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ABSTRACT

Denoising diffusion bridge models (DDBMs) are a powerful variant of diffu-
sion models for interpolating between two arbitrary paired distributions given
as endpoints. Despite their promising performance in tasks like image transla-
tion, DDBMs require a computationally intensive sampling process that involves
the simulation of a (stochastic) differential equation through hundreds of network
evaluations. In this work, we take the first step in fast sampling of DDBMs with-
out extra training, motivated by the well-established recipes in diffusion mod-
els. We generalize DDBMs via a class of non-Markovian diffusion bridges de-
fined on the discretized timesteps concerning sampling, which share the same
marginal distributions and training objectives, give rise to generative processes
ranging from stochastic to deterministic, and result in diffusion bridge implicit
models (DBIMs). DBIMs are not only up to 25× faster than the vanilla sam-
pler of DDBMs but also induce a novel, simple, and insightful form of ordinary
differential equation (ODE) which inspires high-order numerical solvers. More-
over, DBIMs maintain the generation diversity in a distinguished way, by using a
booting noise in the initial sampling step, which enables faithful encoding, recon-
struction, and semantic interpolation in image translation tasks. Code is available
at https://github.com/thu-ml/DiffusionBridge.

1 INTRODUCTION

Diffusion models (Song et al., 2021c; Sohl-Dickstein et al., 2015; Ho et al., 2020) represent a family
of powerful generative models, with high-quality generation ability, stable training, and scalability
to high dimensions. They have consistently obtained state-of-the-art performance in various do-
mains, including image synthesis (Dhariwal & Nichol, 2021; Karras et al., 2022), speech and video
generation (Chen et al., 2021a; Ho et al., 2022), controllable image manipulation (Nichol et al.,
2022; Ramesh et al., 2022; Rombach et al., 2022; Meng et al., 2022), density estimation (Song
et al., 2021b; Kingma et al., 2021; Lu et al., 2022a; Zheng et al., 2023b) and inverse problem solv-
ing (Chung et al., 2022; Kawar et al., 2022). They also act as fundamental components of modern
text-to-image (Rombach et al., 2022) and text-to-video (Gupta et al., 2023; Bao et al., 2024) synthe-
sis systems, ushering in the era of AI-generated content.

However, diffusion models are not well-suited for solving tasks like image translation or restoration,
where the transport between two arbitrary probability distributions is to be modeled given paired
endpoints. Diffusion models are rooted in a stochastic process that gradually transforms between
data and noise, and the prior distribution is typically restricted to the “non-informative” random
Gaussian noises. Adapting diffusion models to scenarios where a more informative prior natu-
rally exists, such as image translation/restoration, involves modifying the generation pipeline (Meng
et al., 2022; Su et al., 2022) or adding extra guidance terms during sampling (Chung et al., 2022;
Kawar et al., 2022). On the one hand, these approaches are task-agnostic at training and adaptable
to multiple tasks at inference time. On the other hand, despite recent advances in accelerated inverse
problem solving (Liu et al., 2023a; Pandey et al., 2024), they inevitably deliver either sub-par perfor-
mance or slow and resource-intensive inference compared to training-based ones. Tailored diffusion
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(a) Condition (b) DDBM
NFE=100 (FID 6.46) (c) DBIM (η = 0) (Ours)

NFE=10 (FID 4.51) (c) DBIM (3rd-order) (Ours)
NFE=10 (FID 4.34)

Figure 1: Inpainting results on the ImageNet 256×256 dataset (Deng et al., 2009) by DDBM (Zhou et al.,
2023) with 100 number of function evaluations (NFE), and DBIM (ours) with only 10 NFE.

model variants become essential in task-specific scenarios where paired training data are available
and fast inference is critical.

Recently, denoising diffusion bridge models (DDBMs) (Zhou et al., 2023) have emerged as a scal-
able and promising approach to solving the distribution translation tasks. By considering the reverse-
time processes of a diffusion bridge, which represent diffusion processes conditioned on given end-
points, DDBMs offer a general framework for distribution translation. While excelling in image
translation tasks with exceptional quality and fidelity, sampling from DDBMs requires simulating a
(stochastic) differential equation corresponding to the reverse-time process. Even with the introduc-
tion of their hybrid sampler, achieving high-fidelity results for high-resolution images still demands
over 100 steps. Compared to the efficient samplers for diffusion models (Song et al., 2021a; Zhang
& Chen, 2022; Lu et al., 2022b), which require around 10 steps to generate reasonable samples,
DDBMs are falling behind, urging the development of efficient variants.

This work represents the first pioneering effort toward accelerated sampling of DDBMs. As sug-
gested by well-established recipes in diffusion models, training-free accelerations of diffusion sam-
pling primarily focus on reducing stochasticity (e.g., the prominent denoising diffusion implicit
models, DDIMs) and utilizing higher-order information (e.g., high-order solvers). We present diffu-
sion bridge implicit models (DBIMs) as an approach that explores both aspects within the diffusion
bridge framework. Firstly, we investigate the continuous-time forward process of DDBMs on dis-
cretized timesteps and generalize them to a series of non-Markovian diffusion bridges controlled by
a variance parameter, while maintaining identical marginal distributions and training objectives as
DDBMs. Secondly, the induced reverse generative processes correspond to sampling procedures of
varying levels of stochasticity, including deterministic ones. Consequently, DBIMs can be viewed
as a bridge counterpart and extension of DDIMs. Furthermore, in the continuous time limit, DBIMs
can induce a novel form of ordinary differential equation (ODE), which is linked to the probability
flow ODE (PF-ODE) in DDBMs while being simpler and significantly more efficient. The induced
ODE also facilitates novel high-order numerical diffusion bridge solvers for faster convergence.

We demonstrate the superiority of DBIMs by applying them in image translation and restoration
tasks, where they offer up to 25× faster sampling compared to DDBMs and achieve state-of-the-art
performance on challenging high-resolution datasets. Unlike conventional diffusion sampling, the
initial step in DBIMs is forced to be stochastic with a booting noise to avoid singularity issues arising
from the fixed starting point on a bridge. By viewing the booting noise as the latent variable, DBIMs
maintain the generation diversity of typical generative models while enabling faithful encoding,
reconstruction, and semantically meaningful interpolation in the data space.

2 BACKGROUND

2.1 DIFFUSION MODELS

Given a d-dimensional data distribution q0(x0), diffusion models (Song et al., 2021c; Sohl-Dickstein
et al., 2015; Ho et al., 2020) build a diffusion process by defining a forward stochastic differential
equation (SDE) starting from x0 ∼ q0:

dxt = f(t)xtdt+ g(t)dwt (1)
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where t ∈ [0, T ] for some finite horizon T , f, g : [0, T ]→ R is the scalar-valued drift and diffusion
term, and wt ∈ Rd is a standard Wiener process. As a linear SDE, the forward process owns an
analytic Gaussian transition kernel

qt|0(xt|x0) = N (αtx0, σ
2
t I) (2)

by Itô’s formula (Itô, 1951), where αt, σt are called noise schedules satisfying f(t) =
d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t (Kingma et al., 2021). The forward SDE is accompanied

by a series of marginal distributions {qt}Tt=0 of {xt}Tt=0, and f, g are properly designed so that the
terminal distribution is approximately a pure Gaussian, i.e., qT (xT ) ≈ N (0, σ2

T I).

To sample from the data distribution q0(x0), we can solve the reverse SDE or probability flow
ODE (Song et al., 2021c) from t = T to t = 0:

dxt = [f(t)xt − g2(t)∇xt
log qt(xt)]dt+ g(t)dw̄t, (3)

dxt =

[
f(t)xt −

1

2
g2(t)∇xt log qt(xt)

]
dt. (4)

They share the same marginal distributions {qt}Tt=0 with the forward SDE, where w̄t

is the reverse-time Wiener process, and the only unknown term ∇xt
log qt(xt) is the

score function of the marginal density qt. By denoising score matching (DSM) (Vin-
cent, 2011), a score prediction network sθ(xt, t) can be parameterized to minimize
EtEx0∼q0(x0)Ext∼qt|0(xt|x0)

[
w(t)∥sθ(xt, t)−∇xt

log qt|0(xt|x0)∥22
]
, where qt|0 is the analytic

forward transition kernel and w(t) is a positive weighting function. sθ can be plugged into the re-
verse SDE and the probability flow ODE to obtain the parameterized diffusion SDE and diffusion
ODE. There are various dedicated solvers for diffusion SDE or ODE (Song et al., 2021a; Zhang &
Chen, 2022; Lu et al., 2022b; Gonzalez et al., 2023).

2.2 DENOISING DIFFUSION BRIDGE MODELS

Denoising diffusion bridge models (DDBMs) (Zhou et al., 2023) consider driving the diffusion
process in Eqn. (1) to arrive at a particular point y ∈ Rd almost surely via Doob’s h-transform (Doob
& Doob, 1984):

dxt = f(t)xtdt+ g2(t)∇xt log q(xT = y|xt) + g(t)dwt, x0 ∼ q0 = pdata,xT = y. (5)
The endpoint y is not restricted to Gaussian noise as in diffusion models, but instead chosen as
informative priors (such as the degraded image in image restoration tasks). Given a starting point
x0, the process in Eqn. (5) also owns an analytic forward transition kernel

q(xt|x0,xT ) = N (atxT+btx0, c
2
tI), at =

αt

αT

SNRT

SNRt
, bt = αt(1−

SNRT

SNRt
), c2t = σ2

t (1−
SNRT

SNRt
)

(6)
which forms a diffusion bridge, and SNRt = α2

t /σ
2
t is the signal-to-noise ratio at time t. DDBMs

show that the forward process Eqn. (5) is associated with a reverse SDE and a probability flow ODE
starting from xT = y:
dxt =

[
f(t)xt − g2(t)

(
∇xt

log q(xt|xT = y)−∇xt
log qT |t(xT = y|xt)

)]
dt+ g(t)dw̄t, (7)

dxt =

[
f(t)xt − g2(t)

(
1

2
∇xt

log q(xt|xT = y)−∇xt
log qT |t(xT = y|xt)

)]
dt. (8)

They share the same marginal distributions {q(xt|xT = y)}Tt=0 with the forward process, where
w̄t is the reverse-time Wiener process, qT |t is analytically known similar to Eqn. (2), and the only
unknown term∇xt

log q(xt|xT = y) is the bridge score function. Denoising bridge score matching
(DBSM) is proposed to learn the unknown score term q(xt|xT = y) with a parameterized network
sθ(xt, t,y), by minimizing

Lw(θ) = EtE(x0,y)∼pdata(x0,y)Ext∼q(xt|x0,xT=y)

[
w(t)∥sθ(xt, t,y)−∇xt

log q(xt|x0,xT = y)∥22
]

(9)
where q(xt|x0,xT = y) is the forward transition kernel in Eqn. (6) and w(t) is a positive weighting
function. To sample from diffusion bridges with Eqn. (7) and Eqn. (8), DDBMs propose a high-order
hybrid sampler that alternately simulates the ODE and SDE steps to enhance the sample quality,
inspired by the Heun sampler in diffusion models (Karras et al., 2022). However, it is not dedicated
to diffusion bridges and lacks theoretical insights in developing efficient diffusion samplers.
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3 GENERATIVE MODEL THROUGH NON-MARKOVIAN DIFFUSION BRIDGES

We start by examining the forward process of the diffusion bridge (Eqn. (5)) on a set of discretized
timesteps 0 = t0 < t1 < · · · < tN−1 < tN = T that will be used for reverse sampling. Since
the bridge score ∇xt

log q(xt|xT ) only depends on the marginal distribution q(xt|xT ), we can
construct alternative probabilistic models that induce new sampling procedures while reusing the
learned bridge score sθ(xt, t,xT ), as long as they agree on the N marginals {q(xtn |xT )}N−1

n=0 .

3.1 NON-MARKOVIAN DIFFUSION BRIDGES AS FORWARD PROCESS

We consider a family of probability distributions q(ρ)(xt0:N−1
|xT ), controlled by a variance param-

eter ρ ∈ RN−1:

q(ρ)(xt0:N−1
|xT ) = q0(xt0)

N−1∏
n=1

q(ρ)(xtn |x0,xtn+1 ,xT ) (10)

where q0 is the data distribution at time 0 and for 1 ≤ n ≤ N − 1

q(ρ)(xtn |x0,xtn+1
,xT ) = N (atnxT + btnx0 +

√
c2tn − ρ2n

xtn+1 − atn+1xT − btn+1x0

ctn+1

, ρ2nI)

(11)
where ρn is the n-th element of ρ satisfying ρN−1 = ctN−1

, and at, bt, ct are terms related to the
noise schedule, as defined in the original diffusion bridge (Eqn. (6)). Intuitively, this decreases the
variance (noise level) of the bridge while incorporating additional noise components from the last
step. Under this construction, we can prove that q(ρ) maintains consistency in marginal distributions
with the original forward process q governed by Eqn. (5).
Proposition 3.1 (Marginal Preservation, proof in Appendix B.1). For 0 ≤ n ≤ N − 1, we have
q(ρ)(xtn |xT ) = q(xtn |xT ).

The definition of q(ρ) in Eqn. (10) represents the inference process, since it is factorized as
the distribution of xtn given xtn+1

at the previous timestep. Conversely, the forward process
q(ρ)(xtn+1

|x0,xtn ,xT ) can be induced by Bayes’ rule (Appendix C.1). As xtn+1
in q(ρ) can si-

multaneously depend on xtn and x0, we refer to it as non-Markovian diffusion bridges, in contrast
to Markovian ones (such as Brownian bridges, and the diffusion bridge defined by the forward SDE
in Eqn. (5)) which should satisfy q(xtn+1

|x0,xtn ,xT ) = q(xtn+1
|xtn ,xT ).

3.2 REVERSE GENERATIVE PROCESS AND EQUIVALENT TRAINING OBJECTIVE

Eqn. (10) can be naturally transformed into a parameterized and learnable generative model, by
replacing the unknown x0 in Eqn. (10) with a data predictor xθ(xt, t,xT ). Intuitively, xt on the
diffusion bridge is a weighted mixture of xT ,x0 and some random Gaussian noise according to
Eqn. (6), where the weightings at, bt, ct are determined by the timestep t. The network xθ is trained
to recover the clean data x0 given xt,xT and t.

Specifically, we define the generative process starting from xT as

pθ(xtn |xtn+1
,xT ) =

{
N (xθ(xt1 , t1,xT ), ρ

2
0I), n = 0

q(ρ)(xtn |xθ(xtn+1 , tn+1,xT ),xtn+1 ,xT ), 1 ≤ n ≤ N − 1
(12)

and the joint distribution as pθ(xt0:N−1
|xT ) =

∏N−1
n=0 pθ(xtn |xtn+1 ,xT ). To optimize the network

parameter θ, we can adopt the common variational inference objective as in DDPMs (Ho et al.,
2020), except that the distributions are conditioned on xT :

J (ρ)(θ) = Eq(xT )Eq(ρ)(xt0:N−1
|xT )

[
log q(ρ)(xt1:N−1

|x0,xT )− log pθ(xt0:N−1
|xT )

]
(13)

It seems that the DDBM objectiveLw in Eqn. (9) is distinct from J (ρ): respectively, they are defined
on continuous and discrete timesteps; they originate from score matching and variational inference;
they have different parameterizations of score and data prediction1. However, we show they are
equivalent by focusing on the discretized timesteps and transforming the parameterization.

1The diffusion bridge models are usually parameterized differently from score prediction, but can be con-
verted to score prediction. See Appendix F.1 for details.
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Table 1: Comparison between different diffusion models and diffusion bridge models.

Diffusion Models Diffusion Bridge Models
DDPM

(Ho et al., 2020)
ScoreSDE

(Song et al., 2021c)
DDIM

(Song et al., 2021a)
I2SB

(Liu et al., 2023b)
DDBM

(Zhou et al., 2023) DBIM (Ours)

Noise Schedule VP Any Any VE Any Any
Timesteps Discrete Continuous Discrete Discrete Continuous Discrete
Forward Distribution q(xn|x0) q(xt|x0) q(xn|xn−1,x0) q(xn|x0,xN ) q(xt|x0,xT ) q(xtn+1 |x0,xtn ,xT )
Inference Process pθ(xn−1|xn) SDE/ODE pθ(xn−1|xn) pθ(xn−1|xn) SDE/ODE pθ(xtn |xtn+1

,xT )
Non-Markovian ✗ ✗ ✓ ✗ ✗ ✓

Proposition 3.2 (Training Equivalence, proof in Appendix B.2). For ρ > 0, there exists certain
weights γ so that J (ρ)(θ) = Lγ(θ)+C on the discretized timesteps {tn}Nn=1, where C is a constant
irrelevant to θ. Besides, the bridge score predictor sθ in Lγ(θ) has the following relationship with
the data predictor xθ in J (ρ)(θ):

sθ(xt, t,xT ) = −
xt − atxT − btxθ(xt, t,xT )

c2t
(14)

Though the weighting γ may not precisely match the actual weighting w for training sθ, this dis-
crepancy doesn’t affect our utilization of sθ (Appendix C.2). Hence, it is reasonable to reuse the
network trained by L while leveraging various ρ for improved sampling efficiency.

4 SAMPLING WITH GENERALIZED DIFFUSION BRIDGES

Now that we have confirmed the rationality and built the theoretical foundations for applying the
generalized diffusion bridge pθ to pretrained DDBMs, a range of inference processes is now at our
disposal, controlled by the variance parameter ρ. This positions us to explore the resultant sampling
procedures and the effects of ρ in pursuit of better and more efficient generation.

4.1 DIFFUSION BRIDGE IMPLICIT MODELS

Suppose we sample in reverse time on the discretized timesteps 0 = t0 < t1 < · · · < tN−1 <
tN = T . The number N and the schedule of sampling steps can be made independently of the
original timesteps on which the bridge model is trained, whether discrete (Liu et al., 2023b) or
continuous (Zhou et al., 2023). According to the generative process of pθ in Eqn. (12), the updating
rule from tn+1 to tn is described by

xtn = atnxT + btn x̂0 +
√
c2tn − ρ2n

xtn+1
− atn+1

xT − btn+1
x̂0

ctn+1︸ ︷︷ ︸
predicted noise ϵ̂

+ρnϵ, ϵ ∼ N (0, I) (15)

where x̂0 = xθ(xtn+1
, tn+1,xT ) denotes the predicted clean data at time 0.

Intuition of the Sampling Procedure Intuitively, the form of Eqn. (15) resembles the forward
transition kernel of the diffusion bridge in Eqn. (6) (which can be rewritten as xt = atxT + btx0 +
ctϵ, ϵ ∼ N (0, I)). In comparison, x0 is substituted with the predicted x̂0, and a portion of the
standard Gaussian noise ϵ now stems from the predicted noise ϵ̂. The predicted noise ϵ̂ is derived
from xtn+1

at the previous timestep and can be expressed by the predicted clean data x̂0.

Effects of the Variance Parameter We investigate the effects of the variance parameter ρ
from the theoretical perspective by considering two extreme cases. Firstly, we note that when

ρn = σtn

√
1− SNRtn+1

SNRtn
for each 0 ≤ n ≤ N − 1, the xT term in Eqn. (15) is canceled out.

In this scenario, the forward process in Eqn. (4.1) becomes a Markovian bridge (see details in
Appendix C.1). Besides, the inference process will get rid of xT and simplify to pθ(xtn |xtn+1

),
akin to the sampling mechanism in DDPMs (Ho et al., 2020). Secondly, when ρn = 0 for each
0 ≤ n ≤ N−1, the inference process will be free from random noise and composed of deterministic
iterative updates, characteristic of an implicit probabilistic model (Mohamed & Lakshminarayanan,
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booting noise

condition

𝑡 = 𝑇𝑡 = 𝑇 − 𝜖𝑡 = 0

deterministic

Figure 2: Illustration of the DBIM’s deterministic sampling procedure when ρ = 0.

2016). Consequently, we name the resulting model diffusion bridge implicit models (DBIMs), draw-
ing parallels with denoising diffusion implicit models (DDIMs) (Song et al., 2021a). DBIMs serve
as the bridge counterpart and extension of DDIMs, as illustrated in Table 1.

When we choose ρ that lies between these two boundary cases, we can obtain non-Markovian dif-
fusion bridges with intermediate and non-zero stochastic levels. Such bridges may potentially yield
superior sample quality. We present detailed ablations in Section 6.1.

The Singularity at the Initial Step for Deterministic Sampling One important aspect to note
regarding DBIMs is that its initial step exhibits singularity when ρ = 0, a property essentially
distinct from DDIMs in diffusion models. Specifically, in the initial step we have tn+1 = T , and
ctn+1

in the denominator in Eqn. (15) equals 0. This phenomenon can be understood intuitively:
given a fixed starting point xT , the variable xt for t < T is typically still stochastically distributed
(the marginal pθ(xt|xT ) is not a Dirac distribution). For instance, in inpainting tasks, there should
be various plausible complete images corresponding to a fixed masked image. However, a fully
deterministic sampling procedure disrupts such stochasticity.

To be theoretically robust, we employ the other boundary choice ρn = σtn

√
1− SNRtn+1

SNRtn
in the

initial step2, which is aligned with our previous restriction that ρN−1 = ctN−1
. This will introduce

an additional standard Gaussian noise ϵ which we term as the booting noise. It accounts for the
stochasticity of the final sample x0 under a given fixed xT and can be viewed as the latent variable.
We illustrate the complete DBIM pipeline in Figure 2.

4.2 CONNECTION TO PROBABILITY FLOW ODE

It is intuitive to perceive that the deterministic sampling can be related to solving an ODE. By setting
ρ = 0, tn+1 = t and tn+1 − tn = ∆t in Eqn. (15), the DBIM updating rule can be reorganized
as xt−∆t

ct−∆t
= xt

ct
+
(

at−∆t

ct−∆t
− at

ct

)
xT +

(
bt−∆t

ct−∆t
− bt

ct

)
xθ(xt, t,xT ). As at, bt, ct are continuous

functions of time t defined in Eqn. (6), the ratios at

ct
and bt

ct
also remain continuous functions of

t. Therefore, DBIM (ρ = 0) can be treated as an Euler discretization of the following ordinary
differential equation (ODE):

d

(
xt

ct

)
= xTd

(
at
ct

)
+ xθ(xt, t,xT )d

(
bt
ct

)
(16)

Though it does not resemble a conventional ODE involving dt, the two infinitesimal terms d
(

at

ct

)
and d

(
bt
ct

)
can be expressed with dt by the chain rule of derivatives. The ODE form also suggests

that with a sufficient number of discretization steps, we can reverse the sampling process and obtain
encodings of the observed data, which can be useful for interpolation or other downstream tasks.

In DDBMs, the PF-ODE (Eqn. (8)) involving dxt and dt is proposed and used for deterministic
sampling. We reveal in the following proposition that our ODE in Eqn. (16) can exactly yield the
PF-ODE without relying on the advanced Kolmogorov forward (or Fokker-Planck) equation.
Proposition 4.1 (Equivalence to Probability Flow ODE, proof in Appendix B.3). Suppose
sθ(xt, t,xT ) is learned as the ground-truth bridge score∇xt

log q(xt|xT ), and xθ is related to sθ
through Eqn. (14), then Eqn. (16) can be converted to the PF-ODE (Eqn. (8)) proposed in DDBMs.

2With this choice, at the initial step n = N−1, we have ρn = σtn

√
1− SNRtT

SNRtn
= ctn ⇒

√
c2tn − ρ2n = 0,

so ctn+1 in the denominator in Eqn. (15) will be canceled out.
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Condition Ground-truth DDBM (NFE=20) DDBM (NFE=100) DBIM (NFE=20) DBIM (NFE=100)

Figure 3: Image translation results on the DIODE-Outdoor dataset with DDBM and DBIM.

Though the conversion from our ODE to the PF-ODE is straightforward, the reverse conversion can
be non-trivial and require complex tools such as exponential integrators (Calvo & Palencia, 2006;
Hochbruck et al., 2009) (Appendix C.4). We highlight our differences from the PF-ODE in DDBMs:
(1) Our ODE has a novel form with exceptional neatness. (2) Despite their theoretical equivalence,
our ODE describes the evolution of xt

ct
rather than xt, and its discretization is performed with respect

to d
(

at

ct

)
and d

(
bt
ct

)
instead of dt. (3) Empirically, DBIMs (ρ = 0) prove significantly more

efficient than the Euler discretization of the PF-ODE, thereby accelerating DDBMs by a substantial
margin. (4) In contrast to the fully deterministic ODE, DBIMs are capable of various stochastic
levels to achieve the best generation quality under the same sampling steps.

4.3 EXTENSION TO HIGH-ORDER METHODS

The simplicity and efficiency of our ODE (Eqn. (16)) also inspire novel high-order numerical solvers
tailored for DDBMs, potentially bringing faster convergence than the first-order Euler discretization.
Specifically, using the time change-of-variable λt = log

(
bt
ct

)
= 1

2 (SNRt − SNRT ), the solution
of Eqn. (16) from time t to time s < t can be represented as

xs =
cs
ct
xt +

(
as −

cs
ct
at

)
xT + cs

∫ λs

λt

eλxθ(xtλ , tλ,xT )dλ (17)

where tλ is the inverse function of λt. The intractable integral can be approximated by Taylor ex-
pansion of xθ and finite difference estimations of high-order derivatives, following well-established
numerical methods (Hochbruck & Ostermann, 2005) and their extensive application in diffusion
models (Zhang & Chen, 2022; Lu et al., 2022b; Gonzalez et al., 2023). We present the derivations
of our high-order solvers in Appendix D, and the detailed algorithm in Appendix E.

5 RELATED WORK

We present detailed related work in Appendix A, including diffusion models, diffusion bridge mod-
els, and fast sampling techniques. We additionally discuss some special cases of DBIM and their
connection to flow matching, DDIM and posterior sampling in Appendix C.3.

6 EXPERIMENTS

In this section, we show that DBIMs surpass the original sampling procedure of DDBMs by a large
margin, in terms of both sample quality and sample efficiency. We also showcase DBIM’s capabil-
ities in latent-space encoding, reconstruction, and interpolation using deterministic sampling. All
comparisons between DBIMs and DDBMs are conducted using identically trained models. For
DDBMs, we employ their proposed hybrid sampler for sampling. For DBIMs, we control the vari-
ance parameter ρ by interpolating between its boundary selections:

ρn = ησtn

√
1−

SNRtn+1

SNRtn

, η ∈ [0, 1] (18)

where η = 0 and η = 1 correspond to deterministic sampling and Markovian stochastic sampling.

We conduct experiments including (1) image-to-image translation tasks on Edges→Handbags (Isola
et al., 2017) (64× 64) and DIODE-Outdoor (Vasiljevic et al., 2019) (256× 256) (2) image restora-
tion task of inpainting on ImageNet (Deng et al., 2009) (256 × 256) with 128 × 128 center mask.
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Table 2: Quantitative results in the image translation task. †Baseline results are taken directly from
DDBMs, where they did not report the exact NFE. Gray-colored rows denote methods that do not
require paired training but only a prior diffusion model trained on the target domain.

Edges→Handbags (64× 64) DIODE-Outdoor (256× 256)

NFE FID ↓ IS ↑ LPIPS ↓ MSE ↓ FID ↓ IS ↑ LPIPS ↓ MSE ↓
DDIB (Su et al., 2022) ≥ 40† 186.84 2.04 0.869 1.05 242.3 4.22 0.798 0.794
SDEdit (Meng et al., 2022) ≥ 40 26.5 3.58 0.271 0.510 31.14 5.70 0.714 0.534
Pix2Pix (Isola et al., 2017) 1 74.8 3.24 0.356 0.209 82.4 4.22 0.556 0.133
I2SB (Liu et al., 2023b) ≥ 40 7.43 3.40 0.244 0.191 9.34 5.77 0.373 0.145
DDBM (Zhou et al., 2023) 118 1.83 3.73 0.142 0.040 4.43 6.21 0.244 0.084

DDBM (Zhou et al., 2023) 200 0.88 3.69 0.110 0.006 3.34 5.95 0.215 0.020
DBIM (Ours) 20 1.74 3.63 0.095 0.005 4.99 6.10 0.201 0.017
DBIM (Ours) 100 0.89 3.62 0.100 0.006 2.57 6.06 0.198 0.018

Table 3: Quantative results in the image
restoration task.

Inpainting ImageNet (256× 256)

Center (128× 128) NFE FID ↓ CA ↑
DDRM (Kawar et al., 2022) 20 24.4 62.1
ΠGDM (Song et al., 2023a) 100 7.3 72.6
DDNM (Wang et al., 2023) 100 15.1 55.9
Palette (Saharia et al., 2022) 1000 6.1 63.0
I2SB (Liu et al., 2023b) 10 5.24 66.1
I2SB (Liu et al., 2023b) 20 4.98 65.9
I2SB (Liu et al., 2023b) 1000 4.9 66.1

DDBM (Zhou et al., 2023) 500 4.27 71.8
DBIM (Ours) 10 4.48 71.3
DBIM (Ours) 20 4.07 72.3
DBIM (Ours) 100 3.88 72.7

Table 4: Ablation of the variance parameter controlled
by η for image restoration, measured by FID.

Sampler NFE

5 10 20 50 100 200 500

Inpainting, ImageNet (256× 256), Center (128× 128)

η

0.0 6.08 4.51 4.11 3.95 3.91 3.91 3.91
0.3 6.12 4.48 4.09 3.95 3.92 3.90 3.88
0.5 6.25 4.52 4.07 3.92 3.90 3.84 3.86
0.8 6.81 4.79 4.16 3.91 3.88 3.84 3.81
1.0 8.62 5.61 4.51 4.05 3.91 3.80 3.80

DDBM 275.25 57.18 29.65 10.63 6.46 4.95 4.27

We report the Fréchet inception distance (FID) (Heusel et al., 2017) for all experiments, and addi-
tionally measure Inception Scores (IS) (Barratt & Sharma, 2018), Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018), Mean Square Error (MSE) (for image-to-image translation)
and Classifier Accuracy (CA) (for image inpainting), following previous works (Liu et al., 2023b;
Zhou et al., 2023). The metrics are computed using the complete training set for Edges→Handbags
and DIODE-Outdoor, and 10k images from validation set for ImageNet. We provide the inference
time comparison in Appendix G.1. Additional experiment details are provided in Appendix F.

6.1 SAMPLE QUALITY AND EFFICIENCY

We present the quantitative results of DBIMs in Table 2 and Table 3, compared with baselines
including GAN-based, diffusion-based and bridge-based methods3. We set the number of function
evaluations (NFEs) of DBIM to 20 and 100 to demonstrate both efficiency at small NFEs and quality
at large NFEs. We select η from the set [0.0, 0.3, 0.5, 0.8, 1.0] for DBIM and report the best results.

In image translation tasks, DDBM achieves the best sample quality (measured by FID) among the
baselines, but requires NFE > 100. In contrast, DBIM with only NFE = 20 already surpasses
all baselines, performing better than or on par with DDBM at NFE = 118. When increasing the
NFE to 100, DBIM further improves the sample quality and outperforms DDBM with NFE = 200
on DIODE-Outdoor. In the more challenging image inpainting task on ImageNet 256 × 256, the
superiority of DBIM is highlighted even further. In particular, DBIM with NFE = 20 outperforms
all baselines, including DDBM with NFE = 500, achieving a 25× speed-up. With NFE = 100,
DBIM continues to improve sample quality, reaching a FID lower than 4 for the first time.

The comparison of visual quality is illustrated in Figure 1 and Figure 3, where DBIM produces
smoother outputs with significantly fewer noisy artifacts compared to DDBM’s hybrid sampler.
Additional samples are provided in Appendix H.

Ablation of the Variance Parameter We investigate the impact of the variance parameter ρ (con-
trolled by η) to identify how the level of stochasticity affects sample quality across various NFEs, as
shown in Table 4 and Table 5. For image translation tasks, we consistently observe that employing

3It is worth noting that, the released checkpoints of I2SB are actually flow matching/interpolant models
instead of bridge models, as they (1) start with noisy conditions instead of clean conditions and (2) perform a
straight interpolation between the condition and the sample without adding extra intermediate noise.
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Table 5: Ablation of the variance parameter controlled by η for image translation, measured by FID.

Sampler NFE

5 10 20 50 100 200 500 5 10 20 50 100 200 500

Image Translation, Edges→Handbags (64× 64) Image Translation, DIODE-Outdoor (256× 256)

η

0.0 3.62 2.49 1.76 1.17 0.91 0.75 0.65 14.25 7.96 4.97 3.18 2.56 2.26 2.10
0.3 3.64 2.53 1.81 1.21 0.94 0.76 0.65 14.48 8.25 5.22 3.37 2.68 2.33 2.12
0.5 3.69 2.61 1.91 1.30 1.00 0.81 0.67 14.93 8.75 5.68 3.71 2.92 2.47 2.17
0.8 3.87 2.91 2.25 1.58 1.23 0.96 0.76 16.41 10.30 6.98 4.63 3.58 2.90 2.41
1.0 4.21 3.38 2.72 1.96 1.50 1.15 0.85 19.17 12.59 8.85 5.98 4.55 3.59 2.82

DDBM 317.22 137.15 46.74 7.79 2.40 0.88 0.53 328.33 151.93 41.03 15.19 6.54 3.34 2.26

a deterministic sampler with η = 0 yields superior performance compared to stochastic samplers
with η > 0. We attribute it to the characteristics of the datasets, where the target image is highly
correlated with and dependent on the condition, resulting in a generative model that lacks diver-
sity. In this case, a straightforward mapping without the involvement of stochasticity is preferred.
Conversely, for image inpainting on the more diverse dataset ImageNet 256×256, the parameter η
exhibits significance across different NFEs. When NFE ≤ 20, η = 0 is near the optimal choice, with
FID steadily increasing as η ascends. However, when NFE ≥ 50, a relatively large level of stochas-
ticity at η = 0.8 or even η = 1 yields optimal FID. Notably, the FID of η = 0 converges to 3.91
at NFE = 100, with no further improvement at larger NFEs, indicating convergence to the ground-
truth sample by the corresponding PF-ODE. This observation aligns with diffusion models, where
deterministic sampling facilitates rapid convergence, while introducing stochasticity in sampling
enhances diversity, ultimately culminating in the highest sample quality when NFE is substantial.

Table 6: The effects of high-order methods, measured by FID.

Sampler NFE

5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

Image Translation Inpainting

Edges→Handbags (64× 64) DIODE-Outdoor (256× 256) ImageNet (256× 256)

DBIM (η = 0) 3.62 2.49 1.76 1.17 0.91 14.25 7.96 4.97 3.18 2.56 6.08 4.51 4.11 3.95 3.91
DBIM (2nd-order) 3.44 2.16 1.48 0.99 0.79 13.54 7.18 4.34 2.87 2.41 5.53 4.33 4.07 3.94 3.91
DBIM (3rd-order) 3.40 2.12 1.45 0.97 0.79 13.41 7.01 4.20 2.84 2.40 5.50 4.34 4.07 3.93 3.91

High-Order Methods We further demonstrate the effects of high-order methods by comparing
them to deterministic DBIM, the first-order case. As shown in Table 6, high-order methods consis-
tently improve FID scores in image translation tasks, as well as in inpainting tasks when NFE≤ 50,
resulting in enhanced generation quality in the low NFE regime. Besides, the 3rd-order variant
performs slightly better than the 2nd-order variant. However, in contrast to the numerical solvers
in diffusion models, the benefits of high-order extensions are relatively minor in diffusion bridges
and less pronounced than the improvement when adjusting η from 1 to 0. Nevertheless, high-order
DBIMs are significantly more efficient than DDBM’s PF-ODE-based high-order solvers.

As illustrated in Figure 1, our high-order sampler produces images of similar semantic content to
the first-order case, using the same booting noise. In contrast, the visual quality is improved with
finer textures, resulting in better FID. This indicates that the high-order gradient information from
past network outputs benefits the generation quality by adding high-frequency visual details.

Generation Diversity We quantitatively measure the generation diversity by the diversity score,
calculated as the pixel-level variance of multiple generations, following CMDE (Batzolis et al.,
2021) and BBDM (Li et al., 2023). As detailed in Appendix G.2, increasing NFE or decreasing η
can both increase the diversity score, confirming the effect of the booting noise.

6.2 RECONSTRUCTION AND INTERPOLATION

As discussed in Section 4.2, the deterministic nature of DBIMs at η = 0 and its connection to neural
ODEs enable faithful encoding and reconstruction by treating the booting noise as the latent variable.
Furthermore, employing spherical linear interpolation in the latent space and subsequently decoding
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20 steps

Condition

20 steps 100 steps 100 steps

(a) Encoding/Reconstruction (b) Semantic Interpolation

Figure 4: Illustration of generation diversity with deterministic DBIMs.

back to the image space allows for semantic image interpolation in image translation and image
restoration tasks. These capabilities cannot be achieved by DBIMs with η > 0, or by DDBM’s hy-
brid sampler which incorporates stochastic steps. We showcase the encoding and decoding results in
Figure 4a, indicating that accurate reconstruction is achievable with a sufficient number of sampling
steps. We also illustrate the interpolation process in Figure 4b.

7 CONCLUSION

In this work, we introduce diffusion bridge implicit models (DBIMs) for accelerated sampling of
DDBMs without extra training. In contrast to DDBM’s continuous-time generation processes, we
concentrate on discretized sampling steps and propose a series of generalized diffusion bridge mod-
els including non-Markovian variants. The induced sampling procedures serve as bridge counter-
parts and extensions of DDIMs and are further extended to develop high-order numerical solvers,
filling the missing perspectives in the context of diffusion bridges. Experiments on high-resolution
datasets and challenging inpainting tasks demonstrate DBIM’s superiority in both the sample quality
and sample efficiency, achieving state-of-the-art FID scores with 100 steps and providing up to 25×
acceleration of DDBM’s sampling procedure.

Figure 5: DBIM case
(η = 0, NFE=500).

Limitations and Failure Cases Despite the notable speed-up for diffusion
bridge models, DBIMs still lag behind GAN-based methods in one-step gen-
eration. The generation quality is unsatisfactory when NFE is small, and
blurry regions still exist even using high-order methods (Figure 1). This is
not fast enough for real-time applications. Besides, as a training-free infer-
ence algorithm, DBIM cannot surpass the capability and quality upper bound
of the pretrained diffusion bridge model. In difficult and delicate inpainting
scenarios, such as human faces and hands, DBIM fails to fix the artifacts, even
under large NFEs.
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A RELATED WORK

Fast Sampling of Diffusion Models Fast sampling of diffusion models can be classified into
training-free and training-based methods. A prevalent training-free fast sampler is the denoising
diffusion implicit models (DDIMs) (Song et al., 2021a) that employ alternative non-Markovian gen-
eration processes in place of DDPMs, a discrete-time diffusion model. ScoreSDE (Song et al.,
2021c) further links discrete-time DDPMs to continuous-time score-based models, unrevealing the
generation process to be ordinary and stochastic differential equations (ODEs and SDEs). DDIM
can be generalized to develop integrators for broader diffusion models (Zhang et al., 2022; Pandey
et al., 2023). The concept of implicit sampling, in a broad sense, can also be extended to discrete
diffusion models (Chen et al., 2024; Zheng et al., 2024), although there are fundamental differences
in their underlying mechanisms. Subsequent training-free samplers concentrate on developing ded-
icated numerical solvers to the diffusion ODE or SDE, particularly Heun’s methods (Karras et al.,
2022) and exponential integrators (Zhang & Chen, 2022; Lu et al., 2022b; Zheng et al., 2023a; Gon-
zalez et al., 2023). These methods typically require around 10 steps for high-quality generation. In
contrast, training-based methods, particularly adversarial distillation (Sauer et al., 2023) and consis-
tency distillation (Song et al., 2023b; Kim et al., 2023), become notable for their ability to achieve
high-quality generation with just one or two steps. Our work serves as a thorough exploration of
training-free fast sampling of DDBMs. Exploring bridge distillation methods, such as consistency
bridge distillation (He et al., 2024), would be promising future research avenues to decrease the
inference cost further. Infrastructure improvements, such as quantized or sparse attention (Zhang
et al., 2025a;b; 2024), can also be used to accelerate the inference of diffusion bridge models.

Diffusion Bridges Diffusion bridges (De Bortoli et al., 2021; Chen et al., 2021b; Liu et al., 2023b;
Somnath et al., 2023; Zhou et al., 2023; Chen et al., 2023; Shi et al., 2024; Deng et al., 2024) are a
promising generative variant of diffusion models for modeling the transport between two arbitrary
distributions. One line of work is the diffusion Schrodinger bridge models (De Bortoli et al., 2021;
Chen et al., 2021b; Shi et al., 2024; Deng et al., 2024), which solves an entropy-regularized opti-
mal transport problem between two probability distributions. However, their reliance on expensive
iterative procedures has limited their application scope, particularly for high-dimensional data. Sub-
sequent works have endeavored to enhance the tractability of the Schrodinger bridge problem by
making assumptions such as paired data (Liu et al., 2023b; Somnath et al., 2023; Chen et al., 2023).
On the other hand, DDBMs (Zhou et al., 2023) construct diffusion bridges via Doob’s h-transform,
offering a reverse-time perspective of a diffusion process conditioned on given endpoints. This ap-
proach aligns the design spaces and training algorithms of DDBMs closely with those of score-based
generative models, leading to state-of-the-art performance in image translation tasks. However, the
sampling procedure of DDBMs still relies on inefficient simulations of differential equations, lack-
ing theoretical insights to develop efficient samplers. BBDM (Li et al., 2023) and I3SB (Wang
et al., 2024a) extend the concept of DDIM to the contexts of Brownian bridge and I2SB (Liu et al.,
2023b), respectively. SinSR (Wang et al., 2024b) is also motivated by DDIM, while the application
is concentrated on the mean-reverting diffusion process, which ends in a Gaussian instead of a delta
distribution. In contrast to them, our work provides the first systematic exploration of implicit sam-
pling within the broader DDBM framework, offering theoretical insights and connections while also
proposing novel high-order diffusion bridge solvers.

B PROOFS

B.1 PROOF OF PROPOSITION 3.1

Proof. Since q(ρ) in Eqn. (10) is factorized as q(ρ)(xt0:N−1
|xT ) = q0(x0)q

(ρ)(xt1:N−1
|x0,xT )

where q(ρ)(xt1:N−1
|x0,xT ) =

∏N−1
n=1 q(ρ)(xtn |x0,xtn+1 ,xT ), we have q(ρ)(x0|xT ) = q0(x0) =

q(x0|xT ), which proves the case for n = 0. For 1 ≤ n ≤ N − 1, we have

q(ρ)(xtn |xT ) =

∫
q(ρ)(xtn |x0,xT )q

(ρ)(x0|xT )dx0 (19)

and
q(xtn |xT ) =

∫
q(xtn |x0,xT )q(x0|xT )dx0 (20)
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Since q(ρ)(x0|xT ) = q(x0|xT ), we only need to prove q(ρ)(xtn |x0,xT ) = q(xtn |x0,xT ).

Firstly, when n = N − 1, we have tn+1 = T . Note that ρ is restricted by ρN−1 = ctN−1
, and

Eqn. (11) becomes

q(ρ)(xtN−1
|x0,xT ) = N (atN−1

xT + btN−1
x0, c

2
tN−1

I) (21)

which is exactly the same as the forward transition kernel of q in Eqn. (6). Therefore,
q(ρ)(xtn |x0,xT ) = q(xtn |x0,xT ) holds for n = N − 1.

Secondly, suppose q(ρ)(xtn |x0,xT ) = q(xtn |x0,xT ) holds for n = k, we aim to prove that it
holds for n = k − 1. Specifically, q(ρ)(xtk−1

|x0,xT ) can be expressed as

q(ρ)(xtk−1
|x0,xT ) =

∫
q(ρ)(xtk−1

|x0,xtk ,xT )q
(ρ)(xtk |x0,xT )dxtk

=

∫
q(ρ)(xtk−1

|x0,xtk ,xT )q(xtk |x0,xT )dxtk

=

∫
N (xtk−1

;µk−1|k, ρ
2
k−1I)N (xtk ; atkxT + btkx0, c

2
tk
I)dxtk

(22)

where
µk−1|k = atk−1

xT + btk−1
x0 +

√
c2tk−1

− ρ2k−1

xtk − atkxT − btkx0

ctk
(23)

From (Bishop & Nasrabadi, 2006) (2.115), q(ρ)(xtk−1
|x0,xT ) is a Gaussian, denoted as

N (µk−1,Σk−1), where

µk−1 = atk−1
xT + btk−1

x0 +
√
c2tk−1

− ρ2k−1

atkxT + btkx0 − atkxT − btkx0

ctk
= atk−1

xT + btk−1
x0

(24)

and

Σk−1 = ρ2k−1I +

√
c2tk−1

− ρ2k−1

ctk
c2tk

√
c2tk−1

− ρ2k−1

ctk
I

= c2tk−1
I

(25)

Therefore, q(ρ)(xtk−1
|x0,xT ) = q(xtk−1

|x0,xT ) = N (atk−1
xT + btk−1

x0, c
2
tk−1

I). By math-
ematical deduction, q(ρ)(xtn |x0,xT ) = q(xtn |x0,xT ) holds for every 1 ≤ n ≤ N − 1, which
completes the proof.

B.2 PROOF OF PROPOSITION 3.2

Proof. Substituting Eqn. (10) and the joint distribution into Eqn. (13), we have

J (ρ)(θ)

=Eq(xT )Eq(ρ)(xt0:N−1
|xT )

[
log q(ρ)(xt1:N−1

|x0,xT )− log pθ(xt0:N−1
|xT )

]
=Eq(xT )Eq(ρ)(xt0:N−1

|xT )

[
N−1∑
n=1

log q(ρ)(xtn |x0,xtn+1 ,xT )−
N−1∑
n=0

log pθ(xtn |xtn+1 ,xT )

]

=

N−1∑
n=1

Eq(xT )Eq(ρ)(x0,xtn+1
|xT )

[
DKL(q

(ρ)(xtn |x0,xtn+1
,xT ) ∥ pθ(xtn |xtn+1

,xT ))
]

− Eq(xT )Eq(ρ)(x0,xt1
|xT ) [log pθ(x0|xt1 ,xT )]

(26)
where

DKL(q
(ρ)(xtn |x0,xtn+1 ,xT ) ∥ pθ(xtn |xtn+1 ,xT ))

=DKL(q
(ρ)(xtn |x0,xtn+1 ,xT ) ∥ q(ρ)(xtn |xθ(xtn+1 , tn+1,xT ),xtn+1 ,xT ))

=
d2n∥xθ(xtn+1

, tn+1,xT )− x0∥22
2ρ2n

(27)
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where we have denoted dn := btn −
√
c2tn − ρ2n

btn+1

ctn+1
. Besides, we have

log pθ(x0|xt1 ,xT ) = log q(ρ)(x0|xθ(xt1 , t1,xT ),xt1 ,xT )

= logN (xθ(xt1 , t1,xT ), ρ
2
0I)

= −∥xθ(xt1 , t1,xT )− x0∥22
2ρ20

+ C

(28)

where C is irrelevant to θ. According to Eqn. (6), the conditional score is

∇xt
log q(xt|x0,xT ) = −

xt − atxT − btx0

c2t
(29)

Therefore,

∥xθ(xtn , tn,xT )− x0∥22

=
c4tn
b2tn

∥∥∥∥−xtn − atnxT − btnxθ(xtn , tn,xT )

c2tn
−
(
−xtn − atnxT − btnx0

c2tn

)∥∥∥∥2
2

=
c4tn
b2tn
∥sθ(xtn , tn,xT )−∇xtn

log q(xtn |x0,xT )∥22

(30)

where sθ is related to xθ by

sθ(xt, t,xT ) = −
xt − atxT − btxθ(xt, t,xT )

c2t
(31)

Define d0 = 1, the loss J (ρ)(θ) is further simplified to

J (ρ)(θ)− C

=

N−1∑
n=0

Eq(xT )q(ρ)(x0,xtn+1
|xT )

[
d2n∥xθ(xtn+1

, tn+1,xT )− x0∥22
2ρ2n

]

=

N∑
n=1

d2n−1

2ρ2n−1

Eq(xT )q(x0|xT )q(xtn |x0,xT )

[
∥xθ(xtn , tn,xT )− x0∥22

]
=

N∑
n=1

d2n−1c
4
tn

2ρ2n−1b
2
tn

Eq(xT )q(x0|xT )q(xtn |x0,xT )

[
∥sθ(xtn , tn,xT )−∇xtn

log q(xtn |x0,xT )∥22
]
(32)

Compared to the training objective of DDBMs in Eqn. (9), J (ρ)(θ) is totally equivalent up to a
constant, by concentrating on the discretized timesteps {tn}Nn=1, choosing q(xT )q(x0|xT ) as the

paired data distribution and using the weighting function γ that satisfies γ(tn) =
d2
n−1c

4
tn

2ρ2
n−1b

2
tn

.

B.3 PROOF OF PROPOSITION 4.1

Proof. We first represent the PF-ODE (Eqn. (8))

dxt =

[
f(t)xt − g2(t)

(
1

2
∇xt log q(xt|xT )−∇xt log qT |t(xT |xt)

)]
dt (33)

with the data predictor xθ(xt, t,xT ). We replace the bridge score ∇xt
log q(xt|xT ) with the net-

work sθ(xt, t,xT ), which is related to xθ(xt, t,xT ) by Eqn. (14). Besides, ∇xt log qT |t(xT |xt)
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can be analytically computed as

∇xt
log qT |t(xT |xt) = ∇xt

log
q(xt|x0,xT )q(xT |x0)

q(xt|x0)

= ∇xt log q(xt|x0,xT )−∇xt log q(xt|x0)

= −xt − atxT − btx0

c2t
+

xt − αtx0

σ2
t

= −
SNRT

SNRt
(xt − αt

αT
xT )

σ2
t (1− SNRT

SNRt
)

= −
at(

αT

αt
xt − xT )

c2t

(34)

Substituting Eqn. (14) and Eqn. (34) into Eqn. (33), the PF-ODE is transformed to

dxt =

[
f(t)xt − g2(t)

(
−xt − atxT − btxθ(xt, t,xT )

2c2t
+

at(
αT

αt
xt − xT )

c2t

)]
dt

=

[(
f(t) + g2(t)

1− 2at
αT

αt

2c2t

)
xt + g2(t)

at
2c2t

xT − g2(t)
bt
2c2t

xθ(xt, t,xT )

]
dt

=

[(
f(t) +

g2(t)

σ2
t

− g2(t)

2c2t

)
xt + g2(t)

at
2c2t

xT − g2(t)
bt
2c2t

xθ(xt, t,xT )

]
dt

(35)

On the other hand, the ODE corresponding to DBIMs (Eqn. (16)) can be expanded as

dxt

ct
− c′t

c2t
xtdt =

[(
at
ct

)′

xT +

(
bt
ct

)′

xθ(xt, t,xT )

]
dt (36)

where we have denoted (·)′ := d(·)
dt . Further simplification gives

dxt =

[
c′t
ct
xt +

(
a′t − at

c′t
ct

)
xT +

(
b′t − bt

c′t
ct

)
xθ(xt, t,xT )

]
dt (37)

The coefficients at, bt, ct are determined by the noise schedule αt, σt in diffusion models. Comput-
ing their derivatives will produce terms involving f(t), g(t), which are used to define the forward
SDE. As revealed in diffusion models, f(t), g(t) are related to αt, σt by f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t . We can derive the reverse relation of αt, σt and f(t), g(t):

αt = e
∫ t
0
f(τ)dτ , σ2

t = α2
t

∫ t

0

g2(τ)

α2
τ

dτ (38)

which can facilitate subsequent calculation. We first compute the derivative of a common term in
at, bt, ct: (

1

SNRt

)′

=

(
σ2
t

α2
t

)′

=
g2(t)

α2
t

(39)

For ct, since c2t = σ2
t (1− SNRT

SNRt
), we have

c′t
ct

= (log ct)
′ =

1

2
(log c2t )

′ =
1

2
(log σ2

t + log(1− SNRT

SNRt
))′ (40)

where

(log σ2
t )

′ = (log
σ2
t

α2
t

)′ + (logα2
t )

′ =
g2(t)

α2
t

α2
t

σ2
t

+ 2f(t) =
g2(t)

σ2
t

+ 2f(t) (41)

and

(log(1− SNRT

SNRt
))′ = − SNRT

1− SNRT

SNRt

(
1

SNRt

)′

= −SNRT

c2t
σ2
t

g2(t)

α2
t

= −g2(t)

c2t

SNRT

SNRt
(42)
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Substituting Eqn. (41) and Eqn. (42) into Eqn. (40), and using the relation SNRT

SNRt
= 1− c2t

σ2
t

, we have

c′t
ct

= f(t) +
g2(t)

2σ2
t

− g2(t)

2c2t

SNRT

SNRt
= f(t) +

g2(t)

σ2
t

− g2(t)

2c2t
(43)

For at, since at =
αt

αT

SNRT

SNRt
, we have

a′t
at

= (log at)
′ = (logαt)

′ + (log
SNRT

SNRt
)′ = f(t) + SNRt

g2(t)

α2
t

= f(t) +
g2(t)

σ2
t

(44)

For bt, since bt = αt(1− SNRT

SNRt
), we have

b′t
bt

= (log bt)
′ = (logαt)

′+(log(1−SNRT

SNRt
))′ = f(t)− g2(t)

c2t

SNRT

SNRt
= f(t)+

g2(t)

σ2
t

− g2(t)

c2t
(45)

Therefore,

a′t − at
c′t
ct

= at(
a′t
at
− c′t

ct
) =

g2(t)

2c2t
at (46)

and

b′t − bt
c′t
ct

= bt(
b′t
bt
− c′t

ct
) = −g2(t)

2c2t
bt (47)

Substituting Eqn. (43), Eqn. (46) and Eqn. (47) into the ODE of DBIMs in Eqn. (37), we obtain
exactly the PF-ODE in Eqn. (35).

C MORE THEORETICAL DISCUSSIONS

C.1 MARKOV PROPERTY OF THE GENERALIZED DIFFUSION BRIDGES

We aim to analyze the Markov property of the forward process corresponding to our generalized
diffusion bridge in Section 3.1. The forward process of q(ρ) can be induced by Bayes’ rule as

q(ρ)(xtn+1
|x0,xtn ,xT ) =

q(ρ)(xtn |x0,xtn+1 ,xT )q
(ρ)(xtn+1 |x0,xT )

q(ρ)(xtn |x0,xT )
(48)

where q(ρ)(xt|x0,xT ) = q(xt|x0,xT ) is the marginal distribution of the diffusion bridge in
Eqn. (6), and q(ρ)(xtn |x0,xtn+1

,xT ) is defined in Eqn. (11) as

q(ρ)(xtn |x0,xtn+1 ,xT ) = N (atnxT + btnx0 +
√
c2tn − ρ2n

xtn+1
− atn+1

xT − btn+1
x0

ctn+1

, ρ2nI).

(49)
Due to the marginal preservation property (Proposition 3.1), we have q(ρ)(xtn+1 |x0,xT ) =

q(xtn+1 |x0,xT ) and q(ρ)(xtn |x0,xT ) = q(xtn |x0,xT ), where q(xt|x0,xT ) = N (atxT +

btx0, c
2
tI) is the forward transition kernel in Eqn. (6). To identify whether q(ρ)(xtn+1 |x0,xtn ,xT )

is Markovian, we only need to examine the dependence of xtn+1 on x0. To this end, we proceed to
derive conditions under which∇xtn+1

log q(ρ)(xtn+1
|x0,xtn ,xT ) involves terms concerning x0.

Specifically,∇xtn+1
log q(ρ)(xtn+1

|x0,xtn ,xT ) can be calculated as

∇xtn+1
log q(ρ)(xtn+1 |x0,xtn ,xT )

=∇xtn+1
log q(ρ)(xtn |x0,xtn+1 ,xT ) +∇xtn+1

log q(ρ)(xtn+1 |x0,xT )

=−

√
c2tn − ρ2n(atnxT + btnx0 +

√
c2tn − ρ2n

xtn+1
−atn+1

xT−btn+1
x0

ctn+1
− xtn)

ctn+1
ρ2n

−
xtn+1 − atn+1xT − btn+1x0

c2tn+1

=
btn+1

c2tn − btnctn+1

√
c2tn − ρ2n

c2tn+1
ρ2n

x0 + C(xtn ,xtn+1
,xT )

(50)
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where C(xtn ,xtn+1
,xT ) are terms irrelevant to x0. Therefore,

q(ρ)(xtn+1 |x0,xtn ,xT ) is Markovian⇐⇒
btn+1

c2tn − btnctn+1

√
c2tn − ρ2n

c2tn+1
ρ2n

= 0

⇐⇒ ρn = σtn

√
1−

SNRtn+1

SNRtn

(51)

which is exactly a boundary choice of the variance parameter ρ. Under the other boundary choice

ρn = 0 and intermediate ones satisfying 0 < ρn < σtn

√
1− SNRtn+1

SNRtn
, the forward process

q(ρ)(xtn+1 |x0,xtn ,xT ) is non-Markovian.

C.2 THE INSIGNIFICANCE OF LOSS WEIGHTING IN TRAINING

The insignificance of the weighting mismatch in Proposition 3.2 can be interpreted from two aspects.
On the one hand, L consists of independent terms concerning individual timesteps (as long as the
network’s parameters are not shared across different t), ensuring that the global minimum remains
the same as minimizing the loss at each timestep, regardless of the weighting. On the other hand, L
under different weightings are mutually bounded by mint wt

maxt γt
Lγ(θ) ≤ Lw(θ) ≤ maxt wt

mint γt
Lγ(θ). Be-

sides, it is widely acknowledged that in diffusion models, the weighting corresponding to variational
inference may yield superior likelihood but suboptimal sample quality (Ho et al., 2020; Song et al.,
2021c), which is not preferred in practice.

C.3 SPECIAL CASES AND RELATIONSHIP WITH PRIOR WORKS

Connection to Flow Matching When the noise schedule αt = 1, T = 1 and σt =
√
βt, the

forward process becomes q(xt|x0,x1) = N (txT + (1 − t)x0, βt(1 − t)) which is a Brownian
bridge. When β → 0, there will be no intermediate noise and the forward process is similar to flow
matching (Lipman et al., 2022; Albergo et al., 2023). In this limit, the DBIM (η = 1) updating
rule from time t to time s < t will become xs = sxT + (1 − s)xθ(xt, t,xT ) = s

txt + (1 −
s
t )xθ(xt, t) = xt − (t − s)vθ(xt, t). Here we define vθ(xt, t) := xt−xθ(xt,t)

t as the velocity
function of the probability flow (i.e., the drift of the ODE) in flow matching methods. Therefore, in
the flow matching case, DBIM is a simple Euler step of the flow.

Connection to DDIM In the regions where t is small and SNRT

SNRt
is close to 0, we have at ≈ 0, bt ≈

αt, ct ≈ σt. Therefore, the forward process of DDBM in this case is approximately q(xt|x0,xT ) =
N (αtx0, σ

2
t I), which is the forward process of the corresponding diffusion model. Moreover, in

this case, the DBIM (η = 0) step is approximately

xs ≈
σs

σt
xt + σs

(
αs

σs
− αt

σt

)
xθ(xt, t,xT ) (52)

which is exactly DDIM (Song et al., 2021a), except that the data prediction network xθ is dependent
on xT . This indicates that when t is small so that the component of xT in xt is negligible, DBIM
recovers DDIM.

Connection to Posterior Sampling The previous work I2SB (Liu et al., 2023b) also employs
diffusion bridges with discrete timesteps, though their noise schedule is restricted to the variance
exploding (VE) type with f(t) = 0 in the forward process. For generation, they adopt a sim-
ilar approach to DDPM (Ho et al., 2020) by iterative sampling from the posterior distribution
pθ(xn−1|xn), which is a parameterized and shortened diffusion bridge between the endpoints
x̂0 = xθ(xn, tn,xN ) and xn. Since the posterior distribution is not conditioned on xT (ex-
cept through the parameterized network), the corresponding forward diffusion bridge is Markovian.
Thus, the posterior sampling in I2SB is a special case of DBIM by setting η = 0 and f(t) = 0.

C.4 PERSPECTIVE OF EXPONENTIAL INTEGRATORS

Exponential integrators (Calvo & Palencia, 2006; Hochbruck et al., 2009) are widely adopted in
recent works concerning fast sampling of diffusion models (Zhang & Chen, 2022; Zheng et al.,
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2023a; Gonzalez et al., 2023). Suppose we have an ODE

dxt = [a(t)xt + b(t)Fθ(xt, t)]dt (53)

where Fθ is the parameterized prediction function that we want to approximate with Taylor ex-
pansion. The usual way of representing its analytic solution xt at time t with respect to an initial
condition xs at time s is

xt = xs +

∫ t

s

[a(τ)xτ + b(τ)Fθ(xτ , τ)]dτ (54)

By approximating the involved integrals in Eqn. (54), we can obtain direct discretizations of
Eqn. (53) such as Euler’s method. The key insight of exponential integrators is that, it is often bet-
ter to utilize the “semi-linear” structure of Eqn. (53) and analytically cancel the linear term a(t)xt.
This way, we can obtain solutions that only involve integrals of Fθ and result in lower discretization
errors. Specifically, by the “variation-of-constants” formula, the exact solution of Eqn. (53) can be
alternatively given by

xt = e
∫ t
s
a(τ)dτxs +

∫ t

s

e
∫ t
τ
a(r)drb(τ)Fθ(xτ , τ)dτ (55)

We can apply this transformation to the PF-ODE in DDBMs. By collecting the linear terms w.r.t.
xt, Eqn. (8) can be rewritten as (already derived in Appendix B.3)

dxt =

[(
f(t) +

g2(t)

σ2
t

− g2(t)

2c2t

)
xt + g2(t)

at
2c2t

xT − g2(t)
bt
2c2t

xθ(xt, t,xT )

]
dt (56)

By corresponding it to Eqn. (53), we have

a(t) = f(t) +
g2(t)

σ2
t

− g2(t)

2c2t
, b1(t) = g2(t)

at
2c2t

, b2(t) = −g2(t)
bt
2c2t

(57)

From Eqn. (43), Eqn. (46) and Eqn. (47), we know

a(t) =
d log ct

dt
, b1(t) = at

d log(at/ct)

dt
, b2(t) = bt

d log(bt/ct)

dt
(58)

Note that these relations are known in advance when converting from our ODE to the PF-ODE.
Otherwise, finding them in this inverse conversion will be challenging. The integrals in Eqn. (55)
can then be calculated as

∫ t

s
a(τ)dτ = log ct − log cs. Thus

e
∫ t
s
a(τ)dτ =

ct
cs
, e

∫ t
τ
a(r)dr =

ct
cτ

(59)

Therefore, the exact solution in Eqn. (55) becomes

xt =
ct
cs
xs + ct

∫ t

s

aτ
cτ

xTd log

(
aτ
cτ

)
+ ct

∫ t

s

bτ
cτ

xθ(xτ , τ,xT )d log

(
bτ
cτ

)
=

ct
cs
xs +

(
at −

ct
cs
as

)
xT + ct

∫ t

s

bτ
cτ

xθ(xτ , τ,xT )d log

(
bτ
cτ

) (60)

which is the same as Eqn. (17) after exchanging s and t and changing the time variable in the integral
to λt = log

(
bt
ct

)
.

Lastly, we emphasize the advantage of DBIM over employing exponential integrators. First, deriving
our ODE via exponential integrators requires the PF-ODE as preliminary. However, the PF-ODE
alone cannot handle the singularity at the start point and presents theoretical challenges. Moreover,
the conversion process from the PF-ODE to our ODE is intricate, while DBIM retains the overall
simplicity. Additionally, DBIM supports varying levels of stochasticity during sampling, unlike the
deterministic nature of ODE-based methods. This stochasticity can mitigate sampling errors via the
Langevin mechanism (Song et al., 2021c), potentially enhancing the generation quality.
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D DERIVATION OF OUR HIGH-ORDER NUMERICAL SOLVERS

High-order solvers of Eqn. (17) can be developed by approximating xθ in the integral with Tay-
lor expansion. Specifically, as a function of λ, we have xθ(xtλ , tλ,xT ) ≈ xθ(xt, t,xT ) +∑n

k=1
(λ−λt)

k

k! x
(k)
θ (xt, t,xT ), where x

(k)
θ (xt, t,xT ) =

dkxθ(xtλ
,tλ,xT )

dλk

∣∣∣
λ=λt

is the k-th order

derivative w.r.t. λ, which can be estimated with finite difference of past network outputs.

2nd-Order Case With the Taylor expansion xθ(xtλ , tλ,xT ) ≈ xθ(xt, t,xT ) + (λ −
λt)x

(1)
θ (xt, t,xT ), we have

∫ λs

λt

eλxθ(xtλ , tλ,xT )dλ ≈

(∫ λs

λt

eλdλ

)
xθ(xt, t,xT ) +

(∫ λs

λt

(λ− λt)e
λdλ

)
x
(1)
θ (xt, t,xT )

≈ eλs

[
(1− e−h)x̂t + (h− 1 + e−h)x̂

(1)
t

]
(61)

where we use x̂t to denote the network output at time t, and h = λs − λt > 0. Suppose we have
used a previous timestep u (s < t < u), the first-order derivative can be estimated by

x̂
(1)
t ≈ x̂t − x̂u

h1
, h1 = λt − λu (62)

3rd-Order Case With the Taylor expansion xθ(xtλ , tλ,xT ) ≈ xθ(xt, t,xT ) + (λ −
λt)x

(1)
θ (xt, t,xT ) +

(λ−λt)
2

2 x
(2)
θ (xt, t,xT ), we have

∫ λs

λt

eλxθ(xtλ , tλ,xT )dλ

≈

(∫ λs

λt

eλdλ

)
xθ(xt, t,xT ) +

(∫ λs

λt

(λ− λt)e
λdλ

)
x
(1)
θ (xt, t,xT )

+

(∫ λs

λt

(λ− λt)
2

2
eλdλ

)
x
(2)
θ (xt, t,xT )

≈eλs

[
(1− e−h)x̂t + (h− 1 + e−h)x̂

(1)
t +

(
h2

2
− h+ 1− e−h

)
x̂
(2)
t

]
(63)

Similarly, suppose we have two previous timesteps u1, u2 (s < t < u1 < u2), and denote h1 :=
λt − λu1 , h2 := λu1

− λu2
, the first-order and second-order derivatives can be estimated by

x̂
(1)
t ≈

x̂t−x̂u1

h1
(2h1 + h2)−

x̂u1
−x̂u2

h2
h1

h1 + h2
, x̂

(2)
t ≈ 2

x̂t−x̂u1

h1
− x̂u1

−x̂u2

h2

h1 + h2
(64)

The high-order samplers for DDBMs also theoretically guarantee the order of convergence, similar
to those for diffusion models (Zhang & Chen, 2022; Lu et al., 2022b; Zheng et al., 2023a). We omit
the proofs here as they deviate from our main contributions.
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E ALGORITHM

Algorithm 1 DBIM (high-order)

Require: condition xT , timesteps 0 ≤ t0 < t1 < · · · < tN−1 < tN = T , data prediction model
xθ, booting noise ϵ ∼ N (0, I), noise schedule at, bt, ct, λt = log(bt/ct), order o (2 or 3).

1: x̂T ← xθ(xT , T,xT )
2: xtN−1

← atxT + btx̂T + ctϵ
3: for i← N − 1 to 1 do
4: s, t← ti−1, ti; h← λs − λt

5: x̂t ← xθ(xt, t,xT )
6: if o = 2 or i = N − 1 then
7: u← ti+1; h1 ← λt − λu

8: Estimate x̂
(1)
t with Eqn. (62)

9: Î ← eλs

[
(1− e−h)x̂t + (h− 1 + e−h)x̂

(1)
t

]
10: else
11: u1, u2 ← ti+1, ti+2; h1 ← λt − λu1 ; h2 ← λu1 − λu2

12: Estimate x̂
(1)
t , x̂

(2)
t with Eqn. (64)

13: Î ← eλs

[
(1− e−h)x̂t + (h− 1 + e−h)x̂

(1)
t +

(
h2

2 − h+ 1− e−h
)
x̂
(2)
t

]
14: end if
15: xs ← cs

ct
xt +

(
as − cs

ct
at

)
xT + csÎ

16: end for
17: return xt0

F EXPERIMENT DETAILS

F.1 MODEL DETAILS

DDBMs and DBIMs are assessed using the same trained diffusion bridge models. For image trans-
lation tasks, we directly adopt the pretrained checkpoints provided by DDBMs. The data pre-
diction model xθ(xt, t,xT ) mentioned in the main text is parameterized by the network Fθ as
xθ(xt, t,xT ) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t),xT ), where

cin(t) =
1√

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct

, cout(t) =
√
a2t (σ

2
Tσ

2
0 − σ2

0T ) + σ2
0ctcin(t)

cskip(t) = (btσ
2
0 + atσ0T )c

2
in(t), cnoise(t) =

1

4
log t

(65)

and
σ2
0 = Var[x0], σ

2
T = Var[xT ], σ0T = Cov[x0,xT ] (66)

For the image inpainting task on ImageNet 256×256 with 128×128 center mask, DDBMs do not
provide available checkpoints. Therefore, we train a new model from scratch using the noise sched-
ule of I2SB (Liu et al., 2023b). The network is initialized from the pretrained class-conditional
diffusion model on ImageNet 256×256 provided by (Dhariwal & Nichol, 2021), while addition-
ally conditioned on xT . The data prediction model in this case is parameterized by the net-
work Fθ as xθ(xt, t,xT ) = xt − σtFθ(xt, t,xT ) and trained by minimizing the loss L(θ) =

Et,x0,xT

[
1
σ2
t
∥xθ(xt, t,xT )− x0∥22

]
. We train the model on 8 NVIDIA A800 GPU cards with a

batch size of 256 for 400k iterations, which takes around 19 days.

F.2 SAMPLING DETAILS

We elaborate on the sampling configurations of different approaches, including the choice of
timesteps {ti}Ni=0 and details of the samplers. In this work, we adopt tmin = 0.0001 and tmax = 1
following (Zhou et al., 2023). For the DDBM baseline, we use the hybrid, high-order Heun sampler
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proposed in their work with an Euler step ratio of 0.33, which is the best performing configuration for
the image-to-image translation task. We use the same timesteps distributed according to EDM (Kar-
ras et al., 2022)’s scheduling (t

1/ρ
max+

i
N (t

1/ρ
min− t

1/ρ
max))ρ, consistent with the official implementation

of DDBM. For DBIM, since the initial sampling step is distinctly forced to be stochastic, we specif-
ically set it to transition from tmax to tmax − 0.0001, and employ a simple uniformly distributed
timestep scheme in [tmin, tmax − 0.0001) for the remaining timesteps, across all settings. For inter-
polation experiments, to enhance diversity, we increase the step size of the first step from 0.0001 to
0.01.

F.3 LICENSE

Table 7: The used datasets, codes and their licenses.

Name URL Citation License

Edges→Handbags https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix Isola et al. (2017) BSD
DIODE-Outdoor https://diode-dataset.org/ Vasiljevic et al. (2019) MIT
ImageNet https://www.image-net.org Deng et al. (2009) \
Guided-Diffusion https://github.com/openai/guided-diffusion Dhariwal & Nichol (2021) MIT
I2SB https://github.com/NVlabs/I2SB Liu et al. (2023b) CC-BY-NC-SA-4.0
DDBM https://github.com/alexzhou907/DDBM Zhou et al. (2023) \

We list the used datasets, codes and their licenses in Table 7.

G ADDITIONAL RESULTS

G.1 RUNTIME COMPARISON

Table 8 shows the inference time of DBIM and previous methods on a single NVIDIA A100 under
different settings. We use torch.cuda.Event and torch.cuda.synchronize to accu-
rately compute the runtime. We evaluate the runtime on 8 batches (dropping the first batch since
it contains extra initializations) and report the mean and std. We can see that the runtime is pro-
portional to NFE. This is because the main computation costs are the serial evaluations of the large
neural network, and the calculation of other coefficients requires neglectable costs. Therefore, the
speedup for the NFE is approximately the actual speedup of the inference time.

Table 8: Runtime of different methods to generate a single batch (second / batch, ±std) on a single
NVIDIA A100, varying the number of function evaluations (NFE).

Method NFE

5 10 15 20

Center 128× 128 Inpainting, ImageNet 256× 256 (batch size = 16)

I2SB (Liu et al., 2023b) 2.8128± 0.0111 5.6049± 0.0152 8.3919± 0.0166 11.1494± 0.0259
DDBM (Zhou et al., 2023) 2.8711± 0.0318 5.7283± 0.0572 8.3787± 0.1667 11.0678± 0.3061
DBIM (η = 0) 2.8755± 0.0706 5.7810± 0.1494 8.5890± 0.2730 11.1613± 0.3372
DBIM (2nd-order) 2.8859± 0.0675 5.7884± 0.1734 8.6284± 0.1907 11.5898± 0.2260
DBIM (3rd-order) 2.9234± 0.0361 5.8109± 0.2982 8.6449± 0.2118 11.3710± 0.3237

G.2 DIVERSITY SCORE

We measure the diversity score (Batzolis et al., 2021; Li et al., 2023) on the ImageNet center inpaint-
ing task. We calculate the standard deviation of 5 generated samples (numerical range 0 ∼ 255)
given each observation (condition) xT , averaged over all pixels and 1000 conditions.

As shown in Table 9, the diversity score keeps increasing with larger NFE. DBIM (η = 0) consis-
tently surpasses the flow matching baseline I2SB, and DDBM’s hybrid sampler which introduces
diversity through SDE steps. Surprisingly, we find that the DBIM η = 0 case exhibits a larger di-
versity score than the η = 1 case. This demonstrates that the booting noise can introduce enough
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Table 9: Diversity scores on the ImageNet center inpainting task, varying η and the NFE. We
exclude statistics for DDBM (NFE≤10) as they correspond to severely degraded nonsense samples.

Method NFE

5 10 20 50 100 200 500

I2SB (Liu et al., 2023b) 3.27 4.45 5.21 5.75 5.95 6.04 6.15
DDBM (Zhou et al., 2023) - - 2.96 4.03 4.69 5.29 5.83

DBIM η = 0 3.74 4.56 5.20 5.80 6.10 6.29 6.42
η = 1 2.62 3.40 4.18 5.01 5.45 5.81 6.16

stochasticity to ensure diverse generation. Moreover, the η = 0 case tends to generate sharper
images, which may favor the diversity score measured by pixel-level variance.

H ADDITIONAL SAMPLES
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(a) Condition (b) Ground-truth

(c) DDBM (NFE=20), FID 46.74 (d) DBIM (NFE=20 , η = 0.0), FID 1.76

(e) DDBM (NFE=100), FID 2.40 (f) DBIM (NFE=100 , η = 0.0), FID 0.91

(g) DDBM (NFE=200), FID 0.88 (h) DBIM (NFE=200 , η = 0.0), FID 0.75

Figure 6: Edges→Handbags samples on the translation task.
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(a) Condition (b) Ground-truth

(c) DDBM (NFE=20), FID 41.03 (d) DDBM (NFE=500), FID 2.26

(e) DBIM (NFE=20 , η = 0.0), FID 4.97 (f) DBIM (NFE=200 , η = 0.0), FID 2.26

Figure 7: DIODE-Outdoor samples on the translation task.
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(a) Condition (b) Ground-truth

(c) DDBM (NFE=10), FID 57.18 (d) DDBM (NFE=500), FID 4.27

(e) DBIM (NFE=10 , η = 0.0), FID 4.51 (f) DBIM (NFE=100 , η = 0.0), FID 3.91

(g) DBIM (NFE=100 , η = 0.8), FID 3.88 (h) DBIM (NFE=500 , η = 1.0), FID 3.80

Figure 8: ImageNet 256× 256 samples on the inpainting task with center 128× 128 mask.
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