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Abstract

Trajectory representation learning aims to trans-
form raw trajectory data into compact and low-
dimensional vectors that are suitable for down-
stream analysis. However, most existing meth-
ods adopt either a free-space view or a road-
network view during the learning process, which
limits their ability to capture the complex, multi-
view spatiotemporal features inherent in trajec-
tory data. Moreover, these approaches rely on
task-specific model training, restricting their gen-
eralizability and effectiveness for diverse analy-
sis tasks. To this end, we propose GTR, a gen-
eral, multi-view, and dynamic Trajectory Rep-
resentation framework built on a pre-train and
fine-tune architecture. Specifically, GTR intro-
duces a multi-view encoder that captures the in-
trinsic multi-view spatiotemporal features. Based
on the pre-train and fine-tune architecture, we
provide the spatio-temporal fusion pre-training
with a spatio-temporal mixture of experts to dy-
namically combine spatial and temporal features,
enabling seamless adaptation to diverse trajectory
analysis tasks. Furthermore, we propose an online
frozen-hot updating strategy to efficiently update
the representation model, accommodating the dy-
namic nature of trajectory data. Extensive experi-
ments on two real-world datasets demonstrate that
GTR consistently outperforms 15 state-of-the-art
methods across 6 mainstream trajectory analysis
tasks. All source code and data are available at
https://github.com/ZJU-DAILY/GTR.
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1. Introduction
With the widespread use of GPS devices and location-based
services, large volumes of trajectory data have been col-
lected (Wang et al., 2020; Zhou et al., 2024). A trajectory
is typically represented as a sequence of spatio-temporal
points, capturing the movement of a mobile object (e.g., a
person or vehicle) and enabling various applications (Jeong
et al., 2014; LOU et al., 2021), such as similarity search (Li
et al., 2018), and transportation mode classification (Hu
et al., 2024). Traditional approaches often rely on man-
ually extracted features for these analyses (Wang et al.,
2020), overlooking hidden correlations between trajecto-
ries and thereby limit performance. Recently, trajectory
representation learning has emerged (Chen et al., 2021;
Fu & Lee, 2020; Jiang et al., 2023a), aiming to transform
high-dimensional trajectories into low-dimensional vectors
(i.e., trajectory embeddings) that retain essential information
from the original data and capture hidden features. These
vectors are then fed into a range of trajectory analysis tasks.

Existing trajectory representation learning studies can be
divided into two categories: (i) free-space settings and (ii)
road-network settings. In free-space settings, early stud-
ies (Fang et al., 2021; Li et al., 2018) treat trajectories as
pure point sequences, disregarding road network constraints.
Thus, they typically apply sequential models like LSTMs
and RNNs to capture the spatio-temporal dependencies in
trajectory data. Since moving objects, such as people and
vehicles, are constrained by road networks, road-network-
based trajectory representation learning methods have been
developed. These approaches (Fang et al., 2022; Fu & Lee,
2020; Han et al., 2021; Yao et al., 2022) typically begin by
learning embeddings for road segments using graph neural
networks (GNNs) with road network graphs as input. Sub-
sequently, hidden spatio-temporal relations can be captured
by feeding the road segment embeddings into sequential
models, which are trained on task-specific objectives. Re-
cently, state-of-the-art methods, including START (Jiang
et al., 2023a) and JGRM (Ma et al., 2024), have adopted
self-supervised learning paradigms to improve the general-
ization of trajectory representation learning across various
tasks. More detailed works can be found in Appendix A.
However, there are still some unsolved challenges in devel-
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Figure 1. Free Space View vs. Road Network View

oping an effective trajectory representation learning model.

C1: Limitation of single-view representation. As men-
tioned, existing representation learning methods generally
model trajectory data from a single perspective—either a
free space view or a road network view. However, trajectory
data encompasses complex spatio-temporal semantic infor-
mation, while many essential spatio-temporal features and
semantic nuances required for downstream tasks cannot be
fully captured from a single view. Fig. 1(a) depicts a real
trajectory T on the road network, along with the complex
surrounding environment. Fig. 1(b) presents a representa-
tion of T from the road-network view, which captures only
its topological structure while neglecting the regional se-
mantics of the traversed areas. As a result, the trajectory
embeddings learned in this manner may fail to encode the
latent semantic meanings of the passed road segments or
regions, potentially undermining downstream tasks such
as semantic-aware trajectory similarity searches. In con-
trast, Fig. 1(c) illustrates the trajectory’s representation in
free-space view using a grid partitioning method (Li et al.,
2018). This example indicates that relying on a single view
may fail to capture the multi-faceted features of trajecto-
ries. Although recent studies (Lin et al., 2023; Ma et al.,
2024; Yi et al., 2024) have incorporated multi-dimensional
information for trajectory learning, they differ from our set-
ting, as they encode the road segments with GPS points. In
contrast, we encode the road segments and grids with the
latent semantic features, enabling more fine-grained spatio-
temporal learning, as proved by experiments. Overall, how
to collaboratively integrate multiple views for trajectory
representation learning is a challenge.

C2: Limitation of multitasking. As aforementioned, quite
a few approaches (Fang et al., 2023; Jiang et al., 2023b;
Si et al., 2023) are designed for specific trajectory analysis
tasks, which limits their generalizability across different
applications. As shown in Fig 2(a), the task-specific ap-
proaches require training separate models for each task,
resulting in substantial development costs. In contrast, we
aim to propose a general approach, illustrated in Fig. 2(b),
to support a wide range of downstream tasks. While the
self-supervised learning paradigm of pre-training and fine-
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Figure 2. Task-Specific Approach vs. Our General Approach

tuning has achieved great success in the representation learn-
ing field (Fu & Lee, 2020), its direct utilization to trajectory
representation learning (Jiang et al., 2023a; Ma et al., 2024)
may hinder the model’s robustness and generalization. Ac-
cording to Table 9, even the state-of-the-art methods (Chen
et al., 2021; Fu & Lee, 2020; Jiang et al., 2023a; Ma et al.,
2024; Yang et al., 2021b) only address a limited subset
of trajectory analysis tasks. This limitation arises due to
conflicting correlations between different tasks. Therefore,
how to balance the learning of spatial and temporal features
to automatically adapt to various trajectory analysis tasks
remains an unaddressed challenge.

C3: Lack of support for model update. Trajectory data
exhibit strong dynamic characteristics, particularly in urban
areas where large volumes of trajectories are continuously
generated (Chen et al., 2024). This constant influx of new
data creates an evolving context, as trajectory movement
patterns continuously adapt to changing traffic conditions.
Consequently, it is crucial to continuously learn the latest
spatio-temporal features from new trajectories to maintain
an accurate and up-to-date representation learning model.
However, as shown in Table 9, none of the state-of-the-art
methods currently support model updating, limiting their
effectiveness in dynamic environments where data patterns
are constantly shifting. Achieving online model updates
presents a significant challenge, as streaming trajectories
exhibit complex spatio-temporal correlations that are com-
putationally intensive to extract in real time.

Contributions. To address the challenges above, we pro-
pose GTR, a General, multi-view, and dynamic Trajectory
Representation learning framework, designed to generate ro-
bust embeddings that support various downstream trajectory
analysis tasks. To track challenge C1, we introduce an effec-
tive Multi-View Encoder (MVE), which encodes the origi-
nal trajectories from both free-space and road-network per-
spectives, integrating semantic regional and road topology
information to capture sufficient spatio-temporal features.
To overcome challenge C2, we propose Spatio-Temporal
fusion Pre-training (STP) based on Transformer, where we
devise a Spatio-Temporal Mixture of Expert (ST-MoE) mod-
ule to learn and adapt distinct spatio-temporal features re-
quired by various tasks in a data-driven manner, providing a
dynamic approach to integrate spatio-temporal features. In
the fine-tuning stage, we provide a suite of tuning methods
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Table 1. Notations and Descriptions
Notation Description

T GPS trajectory.
T g Grid-constrained trajectory.
T r Road-network-constrained trajectory.
G Grid cells.
G Road network.
DT Road trajectory dataset.
ZR Road representation.
ZG Grid representation.
ZP Position representation.
ZT Temporal representation.
ZS Spatial representation.
h Trajectory generalized representation.

for diverse downstream tasks. To contend with challenge
C3, we propose an efficient Online Frozen-hot Updating
(OFU) strategy by selectively freezing the parameters of the
Transformer encoder during model updating. Moreover, to
enhance the interpretability of the trajectory representative
model, we calculate the attention values to identify crucial
information that influences the training process. Based on
that, visualization processes illustrate the learning procedure
and provide optimization guidelines. Finally, we conduct
extensive experiments on two real-world datasets to demon-
strate that GTR outperforms 15 state-of-the-art baselines
across various trajectory analyses.

2. Preliminaries
Notations Table. We present the frequently used notations
and descriptions in this paper, as listed in Table 1.
Definition 2.1 (GPS Trajectory). A GPS trajectory T is
denoted as a sequence of GPS spatio-temporal points, i.e.,
T =⟨pi|(1 ≤ i ≤ L)⟩, where each point pi=(loni, lati, ti)
contains longitude, latitude, and observed timestamp, pi is
the i-th point of T , L denotes the length of T .
Definition 2.2 (Road Network). A road network is denoted
as a directed graph G=(V,E,A). V is the set of graph
vertices, where each vi ∈ V denotes a road segment. E ⊆
V × V is a set of graph edges, where each eij=(vi, vj) ∈ E
denotes an intersection between vi and vj . A ∈ R|V |×|V |

denotes the binary adjacency matrix of graph G.
Definition 2.3 (Road-network Constrained Trajectory).
A road-network constrained trajectory T r is a time-
ordered sequence of adjacency road segments, i.e., T r =
⟨(vi, tri )|(1 ≤ i ≤ Lr, vi ∈ V )⟩, where tri is the visit times-
tamp for vi, and Lr is the length of T r.

Following previous free space trajectory representation
learning (Fang et al., 2021; Li et al., 2018), we partition
the free space into w1 × w2 grid cells and assign each GPS
point to the grid cell that contains it. All of these grids make
up a set G=⟨gi|(1 ≤ i ≤ w1 × w2)⟩. Each GPS trajectory

is then mapped to a grid-constrained trajectory, offering
auxiliary spatial information to enhance feature extraction
within the road network context.

Definition 2.4 (Grid Constrained Trajectory). A grid
constrained trajectory T g is a time-ordered sequence of grid
cells, i.e., T g = ⟨(gi, tgi )|(1 ≤ i ≤ Lg, gi ∈ G)⟩, where G
is a set of grid cells, tgi is the visit timestamp for gi, and Lg

is the length of T g .

Problem Statement. For a road network G and a trajec-
tory dataset DT = ⟨Ti|(1 ≤ i ≤ |DT |), our goal is to
learn a generalized representation hi for each trajectory Ti
(Ti ∈ DT ). This representation should capture essential
spatiotemporal and semantic features to effectively support
multiple downstream tasks, such as similarity search, impu-
tation, generation, classification, simplification, and travel
time estimation.

3. Methodology
Framework Overview. The GTR framework is illustrated
in Fig. 3, comprising three key components: the Multi-
View Encoder (MVE), the Spatio-Temporal fusion Pre-
training (STP), and the Online Frozen-hot Updating
(OFU). Together, these components are designed to generate
generalized representations for road network-constrained
trajectories. In the sequel, we detail each component in
order.

3.1. Multi-View Encoder (MVE)
Design Motivation. Previous works (Fu & Lee, 2020;
Jiang et al., 2023a) mainly focus on road networks with
static semantics, ignoring the spatial features of free-space
view, such as area function characteristics (cf. Fig. 1). More-
over, the free-space view provides a coarse-grained view of
the trajectory, aiding the model in learning the trajectory’s
overall trend. Therefore, we design an MVE module to en-
code GPS trajectories, extracting multi-view representations
and spatio-temporal features by four embedding procedures.

Preparation. Given a road network G and a raw trajec-
tory T , we first encode T into road network-constrained
and grid-constrained trajectories. Specifically, any map-
matching algorithms (Newson & Krumm, 2009; Ruan et al.,
2018; Yang & Gidofalvi, 2018) can be employed to estab-
lish correspondences between the GPS points of T and
the road segments in G, ensuring road network connectiv-
ity constraints. This process generates the road network-
constrained trajectory T r (cf. Definition 2.3), denoted as
T → T r. Simultaneously, the space is partitioned into
grid cells, with each grid classified based on its contained
POIs from OpenStreetMap1. As a result, the input T is also
represented as a grid-constrained trajectory T g (cf. Defini-
tion 2.4), denoted as T → T g . Using T r and T g , we extract

1https://www.openstreetmap.org/
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Figure 3. The Overall Framework of GTR

semantic and spatio-temporal features via four embedding
methods as follows:

i) Road embedding. We begin by collecting the features
and semantic information of road segments in G, such as
speed limits, road types, and road lengths, collected from
OpenStreetMap, denoted as Fv = [f1, f2, · · · , f|V |]. Next,
Graph Attention Network (GAT) layers are applied to en-
code Fv into the road embedding ZR. This process com-
putes an attention coefficient matrix to capture the influence
among features. The operation at the l-th GAT layer is
mathematically defined as follows:

AEij = a⊤(Wv0fi ∥Wv1fj) (1)

Here, fi represents the extracted features or semantic infor-
mation of vi (vi ∈ V ). AEij denotes the attention coefficient
between fi and fj , which depicts the influence among fea-
tures. Wv0 , Wv1 and a⊤ denote the learnable parameters.
Next, the attention value is calculated and normalized to
aggregate the vertex information of G:

αij =
exp(LeakyReLU(AEij))∑

k∈Ni
exp(LeakyReLU(AEik))

, (2)

where LeakyReLU denotes the activation function. αij de-
notes the attention value between vi and vj , and Ni repre-
sents the set of all neighbors of vi. Finally, the features fi
(fi ∈ Fv) can be represented as:

f l+1
i = ∥a

′
k=1ELU

∑
j∈Ni

α
(k)
ij W(k)

v3 f
(l)
j

 (3)

Here, ELU is the Exponential Linear Unit activation func-
tion (Veličković et al., 2017), ∥ represents the “CONCAT”
operation. α(k)

ij denotes the attention value computed by the
k-th attention head, and a′ is the number of the attention
heads. W(k)

v3 is the weight matrix of the corresponding lin-
ear transformation in layer l. The final road embedding can
be represented as ZR = [fv1 , fv2 , · · · , fv|Lr|].

ii) Grid embedding with POIs. We aim to transfer the each
grid constrained trajectory of T g into a grid embedding hg .

Specifically, we use an embedding vector to represent each
grid cell, then map the trajectories to the corresponding
embedding vectors. The process is as below:

hgi = GE(T g
i ) + POIE(cpoii ) (1 ≤ i ≤ Lg) (4)

Here, GE, POIE construct the embedding vectors for grid-
constrained trajectories T g and grid’s latent type cpoi. Our
POIs extraction method can be found in Appendix B.6. It is
worth mentioning that combining grid embedding with POI
information provides auxiliary insights, capturing features
overlooked by road embeddings and enhancing the accuracy
of trajectory representations. The grid embedding can be
represented as ZG = [hg1, hg2, · · · , hgLg

].

iii) Position Embedding. To model the sequential depen-
dencies within a trajectory, we employ position embed-
dings (Devlin et al., 2019) to encode the order of the input
trajectory T . These embeddings are generated using sine
and cosine functions (Devlin et al., 2019) as follows:

PE(pos,2i) = sin
( pos
100002i/d

)
, PE(pos,2i+1) = cos

( pos
100002i/d

)
,

(5)
where PE denotes the position embedding, and pos de-
notes the sequence position in the trajectory T . d de-
notes the embedding size of GTR. With the position
embedding, we can get the position embedding hpi =
[PE(1,0), ...,PE(1,d−1), ...,PE(|Ti|,0), ...,PE(|Ti|,d−1)], and
the position embedding can be represented as ZP =
[hp1, hp2, ..., hpL].

iv) Time Embedding. We aim to capture multi-granularity
temporal features for effective trajectory representation, de-
noted as ht. Specifically, we provide three temporal features
for each timestamp of T : minutes, weeks, and years. By us-
ing three embedding vectors to extract the temporal patterns
of minutes, weeks, and years, we obtain the corresponding
embedding vectors for each timestamp, as defined below:

hti = TEm(ft(ti)) + TEw(ft(ti)) + TEy(ft(ti)) (6)

Then, we can obtain the temporal feature representation
ZT = [ht1, ht2, ..., htL]. TEm, TEw, and TEy construct the
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embedding vectors for minute, week, and year represen-
tations, respectively. We use the function ft to transform
timestamps into index ranges: [0, 1440] for minutes, [0, 7]
for weeks, and [0, 366] for years.

Finally, we combine the grid embedding ZG, road embed-
ding ZR, and position embedding ZP to derive the spatial
feature representation, computed as follows:

ZS = ZR + ZG + ZP (7)

3.2. Spatio-Temporal Fusion Pre-training (STP)

Design Motivation. Recent works (Jiang et al., 2023a;
Lin et al., 2023) mainly focus on the subset of the trajec-
tory downstream tasks, such as TTE, trajectory classifi-
cation, and most similar trajectory search. However, the
pre-training task is not usually suit for all downstream tasks,
due to the limitation of the invariant feature combination.
Therefore, we design an STP module to solve this gap, aim-
ing to develop a dynamic trajectory representation learning
model, enabling the generation of general trajectory rep-
resentations that support multiple downstream tasks. The
process comprises three stages: (i) spatio-temporal feature
fusion, (ii) pre-training, and (iii) fine-tuning.

3.2.1. SPATIO-TEMPORAL FUSION.

Different downstream tasks require varying proportions of
spatio-temporal features, necessitating dynamic adjustments.
Inspired by the effectiveness of Mixture of Experts (MoE)
methods (Cai et al., 2024) in feature fusion across diverse
domains, we propose the ST-MoE module, specifically de-
signed to dynamically integrate spatio-temporal features.
An overview of the ST-MoE module is shown in Fig. 4.
Specifically, this module includes two experts: a spatial
expert and a temporal expert. First, the spatial feature repre-
sentation ZS and temporal feature representation ZT are fed
into their respective experts. The spatial expert processes
ZS using a multi-head attention layer (Vaswani et al., 2017)
followed by a residual connection layer. The temporal ex-
pert follows the same process. The detailed procedure is as

follows:

Z′
S = LayerNorm(ZS + Dropout(MultiHead(ZS))), (8)

MultiHead(ZS) = {head1, · · · , headLhead} ·W
O
ZS

, (9)

headi = Attention(ZSW
Q
ZSi

, ZSW
K
hSi

, ZSW
V
ZSi

), (10)

where Lhead donates the number of the attention head,
WQ

ZSi
, WK

ZSi
, WV

ZSi
, WO

ZS
are learnable parameters, Lay-

erNorm donates the Layer Normalization (Lei Ba et al.,
2016). We obtain Z ′

T in the same way, which process is
omitted due to space limitations.

Next, we design a gating network to generate spatio-
temporal weights for the experts. For different tasks, the task
ID xtask is used to derive the task representation through a
fully connected layer. The weights are then computed using
a Softmax function. The process is defined as follows:

wS , wT = Softmax(FC(xtask)), (11)

where wS is the spatial weight, wT is the temporal weight,
Softmax is the Softmax activation function, and FC is the
fully connected layer.

Finally, we obtain the fusion road representation through a
residual connection and normalization layer as follows:

Z′
F = Z′

S · wS + Z′
T · wT , (12)

ZF = LayerNorm(Z′
F + Dropout(Z′

F )), (13)

where ZF is the fusion representation, which is the input of
the next pre-training stage.

3.2.2. PRE-TRAINING.

Leveraging the Transformer’s powerful ability to capture
long-distance dependencies within sequences and its effi-
ciency in parallel computing (Yang et al., 2023), we adopt a
Transformer encoder for pre-training to learn general trajec-
tory representations through carefully designed pre-training
tasks. Specifically, we utilize the Masked Language Model
(MLM) as the pre-training task for trajectory representa-
tion due to its proven effectiveness in handling sequential
data (Devlin et al., 2019). In this approach, MLM randomly
selects tokens from the sequence, masks them, and trains the
Transformer encoder to predict the masked tokens, thereby
capturing rich contextual information.

However, directly applying this technique to road network-
constrained trajectory representation introduces limitations.
This is, the adjacency of road segments in trajectories makes
it relatively simple for the Transformer encoder to predict
masked tokens. Consequently, treating individual road seg-
ments as sequence tokens results in a pre-trained model
that lacks the complexity needed to support advanced down-
stream tasks. To overcome this limitation, we propose a new
span masking method, which masks consecutive road seg-
ments (i.e., sub-trajectories) instead of individual segments.
This method consists of three main steps.
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Step 1: For the road network-constrained trajectory dataset
DT r

, we apply data augmentation techniques to enrich the
training data and provide additional information for model
optimization. These techniques include sub-trajectory se-
lecting and road drifts, which can be found in Appendix B.5.

Step 2: Given a road network constrained trajectory T r

to be masked, we randomly select 30% of road segments
from T r and mask them by replacing them. Next, we obtain
the feature representation ZF of the masked trajectory (cf.
Eq. 12) and compute the weighted representations h based
on ZF using a multi-head attention layer (Vaswani et al.,
2017). The multi-head attention layer captures information
from multiple views (e.g., grid view and road network view),
thereby improving the accuracy of trajectory representation
learning. Firstly, We obtain the query, key and value vectors
QZF

= ZFW
Q
ZF

, KZF
= ZFW

K
ZF

, VZF
= ZFW

V
ZF

,
where WQ

ZF
, WK

ZF
, WV

ZF
are learnable parameters. This

step is defined as follows:

h′ = MultiHead(QZF ,KZF ,VZF ), (14)

h = (ReLU(h′W0 + b0))W1 + b1, (15)

where QZF
, KZF

, and VZF
represent the query, key and

value vectors obtained by linear transformation for h, re-
spectively. ReLU is the activation function. W0,W1,b0,
and b1 denote the learnable parameters.

Step 3: We train the model to predict the masked road
segments, using the cross-entropy loss (Mao et al., 2023):

ŷ = Softmax(W2h+ b2), Lc = −
Nmask∑
i=1

C∑
c=1

yi,c log(ŷi,c),

(16)
where Softmax is the activation function. W2 and b2 de-
note the learnable parameters. Nmask denotes the number
of masked tokens, and C represents the size of the sub-
trajectories that are masked, ŷi,c is the model prediction.

Training Optimization. To further improve the accuracy
of the pre-trained model, we introduce an additional pre-
training task that constructs trajectory triplets to capture
the relationships among them. Specifically, for each T r,
we designate it as an anchor trajectory T r

a , and extract its
sub-trajectory as the positive sample T r

p . Unlike previous
methods (Jiang et al., 2023a; Ma et al., 2024), which con-
struct negative samples directly from the original trajectory
data and struggle to distinguish dissimilar trajectories, we
provide negative samples of varying difficulty levels to learn
more nuanced differences between trajectories. First, we
randomly select several trajectories T r from the trajectory
Dataset Dr as simple samples. Second, we employ a Vari-
ational Autoencoder (VAE) (Doersch, 2016) to generate
more challenging negative samples. The reconstruction task
and Kullback-Leibler (KL) divergence are employed during
training to generate negative samples for the anchor. This

results in the trajectory triplet (T r
a , T r

p , T r
n ) and its corre-

sponding representation triplets (ha, hp, hn) (cf. Eq. 15).
Using these triplets as training samples, we train the Trans-
former encoder. During training, the model keeps the anchor
trajectory closer to the positive sample and farther from the
negative sample. Note that, the training procedure is self-
supervised, as the triplet samples are generated from the
trajectories themselves. The loss function is defined below:

Lt =

N∑
i

[
∥ha

i − hp
i ∥

2
2 − ∥ha

i − hn
i ∥22 + τ

]
+
, (17)

where N is the number of training samples (i.e., triplets). τ
represents the parameter that defines the minimum margin
required between positive and negative samples.

Overall, we aim to obtain a pre-trained model by training
on the two tasks described above, which is handled by the
loss function defined as follows:

LGTR = β ∗ Lc + (1− β) ∗ Lt, (18)

where β is an adjusting parameter to balance the influence
of two pre-train tasks (i.e., MLM and Triplet Training).

3.2.3. FINE-TUNING.

With the pre-trained model described above, we perform
fine-tuning for each downstream task to achieve superior
performance. Unlike other methods (Fu & Lee, 2020; Jiang
et al., 2023a; Ma et al., 2024), which apply the same fine-
tuning approach across all tasks, we propose tailored fine-
tuning strategies for each downstream task. Due to the
limited space, we only introduce the Travel Time Estimation
task here, more fine-tuning methods refer to Appendix B.1.

Travel Time Estimation. The goal of TTE is to estimate
the travel time for a moving object from a start point to
a destination. To achieve this, we construct a regression
model to estimate the travel time based on a fully connected
layer of neural networks. Then, we use the Huber loss (Shi
et al., 2023) for fine-tuning, shown as below:

Lregression =

{
1
2
(y − ŷ)2 for|y − ŷ| ≤ δ

δ
(
|y − ŷ| − 1

2
δ
)

otherwise
, (19)

where δ is a preset threshold, we set δ = 1 in our work. ŷ is
the predicted value by the model, and y is the true label.

3.3. Online Frozen-Hot Updating (OFU)

Previous approaches (Chen et al., 2024; Ma et al., 2024)
often fail to leverage the real-time capabilities of trajectory
data, reducing their effectiveness in dynamic environments
where traffic conditions are constantly evolving. To address
this limitation, we propose an online frozen-hot updating
strategy. Additionally, we introduce model interpretation
methods to explain the rationale behind the model’s outputs,
facilitating optimization through well-founded approaches,
which can be found in Appendix B.3 due to the limited
space.
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Online Updating. We consider the latest trajectory data
for model updating, which is continuously collected. How-
ever, retraining the model using the latest trajectory data
as training samples would delay downstream tasks, result-
ing in low efficiency. Therefore, it is essential to update
the model while ensuring that downstream tasks continue
to perform effectively. Additionally, historical trajectories
must be preserved during model updates, as they contain
vital information for trajectory analysis.

With this in mind, we propose an incremental online updat-
ing strategy. Specifically, first, for the Transformer encoder
with LT layers, we divide the layers into two parts: LT

1

and LT
2 . Second, we freeze LT

1 to preserve the informa-
tion of historical trajectories for downstream tasks, while
continuing to pre-train LT

2 using the latest trajectories as
training samples. In this way, the model can perform tra-
jectory analysis tasks and update simultaneously, achieving
online optimization. Third, we update the model as new
trajectories flow in, iteratively executing the second step. It
is worth mentioning that the impact of historical and recent
trajectories can be managed by adjusting the number of lay-
ers in LT

1 (denoted as ϵ) or LT
2 (denoted as LT − ϵ). In this

paper, we set ϵ to be half of LT to balance the influence of
historical and recent trajectory information.

Note that, the OFU strategy is theoretically grounded in
incremental learning (Wang et al., 2024). We combine layer-
wise parameter freezing with Lyapunov stability analysis
to ensure robust adaptation while preventing catastrophic
forgetting. Specifically, we freeze the first L layers and
update the last N − L layers. The objective optimization
function is defined below:

min
θL+1:N

E(x,y) ∼ Dnew[ℓ(fθ1:Lpre
(x), y; θL+1:N )] (20)

With frozen lower-layer parameters (∇θ1:Lℓ = 0), old fea-
tures remain unchanged, which guarantees that the old fea-
tures are not forgotten. The updating process can be mod-
eled as a dynamic system: θL+1:N

t+1 = θL+1:N
t − ηtgt , with

a Lyapunov function: V (θ) = Lnew(θ) + γ∥θ1:L − θ1:Lpre∥2.
As γ → ∞, the system satifies: E[V (θt+1)] ≤ E[V (θt)]−
ηt∥∇Lnew(θt)∥2. The monotonic decrease of V (θ) ensures
stable updates. Freezing lower layers prevents cascading
perturbations, balancing new feature learning with old fea-
ture retention.

3.4. The Training of GTR

The training process of GTR is provided in Appendix B.2
with the complexity analysis in Appendix B.4.

4. Experiments
In this section, we conduct a series of experiments on two
real-world datasets to evaluate the performance of GTR,
which are summarized to answer the following questions.

• RQ1: How does GTR perform compared to the state-of-
the-art models on supporting multiple tasks?

• RQ2: How effective is our online updating strategy for
model training?

• RQ3: How do the individual modules in GTR contribute
to the model performance?

• RQ4: How does GTR interpret model training?
• RQ5: What is the scalability of our GTR?

4.1. Experimental Settings
Table 2. Dataset Statistics

Datasets # segments # trajectories Avg. Length Avg. Time

Porto 44,641 774,262 41 9.901
Beijing 40,305 889,306 27 12.833

Datasets. We evaluate GTR on two real-world trajectory
datasets: (i) Porto2 contains 774,262 GPS trajectories col-
lected in Porto, Portugal, from 2013/07/01 to 2014/07/01.
(ii) Beijing 3 contains 889,306 GPS trajectories collected in
Beijing, China, from 2015/11/01 to 2015/11/30. Detailed
information is summarized in Table 2. The Avg.Length
refers to the average number of trajectory points.

Baselines Description. We compare GTR with 15 most
common state-of-the-art methods among six tasks.

• TremBR (Fu & Lee, 2020) constructs a RNN-based
seq2seq model for representation leanring.

• PIM (Yang et al., 2021b) combines node2vec and LSTM
encoder to generate trajectory representations.

• Toast (Chen et al., 2021) utilizes node2vec model and
trains a Transformer encoder to represent trajectories.

• START (Jiang et al., 2023a) trains a time-aware encoder
with a GAT that considers transitions in the road network.

• LightPath (Yang et al., 2023) trains a sparse path encoder
for path reconstruction and cross-view network contrast.

• TS-TrajGen (Jiang et al., 2023b) builds an A* algorithm
based generator within a generative adversarial network.

• SeqGAN (Yu et al., 2017) utilizes GANs combined with
Seq2Seq models for trajectory representation.

• Trajbert (Si et al., 2023) trains a Transformer encoder by
using a spatial-temporal loss for trajectory recovery.

• Bi-STDDP (Xi et al., 2019) is designed to integrate bidi-
rectional spatio-temporal dependencies and users’ dy-
namic preferences, identifying missing POIs.

• EB-OTS (Wang et al., 2021) proposes a multi-agent for
online trajectory simplification.

• S3 (Fang et al., 2023) constructs a lightweight framework
using two seq2seq models to simplify trajectories.

• JGRM (Ma et al., 2024) designs a novel representation
model that jointly encodes GPS and routes through a
Transformer.

• AttnMove (Xia et al., 2021) recovers dense trajectories

2https://www.kaggle.com/c/pkdd-15-predict-taxi-service-
trajectory-i

3https://github.com/aptx1231/START
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by inferring unobserved locations through a multi-layer
attention-based neural network.

• Mtrajrec (Ren et al., 2021) integrates a GRU model with
an attention mechanism to enhance trajectory recovery.

• ControlTraj (Zhu et al., 2024) leverages a diffusion
model to efficiently generate trajectories.

Implements. All experiments are conducted on CentOS 7
with an NVIDIA A40 GPU. We run GTR on PyTorch 1.13.1.
For GTR, we set the embedding size as 768, the mask ratio
for pre-training tasks as 30 %, and the dropout value as 0.2.
Moreover, we perform pre-training and fine-tuning of GTR
using the AdamW (Loshchilov & Hutter, 2019) optimizer,
and the value of the balancing parameter β in the overall
loss function is set to 0.7. Our dataset is split into training,
validation, and test sets with a ratio of 0.8, 0.1, and 0.1.
More detailed settings refer to Appendix C.1.

4.2. Performance Evaluation (RQ1 & RQ2)
In this section, we first evaluate the accuracy of all meth-
ods on six usual downstream tasks, including trajectory
similarity computation, trajectory simplification, trajectory
imputation, travel time estimation, trajectory classification,
and trajectory generation. Note that, we only evaluate the
baselines’ performance on their specific tasks. Next, we
incrementally update the training model online to obtain
the updated model GTR∗, and compute the accuracy to ver-
ify the online updating strategy. To process newly arrived
trajectory data, we employ the validation set to simulate
real-world online/streaming scenarios. The model under-
goes single-epoch incremental model updates.

Trajectory Similarity Computation: we perform Top-k
similarity search by computing Mean Rank (MR), HR@1,
HR@5 (Hu et al., 2023) for Trembr, PIM, Toast, START,
JGRM, LightPath, and GTR (lower MR and higher HR@1
and HR@5 indicate the higher performance). Note that, we
apply the detour method in JCLRNT (Mao et al., 2022) to
generate the ground truth. The results are reported in Table 3.
Further, we present a case study, shown in Appendix C.7.

Table 3. Evaluation on Top-k Similarity Computation Task
Beijing Porto

Methods MR HR@1 HR@5 MR HR@1 HR@5

Trembr 2.4894 0.6070 0.9084 8.6536 0.6226 0.8424
PIM 4.8008 0.9462 0.9816 27.0137 0.6064 0.7928
Toast 1.6656 0.9036 0.9850 14.6700 0.7554 0.8716
START 1.3870 0.8968 0.9888 1.0476 0.9722 0.9984
LightPath 1.1116 0.9312 0.9982 4.1272 0.7308 0.8808
JGRM 1.5946 0.9720 0.9938 5.9172 0.2326 0.6634

GTR 1.0130 0.9906 0.9996 1.0028 0.9974 0.9999

Trajectory Simplification: we compute Perpendicular Dis-
tance Error (PED) (Fang et al., 2023) of S3, EB-OTS, GTR,
and GTR∗ for performance evaluation due to the limited
space. Note that, PED computes the shortest perpendicular
distance between a deleted point pi = (xi, yi) and the line
segment connecting its neighboring points ps = (xs, ys)
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Figure 5. Evaluation on Trajectory Simplification Task

and pt = (xt, yt). Lower PED indicates lower compression
errors. The results are shown in Fig. 5.

Trajectory Imputation: we assess the accuracy perfor-
mance using Recall@3, Recall@5, and Mean Accuracy Per-
cent (MAP) for Bi-STDDP, AttnMove, Trajbert, MtrajRec,
GTR, and GTR∗. Recall@x evaluates the model’s ability
to recover masked tokens by checking whether the ground
truth appears in the top-x predicted candidates. Specifically,
if the true value is contained within the top-x ranked predic-
tions, Recall@x is assigned 1 for that token; otherwise, it is
assigned 0. The final metric is computed by averaging these
binary outcomes across all masked tokens in the evaluation
set. The MAP represents the probability of the precision,
and higher Recall@x and MAP indicate higher performance.
The results are shown in Table 4.

Table 4. Evaluation on Trajectory Imputation Task
Beijing Porto

Methods Recall@3 Recall@5 MAP Recall@3 Recall@5 MAP

Bi-STDDP 0.97874 0.98338 0.82692 0.61926 0.74273 0.33584
AttnMove 0.94556 0.96151 0.78721 0.57879 0.69355 0.31801
Trajbert 0.93476 0.95059 0.85206 0.65174 0.76151 0.37843
MtrajRec 0.94840 0.97640 0.87650 0.68170 0.73090 0.40920

GTR 0.99406 0.99521 0.98652 0.86465 0.93331 0.60344
GTR∗ 0.99418 0.99531 0.98657 0.86525 0.93354 0.60538

Travel Time Estimation: we compare Trembr, Toast,
START, PIM, LightPath, and JGRM with GTR and GTR∗,
by utilizing Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Mean Square Error (MSE)
for evaluation (lower MAE, MAPE and MSE indicate the
higher performance). The results are shown in Table 5.

Table 5. Evaluation on Travel Time Estimation Task
Beijing Porto

Methods MAE MSE MAPE MAE MSE MAPE

Trembr 6.66722 81.36270 90.07389 2.12186 6.93319 31.15763
PIM 6.98318 81.43258 92.36455 2.09192 6.82120 27.67270
Toast 6.84877 102.61526 62.37184 2.18245 7.46382 29.16603
START 5.50282 70.23768 39.74935 0.37485 0.15862 4.43707
LightPath 4.42273 44.37277 41.17115 0.68104 0.73718 7.56974
JGRM 6.91029 80.54387 90.42306 2.13383 7.15485 26.85475

GTR 4.01277 40.55894 33.15476 0.01512 0.00060 0.23882
GTR∗ 4.30101 49.55222 34.32996 0.01947 0.00093 0.19186

Trajectory Classification: we compare Trembr, START,
PIM, Toast, LightPath, JGRM, with our GTR and GTR∗ for
this task, by computing Accuracy (ACC), F1-Score (F1),
and Area Under the ROC Curve (AUC) for performance
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Table 6. The Ablation Study in Porto Dataset
Top-k Similarity Search Travel Time Estimation Trajectory Imputation Trajectory Classification Trajectory Generation Simplification

MR HR@1 HR@5 MAE MSE MAPE recall@3 recall@5 MAP ACC F1 AUC Hausdorff DTW PED

GTR 1.0028 0.9974 0.9999 0.01512 0.00060 0.23882 0.86465 0.93331 0.60344 0.83213 0.83213 0.90528 0.00286 0.01064 0.000058
w/o Time Embed 1.0302 0.9872 0.9982 0.02828 0.00177 0.31838 0.80081 0.89473 0.50160 0.82472 0.82471 0.90201 0.00378 0.01590 0.000064
w/o Grid Embed 1.0162 0.9978 0.9998 0.06874 0.00716 0.71140 0.65271 0.76521 0.37667 0.78098 0.78099 0.88269 0.00772 0.04193 0.000079
w/o Road Embed 1.0128 0.9982 0.9998 0.03810 0.00228 0.50857 0.78029 0.87494 0.48701 0.81981 0.81981 0.90345 0.00472 0.02622 0.000061
w/o ST-MOE 1.0438 0.9790 0.9990 0.08088 0.00943 0.89989 0.71479 0.82876 0.41398 0.81616 0.81616 0.90054 0.00777 0.03067 0.000081
w/o TripletLoss 1.0162 0.9880 0.9998 0.01837 0.00081 0.24431 0.86068 0.93111 0.59674 0.82882 0.82881 0.90462 0.00293 0.01068 0.000062
w/o MLMLoss 741.1848 0.0326 0.0670 0.01752 0.00147 0.36225 0.82449 0.90508 0.55668 0.81761 0.81762 0.90313 0.00304 0.01219 0.000067

evaluation. Specifically, higher ACC, F1-Score, and AUC
indicate higher classification accuracy. The results are de-
picted in Table 7.

Table 7. Evaluation on Trajectory Classification Task
Beijing Porto

Methods ACC F1 AUC ACC F1 AUC

Trembr 0.80132 0.85030 0.85937 0.80846 0.80845 0.88425
PIM 0.68116 0.68111 0.65818 0.73370 0.73371 0.85097
Toast 0.68114 0.81031 0.50000 0.50379 0.50376 0.50100
START 0.73961 0.81045 0.79378 0.78320 0.78321 0.86379
LightPath 0.74454 0.82524 0.79614 0.74303 0.74303 0.86241
JGRM 0.76933 0.84583 0.83394 0.62007 0.62006 0.78775

GTR 0.80164 0.85509 0.86297 0.83213 0.83213 0.90528
GTR∗ 0.80185 0.85535 0.86632 0.83904 0.83904 0.91317

Trajectory Generation: we evaluate the similarities
between the generated and original trajectories, by us-
ing distance measures Hausdorff (Xie et al., 2017) and
DTW (Keogh & Ratanamahatana, 2005). Note that, the
closer the distance between the generated and original
trajectories, the more effective the trajectory generation
method. We compare our GTR and GTR∗ with SeqGAN,
ControlTraj, and TS-TrajGen, where the results are shown
in Table 8.

Table 8. Evaluation on Trajectory Generation Task
Beijing Porto

Methods Hausdorff DTW Hausdorff DTW

SeqGAN 0.06527 0.59283 0.02752 0.40514
ControlTraj 0.03139 0.51857 0.00608 0.03579
TS-TrajGen 0.04861 0.54997 0.01109 0.21610

GTR 0.03080 0.48664 0.00286 0.01064
GTR∗ 0.03047 0.48578 0.00262 0.01011

Overall, we have the following observations.

(i) Our GTR effectively generates general trajectory repre-
sentations that support a wide range of downstream tasks,
in contrast to state-of-the-art models, which are often tai-
lored to specific tasks. This versatility is achieved through
pre-training based on comprehensive feature extraction (cf.
Section 3.1), enabling the model to meet the diverse and
complex requirements of various tasks.

(ii) GTR consistently outperforms state-of-the-art models
across all tasks, achieving accuracy improvements: up to
15%–60% for trajectory imputation, 1%–4% for trajectory
classification, 10%–90% for the TTE task, 6%–26% for tra-
jectory simplification, 4%–8% for trajectory similarity com-

putation, and 37%–81% for trajectory generation. These
gains are attributed to our use of the MVE and STP mod-
ules, which dynamically integrate spatio-temporal features
in a multi-view setting. This design enables the trajectory
representation learning model to dynamically capture and
preserve relationships among trajectories in the learned rep-
resentations, thereby enhancing performance across diverse
trajectory analysis tasks.

(iii) GTR∗ significantly enhances the performance of GTR
across most trajectory analysis tasks by incrementally updat-
ing model parameters online. This effectively leverages both
historical and newly available trajectory data, allowing con-
tinuous optimization and achieving superior performance.

4.3. Ablation Study (RQ3)

We also conducted ablation studies to prove the effectiveness
of six key components within our GTR on six mainstream
tasks. (1) w/o Time Embed: This variant removes the time
embedding. (2) w/o Grid Embed: This variant removes the
grid embedding, including the grid POIs features. (3) w/o
Road Embed: Similar to the previous one, which mainly
removes the GAT and replaces it with embedding vectors.
(4) w/o ST-MoE: This variant removes the ST-MoE module.
(5) w/o TripletLoss: This variant removes the triplet task for
pre-training. (6) w/o MLMLoss: This variant removes the
MLM task for pre-training. Table 6 presents the results in
Porto, while the results in Beijing are shown at Table 10. We
observe that our GTR framework achieves the best overall
performance across most variants. This indicates that the
proposed MVE and STP modules are helpful in supporting
general trajectory representation learning.

4.4. RQ4 & RQ5

To answer RQ4 and RQ5, more experiments can refer to the
Appendix C.4 and Appendix C.6, respectively.

5. Conclusions
In this paper, we propose GTR, a general, multi-view, and
dynamic framework for trajectory representation learning.
GTR learns spatio-temporal features via a designed multi-
view encoder. To adaptively integrate spatial and tempo-
ral features, we introduce mixture of experts, tailored for
downstream tasks. GTR also incorporates online frozen-hot
strategy to dynamic updating. Future work will explore
integrating LLMs to broaden GTR’s applicability.
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Table 9. A Comparison of the Latest Trajectory Representation Learning Models

Model Year
Trajectory Analysis Tasks

Multi-View Model Updating
Similarity TTE Simplification Imputation Generation Classification

Trembr (Fu & Lee, 2020) TIST’20 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

PIM (Yang et al., 2021b) IJCAI’21 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Toast (Chen et al., 2021) CIKM’21 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

JCLRNT (Mao et al., 2022) CIKM’22 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

START (Jiang et al., 2023a) ICDE’23 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

LightPath (Yang et al., 2023) KDD’23 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

MMTEC (Lin et al., 2023) TKDE’23 ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗

JGRM (Ma et al., 2024) WWW’24 ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗

GTR 2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A. Related Work
Trajectory Representation Learning in Free Space. In free space, the GPS trajectories are transformed into data sequences
for representation learning. For instance, traj2vec (Yao et al., 2017) splits trajectories into time interval based windows and
encodes each window as a token in a sequence. Similarly, t2vec (Li et al., 2018) and E2DTC (Fang et al., 2021) partition
the space into equally sized grids and use seq2seq models for representation. NeuTraj (Yao et al., 2019) introduces an
enhanced spatial memory module to capture correlations among trajectories, while T3S (Yang et al., 2021a) incorporates
auxiliary loss functions and self-attention mechanisms to improve trajectory representations for the similarity search task.
TrajFormer (Liang et al., 2022) performs continuous point embedding to learn the representations of each point. S3 (Fang
et al., 2023) designs a lightweight framework with two chained seq2seq models to support the trajectory simplification task.
Furthermore, TrajCL (Chang et al., 2023a) applies contrastive learning based on data augmentation and dual attention for
trajectory similarity tasks. However, all of these studies ignore the physical constraints imposed by road networks upon
behaviors of mobile road users, e.g., people and vehicles. In this paper, we target performing robust trajectory representation
learning considering road network context.

Trajectory Representation Learning in Road Networks. In road networks, the original GPS trajectories are typically
mapped onto a road network using map-matching algorithms (Yang & Gidofalvi, 2018). Compared to free-space settings, it
provides the topological structure of the road network, enabling more precise modeling of trajectories. In this setting, existing
works are primarily divided into two classes, task-specific and general-purpose methods. For the former, GTS (Han et al.,
2021) designs a GNN-based framework for similarity computation tasks. ST2vec (Fang et al., 2022) considers temporal
trajectory similarity and fuses spatial and temporal features. Trajbert (Si et al., 2023) devises a BERT-based (Devlin et al.,
2019) trajectory recovery method with a spatial-temporal aware loss function. Furthermore, TS-TrajGen (Jiang et al., 2023b)
introduces a two-stage generative adversarial framework to support trajectory generation tasks. To support more tasks,
recently, there have been several general-purpose models. Trembr (Fu & Lee, 2020) extends t2vec by performing map
matching and introducing a road2vec module to learn road network representations. TrajGAT (Yao et al., 2022) integrates
GATs with Transformer to learn trajectory embedding, which retains long-term dependencies. Toast (Chen et al., 2021)
and PIM (Yang et al., 2021b) utilize node2vec to learn road representations and then apply a Transformer encoder for
trajectory embeddings. Further methods, including JCLRNT (Mao et al., 2022) and SARN (Chang et al., 2023b) enhance
the Toast model through contrastive learning. START (Jiang et al., 2023a) incorporates semantic information from road
networks and combines GAT with BERT for trajectory representations tailored for different tasks. MMTEC (Lin et al.,
2023) utilizes discrete and continuous encoders to learn a general representation. LightPath (Yang et al., 2023) employs a
relational inference contrastive approach with a global knowledge distillation framework for encoding. JGRM (Ma et al.,
2024) uses a Transformer to learn representations from continuous GPS points and the road network. Table 9 summarizes
existing general-purpose trajectory representation learning methods. As observed, although MMTEC (Lin et al., 2023) and
JGRM (Ma et al., 2024) integrate multiple views, they still overlook the hidden POI features within different regions, thereby
affecting the performance of downstream tasks. Moreover, existing methods support limited trajectory analysis tasks while
failing to enable representation model updates. In this paper, we propose a multi-view trajectory representation framework
that jointly captures free-space semantics and road-network topology features. Furthermore, our approach supports the
widest range of trajectory analysis tasks and enables online model updates, addressing the limitations of prior methods.

B. Additional Methodology Details
B.1. Fine-tuning Methods

As illustrated in Fig. 6, a simplified workflow for each task is provided. All of the fine-tuning methods are listed as follows.
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Table 10. The Ablation Study in Beijing Dataset
Top-k Similar Trajectory Query Travel Time Estimation Trajectory Imputation Trajectory Classification Trajectory Generation Simplification

MR HR@1 HR@5 MAE MSE MAPE recall@3 recall@5 MAP ACC F1 AUC Hausdorff DTW PED

GTR 1.0130 0.9906 0.9996 4.01277 40.55894 33.15476 0.99406 0.99521 0.98652 0.80164 0.85509 0.86297 0.03080 0.48664 0.000035
w/o Time Embed 1.0406 0.9750 0.9986 4.09158 40.70333 32.69300 0.99401 0.99507 0.98601 0.77005 0.83011 0.83322 0.03089 0.50565 0.000035
w/o Grid Embed 1.0274 0.9810 0.9992 4.08252 40.80434 31.53830 0.98674 0.98987 0.96646 0.76626 0.82965 0.82825 0.03739 0.52296 0.000044
w/o Road Embed 1.0162 0.9880 0.9995 4.02020 40.59894 30.52987 0.98293 0.98685 0.95918 0.75664 0.81914 0.81847 0.03963 0.53026 0.000050
w/o ST-MOE 1.0174 0.9882 0.9994 4.05528 40.86599 30.82057 0.98327 0.98772 0.95649 0.74789 0.80434 0.82289 0.11627 0.95925 0.000049
w/o TripletLoss 1.0274 0.9798 0.9994 4.14899 41.13403 32.97659 0.99318 0.99467 0.98353 0.79440 0.85313 0.85359 0.03087 0.50513 0.000036
w/o MLMLoss 739.6854 0.0786 0.1122 4.18216 41.26676 36.63815 0.98352 0.98882 0.95294 0.76601 0.83881 0.82127 0.03097 0.48787 0.000041
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Figure 6. The Mainstream Trajectory Analysis Tasks

1. Trajectory Similarity Computation. Fine-tuning is unnecessary for the similarity task since the model learns trajectory
distinctions during the pre-training stage. Instead, we evaluate model performance using the most similar trajectory
search and visualize the Top-k similar trajectory search results for comparison with other models.

2. Trajectory Simplification. For the trajectory simplification task, we first generate labels using the Douglas-Peucker
simplification algorithm (Douglas & Peucker, 1973). Then, we employ a binary classification task to determine whether
specific segments of the trajectory should be omitted:

Lsimplify = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) , (21)

where N is the number of training samples, ŷi denotes the predicted probability value, and yi represents the true label.
3. Trajectory Imputation. For the trajectory imputation task, we replace 20% of the trajectory with masked tokens,

similar to the pre-training task, and then predict the missing segments using the model. The original trajectory serves
as the label, with the cross-entropy loss function used as the optimization objective:

Limputation =
1

Nmask

Nmask∑
i=1

Cv∑
cv=1

−yi(cv) log(ŷi(cv)), (22)

where Cv is the size of the trajectory vocabulary, Nmask is the number of masked tokens, ŷi denotes the predicted
probability value of the masked token, and yi represents the true label.

4. Trajectory Classification. This task aims to classify trajectories based on specific labels, such as whether they are
carrying passengers or the type of taxi call. We utilize a simple fully connected layer followed by a Softmax activation
to obtain the predictions, expressed as ŷ = Softmax(FC(Rr)). The model is then optimized using the cross-entropy
loss:

Lclassification =
1

N

N∑
i=1

Cv∑
cv=1

−yi(cv) log(ŷi(cv)), (23)

where Cv is the size of the trajectory vocabulary, N is the number of training samples, ŷi denotes the predicted
probability value by the model, and yi represents the true label.

5. Trajectory Generation. The trajectory generation task involves removing 50% of the trajectory’s content and then
predicting the remaining 50% using the model. The predicted results are evaluated using the cross-entropy loss, and the
outcome is compared with the original trajectory using common trajectory metrics, such as Dynamic Time Warping
(DTW), to assess the effectiveness of the generation:

Lgeneration =
1

Nmask

Nmask∑
i=1

Cv∑
cv=1

−yi(cv) log(ŷi(cv)), (24)

where Cv is the size of the trajectory vocabulary, Nmask is the number of masked tokens, ŷi denotes the predicted
probability value of the masked token, and yi represents the true label.
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Algorithm 1 The Process of GTR

Input: road network G = (V,E,A), GPS trajectory T , road features Fv , grids types cpoi

1: Preprocess: map T on G and space to get T r and T g , pre-training dataset DP , fine-tuning dataset DF , updating dataset DU

2: for dmask, da, dp, dn ∈ DP do
3: Calculate L = γ · Ltriplet(da, dp, dn) + (1− γ) · Lmask(dmask);
4: Update GTR by minimizing L;
5: end for
6: for dtask ∈ DF do
7: Calculate Ltask for the downstream tasks;
8: Update GTR by minimizing Ltask;
9: end for

10: Online updating stage: Freeze the half of GTR’s transformer encoder layers;
11: for dupdate ∈ DU do
12: Calculate Lupdate for the downstream tasks;
13: Update GTR by minimizing Lupdate;
14: end for
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Figure 7. Visualization of Attention Values
B.2. The Process of GTR

Algorithm 1 presents the complete process of GTR training, which consists of preprocessing, pre-training, fine-tuning, and
online updating.

In the preprocessing stage (line 1), we require the GPS trajectory T , the road network G = (V,E,A) along with its static
road features Fv and POI types cpoi for each grid. We then apply the map-matching algorithm and grid partition method to
transform T into T r and T g . The features Fv are used as the initial embedding for the GAT in GTR’s MVE module. Next,
we process T r, T g , and cpoi to generate the pre-training dataset DP , fine-tuning dataset DF , and updating dataset DU .

In the pre-training stage (lines 2–5), we first obtain the pre-training data dmask, da, dp, dn from DT . We then compute the
total loss by combining the triplet loss Ltriplet and MLM loss Lmask with the weight parameter γ to update GTR. In the
fine-tuning stage(lines 6–9), we fine-tune GTR by calculating the downstream task loss Ltask for different downstream
tasks, as outlined in Section 3.2.3.

Finally, in the online updating stage (lines 10–14), we use the fine-tuned GTR from the previous stage, freeze half of its
Transformer encoder layers, and update the GTR by minimizing the updating loss Lupdate.

B.3. Model Interpreting

Understanding how different parameters in the model influence the representation vectors is crucial. Therefore, an
interpretable model evaluation method is necessary for optimization. A natural approach is to analyze the various model
parameters in detail. However, some parameters contribute little to model interpretation, while consuming a significant
amount of time during the analysis.

We propose a simple yet effective method to address this gap. As shown in Fig. 7(a), the trajectory constrained by the road
network contains 27 road segments. These segments are processed through our GTR framework, illustrated in Fig. 7 (b),
where they pass through the Transformer encoder layers. From the encoder, we extract the attention value matrix, which
represents the pairwise attention weights among the 27 road segments. This matrix indicates the degree of attention one
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road segment pays to another, enabling the model to effectively encode contextual information by learning the relationships
between different segments of the trajectory. Fig. 7(c) visualizes the attention value matrix as a heat map, reflecting the
influence of neighboring road segments on the trajectory in Fig. 7(a). The higher the attention value, the greater the impact
of a road segment. Based on these attention values, we perform an explanatory analysis, comparing the attention values
derived from the Transformer encoder (cf. Eq. 2), which provides actionable insights for model optimization. Importantly,
no additional computational or time costs are incurred during model interpretation, as we utilize information generated
during model training.

B.4. Complexity Analysis

For the process of GTR, the time complexity of the single training phase is O(4 · |DP | + |DF | + |DU |), depending on
the size of the datasets. In the pre-training stage, we calculate the Ltriplet and Lmask require a complexity of O(4 · |DP |).
While for the fine-tuning stage, we calculate Ltask for different downstream tasks, having a complexity of O(|DF |) for this
stage. Finally, in the online updating stage, the complexity of calculating and minimizing Lupdate is O(|DU |).

B.5. Data Enhance Strategies

To enable the model to learn from more diverse data for enhancing the effectiveness of pre-training, we employed the
following data augmentation strategies:

1) Sub-trajectory Selecting: This augmentation enhances trajectories by randomly removing a continuous subsequence.
To maintain the trajectory’s continuity, trimming is applied only at the start or end of the trajectory. The trimming ratio
is randomly selected between 0.05 and 0.15. This method is effective because trajectories with similar starting points or
destinations often share similar features.

2) Road Drift: In tasks involving road drift, random roads and their corresponding timestamps within a trajectory are
selected and masked. The resulting masked trajectories, which are treated as having missing values, enable the model to
learn travel semantics across both temporal and spatial dimensions.

B.6. POIs Extraction Approach

We propose a POIs extraction approach. First, we obtain the POIs from OpenStreetMap and classify the different types of
POIs into mainly 4 categories: service POIs, residential POIs, commercial POIs, and other POIs. Then we calculate the
number of each POI type within every grid. As the result of the residential areas always containing commercial POIs like
small restaurants or shops, we also measure the size of each area to accurately determine the type of each grid.

C. Additional Experimental Details
C.1. Extra Experiment Settings

In the pretraining stage, we set the hidden size to 768, the number of training epochs to 10, and both the attention layers and
heads to 12. In the fine-tuning stage, we set the training epochs to 50. For the most similar trajectory search, the query dataset
consists of 5k trajectories and the key dataset consists of 50k trajectories, with a detour rate of 0.2. In the classification task,
there are two labels in the Beijing dataset and three labels in the Porto dataset. In the travel time estimation task, we predict
the trip duration in minutes.

C.2. Model Complexity Analysis

A comparison of model parameters is shown in Table 11. While GTR has a higher parameter count due to its multi-view
encoder (MVE) and spatio-temporal fusion pre-training (STP) modules, this increase is justified by two key advantages.
(i) Enhanced Capability. The additional parameters enable GTR to support more downstream tasks effectively. (ii)
Performance Gains. The trade-off in model size is offset by improvements in accuracy and robustness.

C.3. Model Efficiency Study

In this part, we focus on testing the efficiency of our approach. We measure the training time of the pre-training stage and
the inference time of the most similar trajectory search. We choose 5k query trajectories and 50k key trajectories from the
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Model Name Parameter Size (MB)

PIM 94.57
Trembr 148.08
Toast 161.18
START 1126.40
LightPath 73.96
JGRM 375.60

GTR 862.99

Table 11. Comparison of model parameter sizes.

Training Time (minutes) Inference Time (minutes)

Trembr 7.450 1.450
PIM 5.867 2.873
Toast 9.883 1.886
START 51.617 4.850
LightPath 7.717 4.733
JGRM 118.598 3.617

GTR 179.583 6.883

Table 12. Comparison of Training and Inference Time Across Models.

test dataset. The valuation of the efficiency result is shown in Table 12. GTR spends more training time than other models
but does not spend too much time during inference and outperforms state-of-the-art models in all tasks.

C.4. Model Interpretability Evaluation (RQ4)

We consider explaining the model training procedure for two tasks (i.e., travel time estimation and trajectory classification).
Because they are the typical tasks that require both spatial and temporal features, and enable effective evaluation of our
model’s interpreting strategy. Thus, in this subsection, we conduct model interpretability evaluation for the two tasks above.
Specifically, we select the 5 important road segments Vimp with the greatest attention values, and mask them by replacing
or removing. Then, we evaluate GTR by using these processed trajectories (i.e., GTR w/o Vimp) for the two tasks, and
compare it with GTR trained by using the original trajectories (i.e., GTR w/ Vimp).

As shown in Figure 8, we observe that GTR w/ Vimp performs better than GTR w/o Vimp for both travel time estimation
and trajectory classification tasks on two datasets. This is because the important segments play a vital role in trajectory
representation learning. Thus, it is appropriate to assign more neurons or network layers for the road segments with higher
attention values, instead of embedding all of the road segments uniformly. This provides optimization guidelines for
improving model structure, achieving more effective trajectory representations.
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C.5. Extra Experiment on Chengdu Dataset

Existing works (START (Jiang et al., 2023a), Trembr (Fu & Lee, 2020), ST2Vec (Fang et al., 2022), etc.) mainly use
Beijing and Porto datasets, so we adopted them for fair comparison. To test the robustness of GTR, we have added the
larger Chengdu dataset (containing 2,140,129 trajectories). We specifically test the most computationally intensive trajectory
similarity computation task. Results are shown in Table 13. As expected, GTR maintains superior performance over
baselines on the Chengdu dataset, confirming its robustness.

Table 13. Evaluation on Top-k Similarity Computation Task

Chengdu

Methods Mean Rank HR@1 HR@5

Trembr 63.5602 0.1940 0.4060
PIM 7.1468 0.6724 0.8552
Toast 8.3456 0.5588 0.7874
START 6.8745 0.6575 0.8434
LightPath 6.2140 0.6016 0.8206
JGRM 2.3111 0.8292 0.9352

GTR 1.7401 0.9212 0.9834

C.6. Model Scalability Evaluation (RQ5)

We conduct the model capacity evaluation by performing the most similar search using GTR trained on varying dataset
sizes. The results are reported in Figure 10. We observe that with the growth of dataset size, our model performs better (i.e.,
MR<2 and HR@1>0.95) on both the Beijing and Porto datasets. This is because GTR is able to extract more spatial and
temporal features via multi-view encoding from more training samples. Therefore, GTR has a large capacity to support
large-scale model training and data processing.

C.7. Case Study of the Top-3 Similarity Search

In this part, we present a case study for comparing the top three performing models on Top-3 similar trajectory search. We
randomly select one trajectory from the test dataset, and find the Top-3 similar trajectories within it. The results are shown in
Figure 11. We observe that our GTR can find more similar trajectories than other models due to the effective MVE module
and STP module in GTR.
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Figure 11. Case Study: Top-3 Similarity Search (Beijing)
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Figure 12. Case Study of Trajectory Representations in Beijing

C.8. Case Study of Trajectory Representation

In this experiment, we study the effect of the pre-training model within GTR in two ways. First, we train the GTR model
without pre-training (i.e., w/o pre-train), and compare it with the pre-trained model (i.e., w/ pre-train) on the travel time
estimation task. The results are reported in Figure 9. Second, we conduct a case study, which visualizes the trajectory
representations generated by GTR trained with and without pre-training, respectively. Figure 12 presents the visualizations.
We observe that w/ pre-train performs better than w/o pre-train on various dataset sizes of the two datasets, indicating that
the pre-trained model is vital in GTR and able to capture more general knowledge for serving downstream tasks.
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