
Under review as a conference paper at ICLR 2024

A PROOFS

Lemma 1. Let Φπ1∗ be the set of all possible π-minimal state representations under π1, where every
Φπ1∗ ∈ Φπ1∗ is defined as Φπ1∗ : Sπ1 → S̄π1∗ and S̄π1∗ = ×i dom(Θ̄π1∗i) , and let π2 be a second
policy such that for all st ∈ Sπ1 ∩ Sπ2 ,

supp (π2(· | st)) ⊆ supp (π1(· | st)) .
For all Φπ1∗ ∈ Φπ1∗, there exists a π-Markov state representation under policy π2, Φπ2 : Sπ2 → S̄π2

with S̄π2 = ×i dom(Θ̄π2i), such that Θ̄π2 ⊆ Θ̄π1∗ for all st ∈ Sπ1 ∩ Sπ2 . Moreover, there exist
cases where Θ̄π2

t ̸= Θ̄π1∗
t .

Proof. First, it is easy to show that

∀st ∈ S, supp (π2(· | st)) ⊆ supp (π1(· | st)) ⇐⇒ Sπ2 ⊆ Sπ1 ,

and
∀st ∈ S, supp (π2(· | st)) = supp (π1(· | st)) ⇐⇒ Sπ2 = Sπ1 .

In particular, Sπ2 ⊂ Sπ1 if there is at least one state s′t ∈ Sπ1 ∩ Sπ2 such that

supp (π2(· | s′t)) ⊂ supp (π1(· | s′t))
while

supp (π2(· | st)) = supp (π1(· | st))
for all other st ∈ Sπ1 ∩ Sπ2 .

In such cases, we know that there is at least one action a′ for which π2(a
′
t | s′t) = 0 but π1(a

′
t | s′t) ̸=

0. Hence, if there was a state (or group of states) that could only be reached by taking action a′t at s′t,
π2 would never visit it and thus Sπ2 ⊂ Sπ1 .

Further, if Sπ2 ⊂ Sπ1 , we know that, for every Φπ1∗ ∈ Φπ1∗, there must be a Φπ2∗ that requires,
at most, the same number of variables, Θ̄π2

t ⊆ Θ̄π1∗
t and, in some cases, fewer, Θ̄π1∗

t ̸= Θ̄π2∗
t (e.g.,

Frozen T-Maze example).

Proposition 1. Let Φ∗ be the set of all possible minimal state representations, where every Φ∗ ∈ Φ∗

is defined as Φ∗ : S → S̄∗ with S̄∗ = ×i dom(Θ̄∗i). For all π and all Φ∗ ∈ Φ∗, there exists a
π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×i dom(Θ̄πi) such that for all s ∈ Sπ,
Θ̄π ⊆ Θ̄∗. Moreover, there exist cases for which Θ̄π is a proper subset, Θ̄π ̸= Θ̄∗.

Proof. The proof follows from Lemma 1. We know that, in general, Sπ ⊆ S , and if π(a′t|s′t) = 0 for
at least one pair a′t ∈ A, s′t ∈ S for which there is a state (or group of states) that can only be reached
by taking action a′t at s′t, then Sπ ⊂ S . Hence, for every Φ∗ there is a Φπ such that Θ̄π ⊆ Θ̄∗, and in
some cases, we may have Θ̄π ̸= Θ̄∗ (e.g., Frozen T-Maze example).

Theorem 1. Let Φ∗ : S → S̄∗ with S̄∗ = ×i dom(Θ̄∗i) be a minimal state representation. If, for
some π, there is a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×i dom(Θ̄πi), such that
Θ̄π ⊂ Θ̄∗ for some s ∈ S, then Φπ is confounded by policy π.

Proof. Proof by contradiction. Let us assume that Θ̄π ⊂ Θ̄∗, and yet there is no policy confounding.
I.e., for all st, st+1 ∈ S, at ∈ A,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at) (1)

and

Prπ(Φπ(st+1) | Φπ(st), at) = Prπ(Φπ(st+1) | do(Φπ(st)), at) (2)

First, note that the do-operator implies that the equality must hold for all s′t in the equivalence of st
class under Φπ, s′t ∈ {st}Φ

π

= {h′
t ∈ Ht : Φ(h

′
t) = Φ(ht)}, i.e., not just those h′

t that are visited
under π,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at) = {R(s′t, at)}s′t∈{st}Φ (3)

13

Under review as a conference paper at ICLR 2024

which is precisely the first condition in Definition 4,

R(Φπ(st), at) = R(st, at), (4)

for all st ∈ S and at ∈ A.

Analogously, we have that,

Prπ(Φπ(st+1) | Φπ(st), at) = Prπ(Φπ(st+1) | do(Φπ(st)), at)

= Pr(Φπ(st+1) | Φπ(st), at)
(5)

where the second equality reflects that the above must hold independently of π. Hence, we have that
for all st, st+1 ∈ S and s′t ∈ {st}Φ,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | Φπ(s′t), at), (6)

which means that, for all st, st+1 ∈ S and st ∈ A,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | st, at)

=
∑

s′t+1∈{st+1}Φπ

T (s′t+1 | st, at), (7)

which is the second condition in Definition 4.

Equations equation 4 and equation 7 reveal that if the assumption is true (i.e., Φπ is not confounded
by the policy), then Φπ is not just π-Markov but actually strictly Markov (Definition 4). However, we
know that Φ∗(st) is the minimal state representation, which contradicts the above statement, since,
according to Definition 5, there is no proper subset of Θ̄∗, for all st ∈ S , such that the representation
remains Markov. Hence, Θ̄π ⊂ Θ̄∗ implies policy confounding.

Proposition 2. Let {Θ̄∗}∪Φ∗ be the union of variables in all possible minimal state representations.
There exist cases where, for some π, there is a π-minimal state representation Φπ∗ : Sπ → S̄π∗ with
S̄π∗ = ×i dom(Θ̄π∗i) such that Θ̄π∗ \ {Θ̄∗}∪Φ∗ ̸= ∅.

Proof (sketch). Consider a deterministic MDP with a deterministic policy. Imagine there exists a
variable X that is perfectly correlated with the episode’s timestep t, but that is generally irrelevant to
the task. The variable X would constitute in itself a valid π-Markov state representation since it can
be used to determine transitions and rewards so long as a deterministic policy is followed. At the
same time, X would not enter the minimal Markov state representation because it is useless under
stochastic policies. Example 4 below illustrates this situation.

B EXAMPLE: WATCH THE TIME

START GOAL

Figure 7: An illustration of the watch-the-time environment.

Example 4. (Watch the Time) This example is inspired by the empirical results of Song et al. (2020).
Figure 7 shows a grid world environment., The agent must go from the start cell to the goal cell. The
agent must avoid the pink cells; stepping on those yields a −0.1 penalty. There is a is +1 reward for
reaching the goal. The agent can observe its own location within the maze X and the current timestep
t. The two diagrams in Figure 8 are DBNs describing the environment dynamics. When actions are
considered exogenous random variables (left diagram), the only way to estimate the reward at t = 10
is by looking at the agent’s location. In contrast, when actions are determined by the policy (right
diagram), t becomes a proxy for the agent’s location X10. This is because the start location and the
sequence of actions are fixed. This implies that t is a perfectly valid π-Markov state representation
under π∗. Moreover, as shown by the DBN on the right, the optimal policy may simply rely on t to
determine the optimal action.

14

Under review as a conference paper at ICLR 2024

...

...

...

...

Figure 8: Two DBNs representing the dynamics of the watch-the-time environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right).

C FURTHER RELATED WORK

Early evidence of policy confounding Although to the best of our knowledge, we are the first to
bring forward and describe mathematically the idea of policy confounding, a few prior works have
reported evidence of particular forms of policy confounding. In their review of the Arcade Learning
Environment (ALE; Bellemare et al., 2013), Machado et al. (2018) explain that because the games are
fully deterministic (i.e., initial states are fixed and transitions are deterministic), open-loop policies
that memorize good action sequences can achieve high scores in ALE. Clearly, this can only occur if
the policies themselves are also deterministic. In such cases, policies, acting as confounders, induce a
spurious correlation between the past action sequences and the environment states. Similarly, Song
et al. (2020) showed, by means of saliency maps, how agents may learn to use irrelevant features of
the environment that happen to be correlated with the agent’s progress, such as background clouds or
the game timer, as clues for outputting optimal actions. In this case, the policy is again a confounder
for all these, a priori irrelevant, features. Zhang et al. (2018b) provide empirical results showing how
large neural networks may overfit their training environments and, even when trained on a collection
of procedurally generated environments, memorize the optimal action for each observation. Zhang
et al. (2018a) shows how, when trained on a small subset of trajectories, agents fail to generalize
to a set of test trajectories generated by the same simulator. Lan et al. (2023) report evidence of
well-trained agents failing to perform well on Mujoco environments when starting from trajectories
(states) that are out of the distribution induced by the agent’s policy. We conceive this as a simple
form of policy confounding. Since the Mujoco environments are also deterministic, agents following
a fixed policy can memorize the best actions to take for each state instantiation, potentially relying
on superfluous features. Hence, they can overfit to unnatural postures that would not occur under
different policies. Finally, Nikishin et al. (2022) describe a phenomenon named ‘primacy bias’, which
prevents agents trained on poor trajectories from further improving their policies. The authors show
that this issue is particularly relevant when training relies heavily on early data coming from a fixed
random policy. We hypothesize that one of the causes for this is also policy confounding. The random
policy may induce spurious correlations that lead to the formation of rigid state (state) representations
that are hard to recover from.

Generalization Generalization is a hot topic in machine learning. The promise of a model perform-
ing well in contexts other than those encountered during training is undoubtedly appealing. In the
realm of reinforcement learning, the majority of research focuses on generalization to environments
that, despite sharing a similar structure, differ somewhat from the training environment (Kirk et al.,
2023). These differences range from small variations in the transition dynamics (e.g., sim-to-real
transfer; Higgins et al., 2017; Tobin et al., 2017; Peng et al., 2018; Zhao et al., 2020), changes
in the observations (i.e., modifying irrelevant information, such as noise: Mandlekar et al., 2017;
Ornia et al., 2022, or background variables: Zhang et al., 2020; Stone et al., 2021), to alterations
in the reward function, resulting in different goals or tasks (Taylor & Stone, 2009; Lazaric, 2012;
Muller-Brockhausen et al., 2021). Instead, we focus on the problem of OOT generalization. We
aim to ensure that agents perform effectively when confronted with situations that differ from those
encountered along their usual trajectories. Note that, in our experiments agents are evaluated in
altered environments with different dynamics than those seen during training. These alterations are
only intended to force the agent to take different trajectories. Importantly, the trajectories we force
the agent to take are possible in the original environment.

15

Under review as a conference paper at ICLR 2024

State abstraction State abstraction is concerned with removing from the representation all that
state information that is irrelevant to the task. In contrast, we are worried about learning representa-
tions containing too little information, which can lead to state aliasing. Nonetheless, as argued by
McCallum (1995), state abstraction and state aliasing are two sides of the same coin. That is why we
borrowed the mathematical frameworks of state abstraction to describe the phenomenon of policy
confounding. Li et al. (2006) provide a taxonomy of the types of state abstraction and how they relate
to one another. Givan et al. (2003) introduce the concept of bisimulation, which is equivalent to our
definition of Markov state representation (Definition 4). Ferns et al. (2006) proposes a method for
measuring the similarity between two states. Castro (2020) notes that this metric is prohibitively
expensive and suggests using a relaxed version that computes state similarity relative to a given policy.
This is similar to our notion of π-Markov state representation (Definition 7). While the end goal of
this metric is to group together states that are similar under a given policy, here we argue that this
may lead to poor OOT generalization.

D DYNAMIC BAYESIAN NETWORKS

` ...

...

...

...

Figure 9: Two DBNs representing the dynamics of the Key2Door environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as X represent the agent’s location, while the nodes labeled as Y represent whether or not the
key has been collected. The agent can only see X . Hence, when actions that are sampled are random
(left), the agent must remember its past locations to determine the reward R7. Note that only X1

and X7 are highlighted in the left DBN. However, other variables in ⟨X2, ..., X6⟩ might be needed,
depending on when the key is collected. In contrast, when following the optimal policy, only X7 is
needed. In this second case, knowing the current location is sufficient to determine whether the key
has been collected.

...

...

...

...

Figure 10: Two DBNs representing the dynamics of the Diversion environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as X1 indicate the row where the agent is located; the nodes labeled as X2 indicate the
column. We see that when actions are sampled at random, both X1

6 and X2
6 are necessary to determine

R6. However, when actions are determined by the optimal policy, X2
6 is sufficient, as the agent

always stays at the top row.

E EXPERIMENTAL RESULTS

E.1 LEARNED STATE REPRESENTATIONS

The results reported in Section 7 show that the OOT generalization problem exists. However, some
may still wonder if the underlying reason is truly policy confounding. To confirm this, we compare the
outputs of the policy at every state in the Frozen T-Maze when being fed the same states (observation

16

Under review as a conference paper at ICLR 2024

stack) but two different signals. That is, we permute the variable containing the signal (X in the
diagram of Figure 2) and leave the rest of the variables in the observation stack unchanged. We then
feed the two versions to the policy network and measure the KL divergence between the two output
probabilities. This metric is a proxy for how much the agent attends to the signal in every state. The
heatmaps in Figure 11 show the KL divergences at various points during training (0, 10K, 30K, and
100K timesteps) when the true signal is ‘green’ and we replace it with ‘purple’. We omit the two goal
states since no actions are taken there. We see that initially (top left heatmap), the signal has very
little influence on the policy (note the scale of the colormap is 10−6), after 10K steps, the agent learns
that the signal is very important when at the top right state (top right heatmap). After this, we start
seeing how the influence of the signal at the top right state becomes less strong (bottom left heatmap)
until it eventually disappears (bottom right heatmap). In contrast, the influence of the signal at the
initial state becomes more and more important, indicating that after taking the first action, the agent
ignores the signal and only attends to its own location. The results for the alternative case, ‘purple’
signal being replaced by ‘green’ signal, are shown in Figure 12.

Figure 11: A visualization of the learned state representations. The heatmaps show the KL divergence
between the action probabilities when feeding the policy network a stack of the past 10 observations
and when feeding the same stack but with the value of the signal being switched from green to purple,
after 0 (top left), 10K (top right), 30K (bottom left), and 100K (bottom right) timesteps of training.

Figure 12: A visualization of the learned state representations. The heatmaps show the KL divergence
between the action probabilities when feeding the policy network a stack of the past 10 observations
and when feeding the same stack but with the value of the signal being switched from purple to green,
after 0 (top left), 10K (top right), 30K (bottom left), and 100K (bottom right) timesteps of training.

E.2 BUFFER SIZE AND EXPLORATION/DOMAIN RANDOMIZATION

Figures 13 and 14 report the results of the experiments described in Section 7 (paragraphs 2 and 3)
for Key2Door and Diversion. We see how the buffer size also affects the performance of DQN in the

17

Under review as a conference paper at ICLR 2024

two environments (left plots). We also see that exploration/domain randomization does improve OOT
generalization in Diversion but not in Key2Door.

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

DQN eval, BS=200
DQN eval, BS=20K

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

PPO eval, eps=.2
DQN eval, BS=200, eps=.1

Figure 13: Key2Door. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.

0 5000 10000 15000 20000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

DQN eval, BS=200
DQN eval, BS=20K

0 5000 10000 15000 20000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

PPO eval, eps=.2
DQN eval, BS=200, eps=.1

Figure 14: Diversion. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.

18

Under review as a conference paper at ICLR 2024

F FURTHER EXPERIMENTAL DETAILS

We ran our experiments on an Intel i7-8650U CPU with 8 cores. Agents were trained with Stable
Baselines3 (Raffin et al., 2021). Most hyperparameters were set to their default values except for the
ones reported in Tables 1 (PPO) and 2 (DQN), which seemed to work better than the default values.

Table 1: PPO hyperparameters.

Rollout steps 128
Batch size 32
Learning rate 2.5e-4
Number epoch 3
Entropy coefficient 1.0e-2
Clip range 0.1
Value coefficient 1
Number Neurons 1st layer 128
Number Neurons 2nd layer 128

Table 2: DQN hyperparameters.

Buffer size 1.0e5
Learning starts 1.0e3
Learning rate 2.5e-4
Batch size 256
Initial exploration bonus 1.0
Final exploration bonus 0.0
Exploration fraction 0.2
Train frequency 5
Number Neurons 1st layer 128
Number Neurons 2nd layer 128

19

	Proofs
	Example: Watch the Time
	Further Related Work
	Dynamic Bayesian Networks
	Experimental Results
	Learned state representations
	Buffer size and exploration/domain randomization

	Further Experimental Details

