RL may often be infeasible for this reason, while we demonstrate an alternative approach;
data-driven, fully offline training by leveraging inductive bias in foundation models. Autonomous
agents, well-grounded with the user’s intention, should be helpful in our daily lives by reducing our
burden on computer tasks. Because a part of our training corpus (54K) includes the demonstrations
taken from the output of LLMs (Anil et al., 2023), we will exclude those from the dataset release and
it will result in 347K episodes.

B EXTENDED RELATED WORKS

Foundation Models for Decision Making Recently, the ability of multi-step reasoning and inductive
bias in foundation models have been leveraged to solve text-based interactive tasks via sequential
decisions considering few-shot in-context examples (Ahn et al., 2022; Huang et al., 2022a;b; Zeng
et al., 2022; Yao et al., 2022b; Meta Fundamental Al Research Diplomacy Team et al., 2022). Even
in continuous control (Chen et al., 2021a; Janner et al., 2021; Furuta et al., 2022b; Brohan et al.,
2022) or computer games (Reed et al., 2022; Lee et al., 2022b; Fan et al., 2022), high-capacity
transformer models are trained with a large amount of diverse dataset via multi-task behavioral
distillation (Chen et al., 2021c; Gu et al., 2021a; DeepMind Interactive Agents Team et al., 2021;
Furuta et al., 2022a; Shridhar et al., 2022; Jiang et al., 2022). To build autonomous web navigation
agents, we also leverage pre-trained LLM (Raffel et al., 2020; Chung et al., 2022), by finetuning with
massively-curated multimodal demonstrations, and we point out that the better content comprehension
and multi-step reasoning abilities, obtained through instruction-finetuning of LLM (Chung et al.,
2022), are essential for the notable performance on downstream decision making aligned with human
instructions.

Multimodal Large-scale Models Large language models have demonstrated extraordinary emer-
gent abilities on a variety of NLP tasks, such as commonsense question answering, arithmetic, logical
reasoning, open-ended text generation (Radford et al., 2019; Brown et al., 2020; Chowdhery et al.,
2022; Wei et al., 2022b; Tay et al., 2022), or code completion (Chen et al., 2021b; Austin et al.,
2021; Li et al., 2022b). In addition, some works have investigated vision-and-language understanding
to improve the accuracy of common vision-based tasks such as open-ended image/object classifi-
cation (Radford et al., 2021; Gu et al., 2021b; Kamath et al., 2021), image captioning, or visual
question-answering (Lu et al., 2022; Alayrac et al., 2022; Chen et al., 2022; Reed et al., 2022; Liu
et al., 2023; Dai et al., 2023; Li et al., 2023). Several works also have tackled document understanding
with (multimodal) transformer models (Xu et al., 2019; Li et al., 2021a;c; Appalaraju et al., 2021;
Tang et al., 2022; Wang et al., 2022a;b), including markup languages such as HTML (Aghajanyan
et al., 2021; 2022; Li et al., 2021b; Lee et al., 2022a) for summarization of the documents or question
answering on the contents. Despite the great efforts on document understanding, these works are
less connected to interactive decision making problems. Our model obtains not only a grounded
understanding of websites in a multimodal manner but also the ability to decide the optimal actions
to achieve given instructions in web navigation, helping multi-step decisions and visual context
understanding.

C IMPLEMENTATION DETAILS

We adopt the encoder-decoder models proposed by Raffel et al. (2020) as multimodal transformers,
and vision transformer (Dosovitskiy et al., 2020) pre-trained with ImageNet-21K (Deng et al., 2009)
as an image encoder for the visual tokens®. We especially use ViT-B16, a small-size transformer
with 86 million parameters, which divides an input image into 16 x 16-size patches. We use publicly

*https://github.com/google-research/scenic
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available checkpoints of T5 (Raffel et al., 2020)*, Flan-T5 (Chung et al., 2022)°, and T5-XL finetuned
with MiniWoB++ demonstrations (Gur et al., 2022)° for the experiments. To construct the training
pipeline, we leverage SeqlO (Roberts et al., 2022) library, and use SentencePiece (Kudo & Richardson,
2018) vocabulary with 32K tokens from C4 dataset (Raffel et al., 2020) for text tokenization. The
batch size for training is 128, and input sequence length is set to 4096 tokens. Due to the huge
computational requirements, we run one seed to train each model throughout the paper (Humphreys
et al., 2022; Gur et al., 2022). We use cloud TPU-v4, which has a 32 GiB HBM memory space for
the experiments. Base-size models require 256 cores and XL-size models do 512 cores, which takes
1-2 days for finetuning.

D DETAILS ON DATASET AND MODEL SIZE SCALING

We here present how critical it is to scale up the dataset and model size in WebGUM. For the dataset
size ablation, we use Flan-T5-Base and ViT-B16. As for both HTML and multimodal models, we
could observe the scaling effects in web navigation: the larger the dataset (Table 4) and model
(Table 5) size are, the higher the success rates are. Surprisingly, our approach even with only 2.8K
HTML episodes (about 25% of the previous one curated by Liu et al. (2018)) and Base-size model
(about 7.3% parameters) already achieves 55.7%, surpassing previous SL state-of-the-art (48.4%
by Gur et al. (2022)). This surprising efficiency might come from the sufficient inductive bias and
alignment with the user intentions in instruction-finetuned LLMs, and WebGUM could fully leverage
them for web automation problems. The margin of improvement might be smaller than expected
due to the limited capacity of transformer to obtain the grounded understanding of natural language
instructions, HTML, and screenshots. In fact, the results also reveal that scaling the models might be
more important than the dataset; the low-capacity model may cap the performance at a lower level.

Pre-Trained Models Modality Dataset  Success Rate
T5-XL (Gur et al., 2022) HTML 12K 48.4%
T5-XL HTML 347K 49.8%
Flan-T5-Base HTML 2.8K 55.7%
Flan-T5-Base HTML 68K 56.3%
Flan-T5-Base HTML 347K 57.2%
Flan-T5-Base, ViT-B16 HTML+Image 2.8K 61.1%
Flan-T5-Base, ViT-B16 HTML+Image 68K 62.3%
Flan-T5-Base, ViT-B16 HTML+Image 347K 66.1%

Table 4: Average success rate of WebGUM with different dataset sizes. We observe the larger the dataset size is,
the higher the success rate is. Surprisingly, our approach outperforms previous state-of-the-art by over 7.3%
even with 2.8K-episode dataset (about 25% of the previous dataset curated by Liu et al. (2018)).

Pre-Trained Models # of Params Modality Success Rate
Flan-T5-Base 220M HTML 57.2%
Flan-T5-Large 770M  HTML 72.4%
Flan-T5-XL 3B HTML 75.5%
Flan-T5-XXL 11B HTML 79.0%
Flan-T5-Base, ViT-B16 310M  HTML+Image 66.1%
Flan-T5-Large, ViT-B16 860M  HTML+Image 77.4%
Flan-T5-XL, ViT-B16 3B HTML+Image 80.3%

Table 5: Average success rate of WebGUM with different model sizes. As for both HTML-only and multimodal
models, we could observe the performance increases as the model size does.

*nttps://github.com/google-research/t5x/blob/main/docs/models . md#
t5-11-checkpoints

Shttps://github.com/google-research/t5x/blob/main/docs/models . md#
flan-t5-checkpoints

*https://console.cloud.google.com/storage/browser/gresearch/webllm/
webn_t5_3b
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E WEBSRC

We extensively evaluate the capability of HTML comprehension in instruction-finetuned LLMs
with WebSRC (Chen et al., 2021d) where the models are asked to solve contextual QA problems
understanding a given HTML and its structure. Those problems are curated from real websites to
include key-value extraction, entity comparison, and table understanding problems. The answer
formats are either text span in HTML or binary (yes/no). Because the context length is insufficient
for raw HTML, we preprocess context HTML by extracting a snippet that includes the answers in
advance. We finetune both T5-XL and Flan-T5-XL with the training dataset. Table 6 shows that
Flan-T5 records better HTML comprehension performance than TS, which may accelerates the web
navigation performance on MiniWoB++ and Mind2Web.

Models EM F1

T5-XL 63.85 71.44
Flan-T5-XL 6891 78.48

Table 6: Base language model performance in WebSRC (Chen et al., 2021d). We finetune both TS and Flan-T5
with trainng dataset. Flan-T5 achieves better performance in HTML comprehension than T5.

F DATASET DETAILS

To construct a large-scale multimodal behavioral dataset on MiniWoB++, we leverage a public
finetuned-LLM policy (Gur et al., 2022) trained with multi-task human demonstration dataset (Liu
etal., 2018)” as a demonstrator. We run such LLM policies with 10,000 episodes per task and only
keep successful trajectories to maintain the quality of dataset, following Humphreys et al. (2022).
Lastly, we collect additional 54K demonstrations with Synapse (Zheng et al., 2023)8, a private-LLM-
based agents with prompting, for the tasks where finetuned-LLLM may not complete well such as
click-scroll-1list and enter-time, and also write a scripted policy for book-flight.
We use PaLM 2 (Anil et al., 2023) as a base LLM for Synapse. Such efforts result in a multi-task
dataset with 401K (347K+54K) episodes including HTML and screenshots at each time step. Table 7
shows the details of our multimodal dataset (347K), consisting of HTML, screenshots, actions, and
instructions at each time step.

"https://github.com/stanfordnlp/miniwob-plusplus—demos
$https://github.com/ltzheng/synapse
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Task \ # of episodes  # of steps  Ratio (episode)
book-flight 9999 90177 2.88%
choose-date 383 1508 0.11%
choose-date-easy 3353 12946 0.97%
choose-date-medium 2222 8733 0.64%
choose-list 1861 3724 0.54%
click-button 9782 9909 2.82%
click-button-sequence 10000 20000 2.88%
click-checkboxes 9761 28904 2.81%
click-checkboxes-large 1962 19072 0.57%
click-checkboxes-soft 9228 36384 2.66%
click-checkboxes-transfer 10000 59793 2.88%
click-collapsible 5947 13077 1.71%
click-collapsible-2 2199 5627 0.63%
click-color 2554 2554 0.74%
click-dialog 10000 10000 2.88%
click-dialog-2 3285 3285 0.95%
click-link 9961 9961 2.87%
click-menu 3238 3243 0.93%
click-option 9998 20000 2.88%
click-pie 3724 8548 1.07%
click-scroll-list 0 0 0.00%
click-shades 0 0 0.00%
click-shape 6116 6117 1.76%
click-tab 9978 13177 2.88%
click-tab-2 1844 2109 0.53%
click-tab-2-hard 1574 1916 0.45%
click-test 10000 10000 2.88%
click-test-2 10000 10000 2.88%
click-widget 9963 9963 2.87%
count-shape 5849 5893 1.69%
email-inbox 5159 14258 1.49%
email-inbox-forward-nl 9995 39980 2.88%
email-inbox-forward-nl-turk 4900 20165 1.41%
email-inbox-nl-turk 4346 11416 1.25%
enter-date 10000 20000 2.88%
enter-password 9980 29940 2.88%
enter-text 10000 20000 2.88%
enter-text-dynamic 9983 19966 2.88%
enter-time 0 0 0.00%
focus-text 10000 10000 2.88%
focus-text-2 10000 10000 2.88%
grid-coordinate 8353 8353 2.41%
guess-number 1021 2042 0.29%
identify-shape 9007 9010 2.60%
login-user 9793 29379 2.82%
login-user-popup 9786 39170 2.82%
multi-layouts 10000 40000 2.88%
multi-orderings 10000 40000 2.88%
navigate-tree 9864 15140 2.84%
search-engine 8872 35095 2.56%
social-media 2631 4407 0.76&
social-media-all 95 208 0.03%
social-media-some 319 893 0.09&
tic-tac-toe 3947 13773 1.14%
use-autocomplete 3465 6930 1.00%
use-spinner 530 532 0.15%
Total \ 346827 867277 100%

Table 7: Details of our multimodal dataset. It contains about 347K episodes in total.
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G PER-TASK PERFORMANCE OF MINIWOB++

In this section, we present per-task success rate on MiniWoB++ (Table 8) and absolute performance
improvement by adding image modality to HTML input for WebGUM (Figure 7).

As for Table 8, we refer to Gur et al. (2022) and Zheng et al. (2023) for the baseline performances.
We use 56 tasks as benchmark, while removing some duplicated tasks (e.g. “-nodelay” tasks) from
62 tasks adopted in Gur et al. (2022). During the evaluation on MiniWoB++, we ignore the time limit
due to the computational constraints.

Figure 7 presents full results of the absolute performance improvement, subtracting the
success rates: (Success Rate of WebGUM (HTML+Image)) - (Success Rate of
WebGUM (HTML) ) . The results suggest WebGUM leverages visual inputs for multi-step tasks with
dynamic page transitions (e.g. book-flight or search-engine) or the tasks that require
global contexts of the page (e.g. tic—tac—toe or click—-shape). See Appendix L for the
visualization.
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Figure 7: Performance improvement by adding image modality to HTML on 56 tasks from MiniWoB++. We
subtract the success rates: (Success Rate of WebGUM (HTML+Image)) - (Success Rate of
WebGUM (HTML) ) .

Task Synapse Human  AdaPlanner RCI RCI CC- CC- WGE ‘WebN- WebGUM WebGUM
(GPT- Net Net TS5 (HTML)
4) (SL)

bisect-angle n/a 0.92 n/a n/a n/a 0.97 0.29 n/a n/a n/a n/a
book-flight 0.76 0.87 n/a n/a n/a 0.87 0.00 0.00 0.00 0.48 0.98
chase-circle n/a 0.82 n/a n/a n/a 0.93 0.80 n/a n/a n/a n/a
choose-date 1.00 0.97 n/a n/a n/a 0.97 0.12 0.00 0.00 0.98 1.00
choose-date-easy n/a 0.99 n/a n/a n/a 0.99 0.42 n/a 0.03 0.95 1.00
choose-date-medium n/a 0.98 n/a n/a n/a 0.99 0.26 n/a 0.00 0.94 1.00
choose-list 1.00 0.98 1.00 1.00 1.00 0.99 0.19 0.16 0.26 0.24 1.00
circle-center n/a 0.96 n/a n/a n/a 0.97 0.36 n/a n/a n/a n/a
click-button 1.00 0.98 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 1.00
click-button-sequence 1.00 0.94 1.00 1.00 1.00 1.00 0.47 0.99 1.00 1.00 1.00
click-checkboxes 1.00 0.97 1.00 1.00 1.00 0.98 0.32 0.98 0.96 1.00 1.00
click-checkboxes-large 1.00 0.87 1.00 0.94 0.94 0.71 0.00 0.68 0.22 0.97 0.99
click-checkboxes-soft 1.00 0.73 0.80 0.72 0.96 0.95 0.04 0.51 0.54 1.00 1.00
click-checkboxes-transfer 1.00 0.98 0.98 1.00 1.00 0.99 0.36 0.64 0.63 1.00 1.00
click-collapsible 1.00 0.99 1.00 1.00 1.00 1.00 0.81 1.00 0.00 1.00 1.00
click-collapsible-2 0.96 0.97 0.84 0.62 1.00 0.98 0.17 0.65 0.00 0.94 0.95
click-color 1.00 0.97 1.00 1.00 1.00 1.00 0.82 1.00 0.27 1.00 1.00
click-dialog 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
click-dialog-2 1.00 0.99 1.00 1.00 1.00 1.00 0.88 1.00 0.24 1.00 1.00
click-link 1.00 0.99 0.98 1.00 1.00 0.99 0.59 1.00 1.00 1.00 1.00
click-menu 1.00 0.97 0.78 1.00 1.00 0.94 0.22 n/a 0.37 0.99 0.97
click-menu-2 n/a 0.98 n/a n/a n/a 0.83 0.52 n/a n/a n/a n/a
click-option 1.00 0.99 1.00 1.00 1.00 0.99 0.21 1.00 0.87 1.00 1.00
click-pie 1.00 0.98 n/a n/a n/a 0.97 0.15 0.32 0.51 0.99 0.99
click-scroll-list 1.00 0.91 1.00 1.00 1.00 0.60 0.01 n/a 0.00 1.00 1.00
click-shades 1.00 091 1.00 1.00 1.00 1.00 0.04 0.22 0.00 0.05 1.00
click-shape 0.96 0.88 0.75 0.98 0.98 0.95 0.11 0.64 0.53 0.72 0.94
click-tab 1.00 0.99 1.00 1.00 1.00 1.00 0.95 0.55 0.74 1.00 1.00
click-tab-2 0.94 0.97 0.85 0.74 1.00 0.98 0.27 0.64 0.18 0.95 0.99
click-tab-2-easy n/a 0.99 n/a n/a n/a 0.99 0.61 n/a n/a n/a n/a
click-tab-2-hard 0.96 0.96 0.78 0.76 0.98 0.98 0.19 n/a 0.12 0.95 0.95
click-tab-2-medium n/a 0.97 n/a n/a n/a 0.99 0.54 n/a n/a n/a n/a
click-test 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-test-2 1.00 0.99 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00
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click-test-transfer n/a 0.99 n/a n/a n/a 1.00 0.94 n/a n/a n/a n/a
click-widget 1.00 0.83 1.00 0.98 0.98 1.00 0.56 0.93 1.00 1.00 1.00
copy-paste 1.00 0.94 n/a n/a n/a 0.79 0.04 n/a n/a n/a n/a
copy-paste-2 1.00 0.94 n/a n/a n/a 0.63 0.01 n/a n/a n/a n/a
count-shape 0.78 0.82 0.50 0.40 0.4 0.85 0.21 0.59 0.41 0.64 0.68
count-sides n/a 0.98 n/a n/a n/a 1.00 0.74 n/a n/a n/a n/a
drag-box n/a 0.99 n/a n/a n/a 1.00 0.61 n/a n/a n/a n/a
drag-cube n/a 0.99 n/a n/a n/a 0.79 023 n/a n/a n/a n/a
drag-item n/a 0.98 n/a n/a n/a 1.00 0.61 n/a n/a n/a n/a
drag-items n/a 0.93 n/a n/a n/a 0.99 0.13 n/a n/a n/a n/a
drag-items-grid n/a 0.87 n/a n/a n/a 0.98 0.05 n/a n/a n/a n/a
drag-shapes n/a 0.96 n/a n/a n/a 0.99 0.26 n/a n/a n/a n/a
drag-sort-numbers n/a 0.92 n/a n/a n/a 0.97 0.11 n/a n/a n/a n/a
email-inbox 1.00 0.96 0.98 0.98 0.98 1.00 0.09 0.43 0.38 0.99 1.00
email-inbox-delete n/a 0.99 n/a n/a n/a 1.00 0.22 n/a n/a n/a n/a
email-inbox-forward n/a 0.96 n/a n/a n/a 1.00 0.01 n/a n/a n/a n/a
email-inbox-forward-nl 1.00 0.91 1.00 1.00 1.00 1.00 0.00 n/a 0.60 1.00 1.00
email-inbox-forward-nl-turk 1.00 0.88 1.00 0.94 0.94 1.00 0.00 n/a 0.33 1.00 1.00
email-inbox-important n/a 0.99 n/a n/a n/a 1.00 0.30 n/a n/a n/a n/a
email-inbox-nl-turk 1.00 0.93 0.90 0.98 0.98 1.00 0.05 0.77 0.23 0.99 1.00
email-inbox-noscroll n/a 0.96 n/a n/a n/a 1.00 0.13 n/a n/a n/a
email-inbox-reply n/a 0.91 n/a n/a n/a 1.00 0.00 n/a n/a n/a n/a
email-inbox-star-reply n/a 0.95 n/a n/a n/a 1.00 0.11 n/a n/a n/a n/a
enter-date 1.00 0.97 1.00 0.96 0.96 1.00 0.02 0.00 0.00 1.00 1.00
enter-password 1.00 0.96 0.98 1.00 1.00 1.00 0.02 0.99 0.97 1.00 1.00
enter-text 1.00 0.98 0.98 1.00 1.00 1.00 0.35 1.00 0.89 1.00 1.00
enter-text-2 n/a 091 n/a n/a n/a 0.98 0.04 n/a n/a n/a n/a
enter-text-dynamic 1.00 0.97 0.96 1.00 1.00 1.00 0.39 1.00 0.98 1.00 1.00
enter-time 0.98 0.98 0.96 1.00 1.00 0.97 0.04 0.52 0.00 1.00 1.00
find-midpoint n/a 0.94 n/a n/a n/a 0.97 0.35 n/a n/a n/a n/a
find-word 0.84 0.96 n/a n/a n/a 0.88 0.05 n/a n/a n/a n/a
focus-text 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
focus-text-2 1.00 0.99 0.94 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00
grid-coordinate 1.00 0.87 1.00 1.00 1.00 1.00 0.66 1.00 0.49 1.00 1.00
guess-number 1.00 0.99 0.88 0.20 0.20 1.00 0.21 0.00 0.00 0.34 0.43
highlight-text n/a 0.97 n/a n/a n/a 1.00 0.51 n/a n/a n/a n/a
highlight-text-2 n/a 0.97 n/a n/a n/a 1.00 0.40 n/a n/a n/a n/a
identify-shape 1.00 0.98 0.96 0.76 1.0 1.00 0.68 0.90 0.88 0.90 1.00
login-user 1.00 0.96 1.00 1.00 1.0 1.00 0.00 0.99 0.82 1.00 1.00
login-user-popup 1.00 0.94 0.98 0.68 0.68 1.00 0.02 n/a 0.72 0.99 1.00
moving-items n/a 0.18 n/a n/a n/a 0.88 0.13 n/a n/a n/a n/a
multi-layouts 0.94 0.95 0.84 0.72 0.96 1.00 0.00 0.99 0.83 1.00 1.00
multi-orderings 1.00 0.96 1.00 1.00 1.00 1.00 0.00 0.99 0.88 1.00 1.00
navigate-tree 0.96 0.98 0.82 0.86 1.00 0.99 0.32 0.99 0.91 1.00 1.00
number-checkboxes n/a 0.96 n/a n/a n/a 0.99 0.00 n/a n/a n/a n/a
read-table 1.00 0.97 n/a n/a n/a 0.97 0.01 n/a n/a n/a n/a
read-table-2 n/a 0.95 n/a n/a n/a 0.94 0.00 n/a n/a n/a n/a
resize-textarea n/a 0.94 n/a n/a n/a 1.00 0.27 n/a n/a n/a n/a
right-angle n/a 0.87 n/a n/a n/a 0.98 0.26 n/a n/a n/a n/a
scroll-text n/a 0.97 n/a n/a n/a 0.96 0.04 n/a n/a n/a n/a
scroll-text-2 n/a 0.97 n/a n/a n/a 1.00 0.88 n/a n/a n/a n/a
search-engine 1.00 0.97 1.00 1.00 1.00 1.00 0.15 0.26 0.34 0.91 0.96
simon-says n/a 0.62 n/a n/a n/a 0.00 0.02 n/a n/a n/a n/a
simple-algebra 1.00 0.86 0.82 1.00 1.00 0.75 0.03 n/a n/a n/a n/a
simple-arithmetic 1.00 0.96 n/a n/a 1.00 0.86 0.38 n/a n/a n/a n/a
social-media 1.00 0.96 0.82 0.98 0.98 0.90 0.03 0.39 0.21 1.00 1.00
social-media-all 1.00 0.89 1.00 1.00 1.00 0.75 0.00 0.01 0.00 0.31 0.52
social-media-some 1.00 091 0.90 0.90 0.96 0.85 0.01 0.01 0.02 0.89 0.73
terminal 0.98 0.88 0.98 1.00 1.00 0.00 0.00 n/a n/a n/a n/a
text-editor n/a 0.88 n/a n/a n/a 0.98 0.11 n/a n/a n/a n/a
text-transform 1.00 0.86 n/a 0.80 0.80 0.60 0.19 n/a n/a n/a n/a
tic-tac-toe 1.00 0.71 0.48 0.56 0.56 0.83 0.32 0.37 0.48 0.50 0.56
unicode-test 1.00 0.99 n/a n/a n/a 1.00 0.86 n/a n/a n/a n/a
use-autocomplete 0.98 0.98 0.88 0.58 0.58 1.00 0.07 0.78 0.22 1.00 0.98
use-colorwheel n/a 0.90 n/a n/a n/a 0.98 0.68 n/a n/a n/a n/a
use-colorwheel-2 n/a 0.94 n/a n/a n/a 0.95 0.38 n/a n/a n/a n/a
use-slider n/a 0.98 n/a n/a n/a 0.91 0.18 n/a n/a n/a n/a
use-slider-2 n/a 0.97 n/a n/a n/a 0.95 0.03 n/a n/a n/a n/a
use-spinner 1.00 0.98 0.90 0.88 0.96 1.00 0.47 0.04 0.07 0.06 0.11
visual-addition n/a 0.97 n/a n/a n/a 0.99 0.36 n/a n/a n/a n/a
Average 0.985 0.935 0.929 0.906 0.940 0.935 0.305 0.646 0.484 0.887 0.942
# of Tasks 63 104 53 54 54 104 104 48 56 56 56

Table 8: Per-task success rate on MiniWoB++. We refer to Gur et al. (2022) and Zheng et al. (2023) for the
baseline performances.
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H COMPOSITIONAL EVALUATION ON MINIWOB++

For the compositional evaluation, we pick up 4 c1lick-*“something” (link, button, checkboxes,
dialog) tasks and make some combinations of those by naively stitching with 2 or 3 tasks. Then, we
prepare the following 6 combinational tasks,

click-button_click-checkboxes
click-button_click-dialog
click-button_click-1link
click-1link_click-button
click-1link_click-button_click-dialog
click-1link_click-dialog

These tasks should be resolved in order of the name: for instance, in
click-1link_click-button_click-dialog task, the agent should click the proper
link, click the proper button, click the proper dialog, and then the task results in success. In
click-button_click-1ink task, the agent should click the proper button, and then click the
proper link. The instructions for compositional tasks are also simply combined among original task
instructions in order of the name. This evaluation could test the ability to transfer primitive skills to
control computers to solve unseen tasks. Table 9 shows the per-task average success rate among 6
combinations above. WebGUM can solve the compositional tasks much better than baselines (Gur
et al., 2022; Zheng et al., 2023) .

Compositional Task | WebN-T5 Synapse | WebGUM (HTML) WebGUM (HTML+Image)
click-button_click-checkboxes 0.26 0.84 0.21 0.27
click-button_click-dialog 0.95 1.00 0.87 0.93
click-button_click-link 0.87 0.99 0.81 0.88
click-link_click-button 0.35 1.00 0.90 0.95
click-link_click-button_click-dialog 0.08 0.60 0.73 0.73
click-link_click-dialog 0.55 0.00 0.93 0.95
Ave. | 0.510 0.738 | 0.742 0.785

Table 9: Per-task average success rate on 6 tasks from compositional MiniWoB++.

click-link click-button click-link_click-button

Click on the link "nam". Click on the "Okay" button. Click on the link "scelerisque", and
then click on the "Ok" button.

Cursus justo. Facilisis aliquam nisl| viverra nam sociis Cursus justo. Facilisis aliquam nisl|
viverra pharetra scelerisque. sit nulla nunc: viverra pharetra scelerisque.
Rutrum adipiscing. Pretium,. l I Rutrum adipiscing. Pretium,.
Egestas ultrices nam scelerisque Egestas ultrices nam scelerisque

sit nunc tortor. Placerat. Egestas. placerat arcu egestas: sit nunc tortor. Placerat. Egestas.
aliquam non tellus:

[ submit [ no l Okay ]

Next | Submit | Ok |

et nec convallis

Figure 8: Example of compositional evaluation on MiniWoB++ (the same as Figure 5).
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I COMPARISON AGAINST PRIOR WEB NAVIGATION AGENTS

Methods Architecture Pre-trained Input Output Offline
WGE (Liu et al., 2018) LSTM, self-attention X DOM Logit of action X
CoDE (Gur et al., 2019; 2021) Bi-LSTM X DOM Logit of action X
DOM-Q-NET(Jia et al., 2019) GNN X DOM Logit of action X
CC-Net (Humphreys et al., 2022)  LSTM, Transformer, ResNet X DOM, Screenshot Logit of action X
WebShop (Yao et al., 2022a) BERT, BART v Text (from HTML) ~ Logit of action X /¢
WebGUM (Ours) T5 Transformer, ViT 4 HTML, Screenshot  Text v

Table 10: Prior works have studied web navigation problem as online RL to learn the optimal action distribution
with task-specific model architectures from scratch (*or partially using pre-trained vision encoder). We omit the
web-specialized architecture and input-output space, and convert web navigation into visual question-answering
format (text, image — text), which allows us to learn the agents offline by leveraging pre-trained foundation
models (Raffel et al., 2020; Chung et al., 2022; Dosovitskiy et al., 2020) in vision or language domains as strong
inductive bias for web environments.

J INPUT PERTURBATION EVALUATION ON MINIWOB++

Add extra HTML at the top

<body ref="1"><div id="wrap" ref="2"><div
id="area" ref="3"><div id="search-bar"
ref="4"><input type="text" id="search-text"
ref="5"></input><button id="search"
ref="6">Search</button></div></div></div><div
id="wrap" ref="2"><div id="area"
ref="3"><button ref="4">No</button><span
ref="5">id viverra et:</span><input type="text"
ref="6"></input><input type="text"
ref="7"></input><input type="text"
ref="8"></input><button
ref="9">previous</button><button
ref="10">no</button></div></div></body>

Add extra HTML at the bottom

<body ref="1"><div id="wrap" ref="2"><div
id="area" ref="3"><button
ref="4">No</button><span ref="5">id viverra
et:</span><input type="text"
"6"></input><input type="text"
7"></input><input type="text"
ref="8"></input><button
ref="9">previous</button><button
ref="10">no</button></div></div><body
ref="5"><div id="wrap" ref="6"><div id="area"
ref="7"><div cla 1"></div><div
class="color" ref="2"></div><div class="color"
ref="3"></div><div class="color"
ref="4"></div></div></div></body></body>

Add Coordinates

<body ref="1" left="0" right="800" top="0"
bottom="210"><div id="wrap" ref="2" left="0"
right="160" top="0" bottom="210"><div
id="area" ref="3" left="0" right="160" top="50"
bottom="199"><button ref="4" left="2"
right="34" top="52"
bottom="74">No</button><span ref="5" left="2"
right="58" top="74" bottom="87">id viverra
et:</span><input type="text" ref="6" left="2"
right="139" top="87"
bottom="109"></input><input type="text"
ref="7" left="2" right="153" top="109"
bottom="131"></input><input type="text"
ref="8" left="2" right="69" top="131"
bottom="153"></input><button ref="9" left="2"
right="67" top="153"
bottom="175">previous</button><button
ref="10" left="2" right="32" top="175"
bottom="197">no</button></div></div></body>

Figure 9: Example of input perturbation for MiniWoB++ evaluation (the same as Figure 6).
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K EVALUATION ON WEBSHOP

In addition to MiniWoB++, we extensively evaluate our WebGUM on WebShop (Yao et al., 2022a)
benchmark, another online-shopping websites simulator with a large amount of real-world product
data. WebShop provides user instruction that describes the feature of items (e.g. I need a long clip-in
hair extension which is natural looking, and price lower than 20.00 dollars). The agents should
search, compare and choose a proper product that matches the given instruction. Since WebShop
requires complex multi-step reasoning considering previous contexts for comparison (Yao et al.,
2022a;b), we can test the capability of instruction-finetuned LLM in decision making tasks in depth.
The performance score is evaluated by the percentage of required attributes covered by the chosen
product (from O to 100), and if the product meets all the requirements, that episode is labeled a
success.

Because WebShop does not have API to get the screenshot of rendered websites, we focus on We-
bGUM with text inputs, parsed from noisy HTML in the real world.” We convert the actions from
raw texts (e.g. search[a long clip—-in hair extension] orclick[<item 1id>])
to dictionary-like format (e.g. {"action": "search", "ref": "a long clip-in
hair extension"} or {"action": "click", "ref": "<item id>"}), as we
use in MiniWoB++, to improve the prediction accuracy. We finetune Flan-T5-XL with about
1K human demonstrations curated by Yao et al. (2022a)'°, using only high-score demonstrations. The
score threshold is score > 50 and we have 840 episodes in total (Table 12). We construct the model
input with action history, instruction, and text observation, the same as MiniWoB++ experiments. We
evaluate our method with 500 user instructions in the test set.

Table 11 shows that WebGUM achieves 45.0% success, significantly outperforming not only simple
baselines, such as supervised imitation learning (IL) and IL plus RL-finetuing (by more than 15%), but
also recent prompt-based LLM agents, including ReAct (Yao et al., 2022b) (i.e. PaLM-540B (Chowd-
hery et al., 2022) with one-shot prompt and reasoning annotations), while our model only has 3
billion parameters. IL and IL plus RL-finetuning baselines use BART (Lewis et al., 2019) model for
the search policy, and BERT (Devlin et al., 2019) model for the click policy. The better performance
of WebGUM proves the hypothesis that the ability of multi-step reasoning in instruction-finetuned
language models works as a prior for decision making problems.

Methods  Training  Model Modality Score  Success Rate
Rule - - Text 45.6 9.6%
I SL BART, BERT  Text(+Image) 59.9 29.1%
IL+RL SL+RL BART, BERT  Text(+Image) 62.4 28.7%
Act In-context PaLM-540B Text 62.3 30.1%
ReAct In-context PalLLM-540B Text 66.6 40.0%
WebN-T5  SL T5-XL Text 61.0 29.8%
WebGUM  SL Flan-T5-XL Text 67.5 45.0%
Human - - Text+Image 82.1 59.6%

Table 11: Average score and success rate on WebShop (Yao et al., 2022a) benchmark. WebGUM based on
Flan-T5-XL achieves 45.0% success, outperforming most baseline approaches including ReAct, a prompted
PalLM-540B with reasoning annotations. We refer Yao et al. (2022b) for the baselines.

Threshold # of Episodes  Score Success Rate
score > 0 1026 67.2 44.4%
score > 50 840 67.5 45.0%
score = 100 497 65.3 44.4%

Table 12: Average score and success rate on WebShop with different score thresholds. Because we should
balance the dataset coverage and proficiency, we choose 50 as a threshold.

“WebShop just provides visual features of item pictures when the agents reach the product page. These
features are extracted by ResNet-50 (He et al., 2016), rather than raw images or screenshots of the website.
Some baseline agents (IL and IL+RL) incorporate such embeddings.

Ohttps://github.com/princeton-nlp/WebShop/tree/master/baseline_models/
data
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L EXAMPLE EPISODES OF WEBGUM

Expand the pie menu below and
cick on the item labeled 'F'.

click on the item labeled *f'.

Expand the pie menu below and

Expand the pie menu below and
click on the item labeled *F".

tactos.

Playing as X', win @ game of tic-

Playing as X', win a game of fic-
tac-os.

Playing as X', win a game of fic-
tactoe.

O

O
X
Heon

click-pie tic-tac-toe
Select 1210412010 as the date | [ Select 1210472010 as the date | | Select 12/0412016 as the date | [ Select 1210472016 as the date Cick on the grd coordinate
and hit submit and hit submit. and hit submit. and hit submi @2
Dat: oate: ]| [oste: [ 1270512016 Date: [12/05/2016 |
Q@ oveeemmeans
l Submit ‘ l Submit ‘ ‘ bt -0 e Submit
choose-date-easy grid-coordinate

Select WKZ, KRZsU1, uozk, 20, | [ Select Wz, KRZsU1, uozk, 20, | [ Setect Wiz, KRzsu1, uozk. 20, | [Setect Wz, kRzsU1. uozk. 20, | [Select Wz, KRZsU1. uozk, 20, | [ Setect Wiz, KRzsU1. wozk. 20, | [ Select Wiz KRZsU1. oz, 20.
D2, Budk, UpGN and cick D2, BuOk, UpGN and cick D2, BuOk, UpGN and cick D2, BuOk, UpGN and click D2, BuOk, UpGN and click D2, Budk, UpGN and cick D2, Budk, UpGN and cick
Submit. Submit. Submit. Submit. Submit Submit. Submit.
O wkz O krzsut O krzsut wicz [ krzsut wkz & krzsut wkz & krzsut wiz @ krzsut WKz RZSU1
O2 O uen O upen O2 O uen bo O upen 20 (O upen O upen 20 upan
Oew O onven Oew O onven Oew O omen Oew O omen O e O oneen aNHPh Oew O onen
O suok O woz O guok O wozk O suok O wozk O suok O oz uozk uozk Buok (J voz
O oz Ooz Ooz O oz 9oz

submit | | suomit | | swmt | | swmit | | | | suomit

click-checkboxes-large

Us the textbox to enter "Tora"
and press "Search", then find
and click the 4th search result

Uss the textbox to enter "Tora"
and press "Search", then find
and click the 4th search result.

Uss the textbox to enter "Tora"
and press "Search”, then find
and click the 4th search result.

Use the textbox to enter "Tora"
and press "Search”, then find
and click the 4th search result.

‘ Search |Tcra] ” Search ‘Tora || Search | ‘Tora ‘l Search |
Keli. Tora
nk
Mi gravida molis. Egst vel.
Tula Cheree
hitps:/www oremdictumst.eu https:/fquam.net
Ipsum. Aiquet. Lorem scslerisqus sagitis.
Briana Ignacio
P mx

Lorem. Ast, Leo viverra ac,

123> 123>

search-engine

Figure 10: Example of successful episodes demonstrated by multimodal WebGUM on MiniWoB++ (Shi
et al., 2017; Liu et al., 2018). The time step goes from left to right. As discussed in Section 5.1, image
modality seems to be leveraged for multi-step tasks with dynamic page transitions (e.g. search-engine,
choose-date-easy) or tasks that require global visual contexts (e.g. tic-tac-toe).
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social-media-all: Click the “share” b

Cco

How many smallitems are there?

2

| ] <_
A
W E
E[E3[ER KN K

WebGUM failed to count the number of

unt-shape: How many small items are there?

Click the "Share" button on all
posts by @renda and then click
Submit.

Click the "Share" button on all
posts by @renda and then click
Submit.

Garrett @renda Garrett @renda
Odio d ctetur cras. Odio d¢ ctetur cras.
Porttitor. Porttitor.
3 - 1
Kirk @egestas Kirk @egestas

Ut purus mi,. Diam.

Terrye @renda

Ut purus mi,. Diam.

Terrye @renda

Ac nunc. Orci dictum.

Ac nunc. Ori dictum.

Click the "Share" button on all
posts by @renda and then click
Submit.

Garrett @renda

Odio donec consectetur cras.
Porttitor.

-« 1
Kirk @egestas
Ut purus mi,. Diam.

- 13
Terrye @renda
Ac nunc. Orci dictum.

u

(Guess the number between 0-9
and press Submit. Use the
feedback below to find the right

number.

Waiting for your guess...

Guess the number between 0-9
and press Submit. Use the
feedback below to find the right
number.

The number is higher than 5.

‘Guess the number betwaen 0-9
and press Submit. Use the
feedback below to find the right
number.

The number is higher than 5.

(Guoss the number between 0-9
and prass Submit. Use the
feadback below to find the right
number.

The number is lower than 8.

[ \’ Submit ‘

D‘ Submit |

‘ Submit ‘

8 ‘ Submit ‘

[Guess the number between 0-9
and press Submit. Use the.
feedback below to find the right
number.

The number is lower than 8.

8 ‘ Submit

items because of the ambiguity of
instructions (“small”).

WebGUM clicked the button
on the wrong posts (not by
< @renda). The repetitive
structure of the page may
cause confusion.

tton on all posts by @renda and then click Submit.

WebGUM
repeated the
wrong answers
during multi-step
QA.

guess-number: Guess the number between 0-9 and press Submit.

Figure 11: Example failure episodes by multimodal WebGUM on MiniWoB. The time step goes from left to right.
For instance, WebGUM suffers from (1) ambiguous instruction, such as small items (count -shape), (2) confu-

sion with the repetitive structure on the page (social-media-all), and (3) long-horizon (guess-number)
tasks that may require memory.
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Instruction: i am looking for dark denim color ethylene
vinyl ultra train of size 10, 3rd generation for men,
and price lower than 160.00 dollars

Instruction: i would like a xlarge plus red camellia fleece
jacket that can be machine washed, and price lower
than 130.00 dollars

Action: search [dark denim color ethylene vinyl ultra
train of size 10, 3rd generation for men]

Observation:

[back to search} page 1 (total results: 50) [next}

[bOSblmcfkl}

salewa ultra train 3 - men’s

$104.0 to $182.99

[b07j5mc2xl }

skechers men’s low-top trainers, us men

$53.39 to $140.35

[b07x5hr3lz}

bruno marc men’s linen canvas stretch loafer shoes
$39.99

Action: c1ick [b08blmefkl]
Observation:

[back to search} prev]
size [7][7.5] [8] [8.5][9] [9-5] [10] [10.5] [11] [11.5]
[12][12.5] [13]

color [nmhrc blue | red orangc} [mw green | black nut}
[dark denim | red orangc}

salewa ultra train 3 - men’s

price: $104.0 to $182.99

rating: n.a.

[description} [feenures} [reviews} [buy n()w}

Action: click [dark denim | red orungc}

Observation: you have clicked dark denim | red orange.

Action: click[10]
Observation: you have clicked 10.

Action: click [buy now]
Termination: Your score (min 0.0, max 1.0): 1.0

Action: search [xlarge plus red camellia fleece jacket that
can be machine washed}

Observation:

[bﬂck to search} page 1 (total results: 50) [nexl}

[bOQthstp}

men’s thermal underwear pants usb heated warm cotton
with zone 3 heating long trousers leggings bottoms
$56.77

[b09hcddfl x]

men’s thermal underwear pants usb heated warm cotton
long trousers leggings bottoms for winter washable baselayer
$56.77 to $56.99

[b09jgmr43j]

premium soft and smooth faux fur loose plush vest jackets
fashion sexy fuzzy sleeveless outwear

$9.47 to $12.47

Action: click [next]
Observation:
[back to scarch} page 2 (total results: 50) [prcv} [ncxt]

[b07cq18rbl]

king and queen write hoodie couple matching sweater
pullover hooded sweatshirt jacket

$26.99 to $29.99

[bOQjmvfng}

mens sherpa quilted lined flannel jacket plus size plaid
button down fleece shirts coats thicken warm

cotton outwear

$36.79 to $55.99

[b09kxfgbn2}

mankalvxy womens jacket cardigan flannel cowl neck
asymmetric loose outerwear plus size xs-xx1 0-22
$20.3 to0 $26.85

Action: click [b07cq18rbl]

Observation:

[back to search} prev}

size [king-small queen-small [king-medium}
queen-medium king-largc} quccn-largc} king-xxl}
king—x]argc} [quccn—x]argc} [quccnfxxlargc

king and queen write hoodie couple matching sweater

pullover hooded sweatshirt jacket

price: $26.99 to $29.99

rating: n.a.

[dcscriplion} [fcalurcs} [rcvicws} [buy nnw}

Action: click [prev]
Observation:
[back to search} page 2 (total results: 50) [prev} [next]

[b07cqt8rbl]

king and ...
[b09jmvipzg]

mens sherpa ...
[bO‘)kxfgan]
mankalvxy womens...

Action: c1ick [b09jmvipzg]
Observation:
[back to search} prev}

color [ﬂrmy green [bluck} [coffcc} [gray} [green} [rcd}
[a-army green] [a-red

size [small] [medium] [large] [x-large] [xx-large]

[3x-large]

mens sherpa quilted lined flannel jacket plus size plaid button
down fleece shirts coats thicken warm cotton outwear

price: $36.79 to $55.99

rating: n.a.

[description] [features] [reviews] [buy now]

Action: click [red]
Observation: you have clicked red.

Action: click [x-large}
Observation: you have clicked x-large.

Action: click [buy now}
Termination: Your score (min 0.0, max 1.0): 1.0

Table 13: Example of successful episodes demonstrated by WebGUM on WebShop (Yao et al., 2022a). WebGUM
could search and choose the required product and choose proper options (left). In addition, WebGUM could
also compare the products with browsing and backtracking (i.e. clicking “next” or “prev’” buttons) during the
episodes (right).

30



Published as a conference paper at ICLR 2024

Example 1

Example 2

HTML:

<html><div><div role="navigation"><ul><a backend_node_id="
title="Scores/Schedule"><text>Scores/Schedule</text></a><a
backend_node_id="7499"

title="GameChannel "><text>GameChannel</text></a></ul></div><div>
<img backend_node_id="7918"
alt="Howard"/><div><text>HOW</text></div><div><text>68</text></div
></div><ul><a backend_node_id="8365"><h3><text>Chargers’

Adderley retiring from NFL at 25</text></h3></a><div><a
backend_node_i 8641"><text>New Detroit Lions RB David
Montgomery excited to join "team that’s starting something

crazy’ </text></a><p><text>David Montgomery, the Lions’ biggest

agent addition on offense, ran for 801 yards and five touchdowns

with the Chicago Bears in 2022</text></p></div></ul></div></html>

fi

HTML:
<html><body><div><label><text>Where?</text></label><input
backend_node_id="12940" type="text" placeholder="Start typing or
select a destination"/><button
button"><text>x</text></button></div><section role="main"><a
149 &amp; up — South Florida hotel by the beach"><img
backend_node_i ="$149 &amp; up — South Florida hotel
by the beach" title: p — South Florida hotel by the
beach"/></a></section><ul><li
backend_node_id="15241"><div><text>Near
Me</text><span><text>Set</text></span></div></li><li
backend_node_id="15254"><div><text>Las Vegas,
NV</text></div></li><li backend_node_; 15278"><div><text>Miami,
FL (Area)</text></div></li></ul></body></htmI>

Input:

Based on the HTML webpage above, try to complete the following task:
Task: Find the results of the most recent NFL games.

Previous actions:

[1ink] NFL . -> CLICK

‘What should be the next action? Please select from the following
choices (If the correct action is not in the page above, please select A.
“None of the above’):

A. None of the above

B. <abackend_node_id="5124"
title="Scores/Schedule"><text>Scores/Schedule</text></a>

C. <abackend_node_id="7499"
title="GameChannel"><text>GameChannel</text></a>

D. <img backend_node_id="7918" alt="Howard"/>

E. <abackend_node_id="8365"><h3><text>Chargers’ Adderley retiring
from NFL at 25</text></h3></a>

F. <abackend_node_id="8641"><text>New Detroit Lions RB David
Montgomery excited to join "team that’s starting something
crazy’</text></a>

Input:
Based on the HTML webpage above, try to complete the following task:
Task: Find hotel deals in Las Vegas for four adults starting on May 17
and ending on May 20, and if deal is not available, set an alert for the
same.
Previous actions:
textbox| What type of deals?
div] Hotels -> CLICK
What should be the next action? Please select from the following
choices (If the correct action is not in the page above, please select A.
"None of the above’):

-> CLICK

A. None of the above

B. <input backend_node_id="12940" type="text" placeholder="Start
typing or select a destination"/>

C. <img backend_node_id="14573" alt="$149 &amp; up — South
Florida hotel by the beach" title="$149 &amp: up — South Florida hotel
by the beach"/>

D. <li backend_node_id="15241"><div><text>Near
Me</text><span><text>Set</text></span></div></li>

E. <li backend_node_id="15254"><div><text>Las Vegas,
NV</text></div></li>

F. <li backend_node_id="15278"><div><text>Miami, FL.
(Area)</text></div></li>

Prediction: B. crick ¢

v

Prediction: B. TYPE las vegas

Table 14: Example outputs of WebGUM in Mind2Web dataset as evaluated in Section 5.5.

Liu et al. (2018)

Ours

Instruction: Select xj, 9jH, KFSZqqQ, JX16, mKgO, mVVdsdH, MKJH,
KLv, 8xLcf8M, YyWtsj, fS4U09Q, al130 and click Submit.

Instruction: Select 4yWiUvZ, Cq5, 1Lz, MIsUZU, UOIWpdw, GCM,
V5gh, fk18uv8 and click Submit.

HTM'L

2"><div id="area" ref="3"><div
5"><input type="checkbox" id="ch0"
="False"></input><t class="TEXT_CLASS"
None">KLv</t></label><label ref="7"><input type="checkbox"
chl" ref="8" value="False"></input><t class="TEXT_CLASS"
f="None">YyW5j</t></label><label ref="9"><input type="checkbox"
h2" ref="10" value="False"></input><t class="TEXT_CLASS"
ref="None">mV VdsdH</t></label><label ref="11"><input
" i " ref="12" value="False"></input><t
"None">9jH</t></label><label
ref="13"><input type="checkbox" id="ch4" ref="14"
value="False"></input><t class="TEXT_CLASS"
ref="None">KFSZqqQ</t></label><label ref="15"><input
"checkbox” id="ch5" ref="16" value="False"></input><t
TEXT_CLASS" ref="None">mKgO</t></label></div><div
oxes-right” ref="17"><label ref="18"><input type="checkbox"
ch6" ref="19" value="False"></input><t class="TEXT_CLASS"
ref="None">JX 16</t></label><label ref="20"><input type="checkbox"
id="ch7" ref="21" value="False"></input><t class="TEXT_CLASS"
"None">al 30</t></label><label ref="22"><input type="checkbox"
L "TEXT_CLASS"

‘alse"></input><t
reL”Nnne ">xj</t></label><label ref="26"><input
ch10" ref="27" value="False"></input><t
5" ref="None">MKJH</t></label><label
="checkbox" id="ch11" ref="29"
value="False"></input><t class="TEXT_CLASS"
None">fS4U09Q</t></label></div><button id="subbtn"
1ss="secondary-action”
ref="30">Submit</button></div></div></body>

HTML:
<budvul‘ "1"><div id

‘checkbox" id="ch0"
="TEXT_CLASS"
‘checkbox"

"TEXT_CLASS" ref="None">MIsUZU</t></label><label
9"><input type="checkbox" id="ch2" ref="10"
value="False"></input><t id="None" class="TEXT_CLASS"
ref="None">fk18uv8</t></label><label ref="11"><input

heckbox" id="ch3" ref="12" value="False"></input><t id="None"
class="TEXT_CLASS" ref="None" >4yW|U\'Z</(></L|bel><ldhel
f="13"><input type="checkbox" ref="14"
="False"></input><t id="None" class="TEXT_CLASS"
"None">gAV Be</t></label><label ref "><input type="checkbox"
h5" ref="16" value="False"></input><t id="None"

S" ref="None">V5gh</t></label></div><div
17"><label ref="18"><input type="checkbox"
="False"></input><t id="None"
class="TEXT_CLASS" ref="None" >]L7</(></]<|bel><ldbel
ref="20"><input type="checkbox” id="ch?" ref="21"
False"></input><t id="None" class
"None">UOIW pdw</t></label><label ref="2:
="ch8" ref="23" value="Fals
_ASS" ref="None">PDXX</t></label><label

class="TEXT_C]
ref="24"><input lypc—”Lthkbux id="ch9" ref="25"

TEXT_CLASS"
26"><input type="checkbox"
h10" ref:”27” »;\Iue:”Fdee"></inpu[><[ id="None"
TEXT_CLASS" ref="None">Cq5</t></label></div><button
secondary-action”
|e'_”28”>§ubmn</hutmn></dn></dn></hnd»>

Actions:

{action:
{action:
{action:
{action:
{action:
{action:
{action:
{action:
{action:

click, ref:
click, ref:

25} (click checkbox %)
12} (click checkbox 9 9H)
click, ref: 14} (click checkbox KFSZgqQ)
click, ref: 19} (click checkbox Jx16)
click, ref: 27} (click checkbox MKJH)
click, ref: 16} (click checkbox mKg0O)
click, ref: 27} (click checkbox MKJH)
click, ref: 10} (click checkbox mvvdsdH)
click, ref: 27} (click checkbox MKJH)

(continue)

WRNANE LN

Actions:

{action:
{action:
{action:
{action:
{action:
{action:
{action:
{action:
{action:

click, ref:
click, ref:
click, ref:
click, ref:
click, ref:
click, ref:
click, ref:
click, ref:
click, ref:

12} (click checkbox 4yWiUvz)
27} (click checkbox Cq5)

19} (click checkbox 1Lz)

8} (click checkbox M1sUZU)
21} (click checkbox UOTWpdw)
6} (click checkbox GCM)

16} (click checkbox V5gh)

10} (click checkbox fk18uv8)
28} (click submit button)

VO NAN R LN =

Table 15: Qualitative comparison between previous 12K episodes (Liu et al., 2018) (left) and our 347K episodes
(right). The examples are taken from click-checkboxes—large. While previous work has included
“hesitant” behaviors (e.g. clicking the same checkbox several times), our dataset has “shortest” behaviors. We
manually annotate the action for readability (e.g. click checkbox 97jH).
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