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Abstract
Automation of machine learning model development is increasingly becoming an established research
area. While automated model selection and automated data pre-processing have been studied in
depth, there is, however, a gap concerning automated model adaptation strategies for streaming
data with non-stationarities. This has previously been addressed by heuristic generic adaptation
strategies in the batch streaming setting. While showing promising performance, these strategies
contain some limitations. In this work, we propose using multi-armed bandit algorithms for learning
adaptive strategies from incrementally streaming data on-the-fly. Empirical results using established
bandit algorithms show a comparable performance to two common stream learning algorithms.

1. Introduction

Machine learning on non-stationary streaming data is a common situation part of which is adapting
the model to changes in the underlying data generating process (DGP). While automated model
selection and automated data pre-processing have been studied in depth, there is, however, a gap
concerning automated model adaptation strategies for streaming data with non-stationarities. In
many situations one cannot expect a static model trained on historical data to maintain performance
as time proceeds. Here adaptation is defined as changes in model training set, parameters and
structure all designed to track changes in the underlying DGP over time.

To cope with non-stationary data, many proposed algorithms for machine learning on streaming
data involve one or more mechanisms for adapting the model, which will be further referred to as
adaptive mechanisms (AM). Deploying various AMs greatly increases the performance of models,
however, in most of the cases, the AMs deployment choice (which we will refer to as adaptation
strategy) is tied to the custom algorithm design choice. With the multitude of available AMs, the
design of the adaptation strategy can be a tedious and time consuming task.

Despite advances in automated machine learning, we note that there is a gap concerning automated
development of models’ adaptation strategy. This has been previously addressed using meta level
heuristic adaptation strategies (Bakirov et al., 2021). While showing promising results, these strategies
had some shortcomings; they a) required a batch setting, b) increased the runtime and c) did not
provide any theoretical performance guarantees. Here, we address these issues by learning the
adaptation strategies on-the-fly, this is, during the data stream process using the theoretically sound
multi-armed bandit algorithms on incremental data. Multi-armed bandit algorithms are designed to
maximise a cumulative reward during a sequential process where decisions are made at each step
from a limited set of possibilities. This is ideal for solving our problem as adaptation strategies seek
to minimise the mean loss over many steps using a small set of AMs. In addition, the theoretical
properties of the bandit algorithms provide some optimality guarantees for adaptive strategies.

In this paper, we first formulate the AM selection in the bandit scenario. We then test several
prominent bandit algorithms for the Dynamic Weighted Majority (DWM) (Kolter and Maloof, 2007)
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and Paired Learner (PL) (Bach and Maloof, 2010) strategies for AM selection. We compare the
results to the original DWM algorithm using 26 synthetic and 7 real-world classification data sets.
We conclude empirically that the bandit based adaptive strategies leads to comparable performance
with the custom strategies. Our contributions are a) a novel formulation of AM selection as a bandit
learning problem, and b) an empirical analysis of relevant bandit learning algorithms on AM selection.

2. Background

Recently AutoML for streaming non-stationary data has became a focus of the community’s attention.
An approach to adaptation to changing environments was proposed in (Martín Salvador et al., 2016)
where repeated automated deployment of Auto-WEKA for Multi-Component Predictive Systems
(MCPS) to learn from new batches of data was used for life-long learning and the adaptation
of complex MCPS when applied to changing streaming data from process industries. Celik and
Vanschoren (2021) represent a development of this idea with the inclusion of drift detection and the
experimentation using several open source AutoML frameworks. An interesting approach closely tied
with the Auto_Sklearn is described in (Madrid et al., 2019) where authors propose using the ensemble
nature of this framework to deal with streaming data, by adapting the weights of experts and adding
new ones. Biedenkapp et al. (2020) report promising results using reinforcement learning for dynamic
algorithm configuration in online settings. Wu et al. (2021) introduce a champion-challenger scheme
for online AutoML, replacing an existing model with dynamically created new models with bounds
on regret. Bakirov et al. (2021) describe the framework of model adaptation with multiple adaptive
mechanisms (AMs) and propose heuristics algorithms for automated adaptive strategies based on
flexible deployment of these AMs.

3. Formulation

To formalise the adaptation with multiple AMS, we use the framework from (Bakirov et al., 2021),
adopted for incremental learning. We consider the predictive method at time t as a function
ŷt = ft(xt,Θf ). where ŷt is the prediction, ft is the prediction function, and Θf is the associated
parameter set. Our estimate, ft, evolves via adaptation with each t-th data instance.

We denote the a-priori predictive function at batch t as f−t , and the a-posteriori predictive
function, i.e. the adapted function given the observed output, as f+t . An adaptive mechanism, g(· ),
may thus formally be defined as an operator which generates an updated prediction function based on
the instance {xt, yt} and other optional inputs. This can be written as gt(xt, yt,Θg, f

−
t , ŷt) : f−t → f+t

or alternatively as f+t = f−t ◦ gt for conciseness. Note f−t and ŷt are optional arguments and Θg is
the set of parameters of g. The function is propagated onto the next data instance as f−t+1 = f+t and
predictions themselves are always made using the a-priori function f−t .

We examine a situation when a choice of multiple, different AMs, {∅, g1, ..., gH} = G, is available.
Any AM ght ⊂ G can be deployed after each data instance arrival, where ht denotes the AM deployed
for t-th data instance. As the history of all adaptations up to the data instance, t, have in essence
created f−t , we call that sequence gh1

, ..., ght
an adaptation sequence. Note that we also include the

option of applying no adaptation denoted by ∅, thus all adaptive algorithms having at least the
option of not adapting fit multiple AMs framework. In this formulation, only one element of G is
applied for each data instance. Deploying multiple adaptation mechanisms on the same batch are
accounted for with their own symbol in G.

Using data instance {xt, yt} for adaptation, it is possible to obtain H predictive models,
f−t ◦ g1, · · · , f−t ◦ gH . After the true label is revealed, the reward of the selected model in f−t ◦ ght

,
rht

can be calculated1. Thus, the task of coming up with the adaptation strategy amounts to the
selection of a predictive model from Ft (equivalent to the selection of ght

from G) for all t ≥ 2.

1. In this work we use r = 1 if y = ŷ and r = 0 otherwise.
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It is easy to note that if we assume a fixed unknown reward distribution for each AM, the problem
of learning an adaptive strategy is a classical multi-armed bandit problem (Lattimore and Szepesvári,
2020) where the arms are the set G of AMs. Multi-armed bandit algorithms bound regret, that is
the difference between the chosen and the single best action’s reward, sub-linearly depending on
the number of rounds T under some conditions. For adaptive strategy learning, a sub-linear regret

bound means that the cumulative reward Rt =
T∑

t=1
rt using the bandit algorithm for the choice of

AMs will converge to this of the optimal single AM selection.
There is a caveat which makes the bounds of classical bandit algorithms not applicable2 to the

AM selection problem. These algorithms assume that the distribution of AMs’ rewards are time
invariant. This assumption would not hold in stream data scenario as reward distributions will
depend on the context such as non-stationarities in data and the choice of previously deployed AMs.
This can be handled by the contextual bandit algorithms (Tewari and Murphy, 2017), which take
additional information such as these into account.

4. Experiments

Our experiments are based on the DWM and PL algorithms. DWM is a dynamic ensemble and PL
a combination of stable and reactive learners, both very common settings for the stream learning.
Both of these settings include multiple AMs, not all of which are used in DWM and PL. For our
experiments we will use both settings; a) using all AMs and b) as using only the AMs which were
part of the original algorithms (custom AMs). These options simulate prior information available at
the design of adaptive strategy; if known, the poor performing AMs would typically not be included
in the set G. Without such prior information, it would make sense to use all available AMs for
adaptive strategy learning. Used datasets are given in supplementary materials. Below we present
the details of stream learning methods and the used bandit algorithms.

4.1 Dynamic Weighted Majority style adaptation

DWM is a dynamic weighted classifiers ensemble which enables all three adaptation possibilities
common to these methods; the individual retraining or incremental learning of the experts with new
data, adjustment of the weights and addition/removal of experts. These can be combined in all
possible ways resulting in 8 AMs. We will consider 6 of them as all possible AMs3.

AM1 (No adaptation). No changes are applied to the predictive model, corresponding to ∅.
AM2 (Incremental Learning). Each predictor is updated with a new data instance.
AM3 (Weights Update and Experts Pruning). Weights of predictors which misclassify the current

data instance are decreased and experts with weights lower than fixed threshold are removed.
AM4. AM2 (Weights Update and Experts Pruning) followed by AM1 (Incremental Learning).
AM5. AM2 (Weights Update and Experts Pruning) followed by the creation of a new expert.
AM6. AM2 (Weights Update and Experts Pruning) followed by AM1 (Incremental Learning)

followed by the creation of a new expert.
DWM original adaptive Strategy. At time t, after an arrival of new instance {xt, yt},

predictors make predictions and the final label is calculated as shown earlier in this section. Then,
all predictors learn on this instance and update their weights (AM4) and the final prediction is
calculated. If an instance is misclassified, a new predictor with the weight of one is created (AM6).

2. In practice the algorithms are still applicable and may provide good results.
3. Excluding the scenarios where experts are added without weights update leading to unlimited expert numbers.
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4.2 Paired Learner style adaptation

PL maintains two learners - a stable learner which is updated with all of incoming data and which
is used to make predictions, and a reactive learner, which is trained only on a window of the most
recent data. For this method, three adaptive mechanisms are possible, which are described below.

AM1 (No adaptation). No changes are applied to the predictive model, corresponding to ∅.
AM2 (Updating stable learner). Stable learner is updated with a new data instance.
AM3 (Switching to reactive learner). Stable learner is discarded and replaced by reactive learner.
PL (custom adaptive strategy). Original PL adaptive strategy revolves around comparing

the accuracy values of stable (uts) and reactive (utr) learners on each batch of data. Every time when
uts < utr a change counter is incremented. If the counter is higher than a defined threshold θ, an
existing stable learner is discarded and replaced by the reactive learner, while the counter is set to 0.
As before, a new reactive learner is continued to be trained with the most recent data.

4.3 Bandit algorithms

For learning of adaptive strategies we have experimented with four bandit algorithms, including
two variants of LinUCB listed below. For each of these algorithms we consider a cold-start scenario,
where we start with uniform estimated rewards per AM and a warm-start (denoted below with (w)),
where we run the algorithm on a dataset beforehand twice and use the resulting estimated rewards to
report the outcome of the third run 4. The warm start scenario simulates processing extended data
streams as well as reduces the randomness effects in algorithms, all of which use random selection for
the cases when two or more AMs have the same estimated reward.

The most basic out of three, ε-greedy algorithm (Lattimore and Szepesvári, 2020) estimates the
rewards of the actions at time t as mean accumulated reward for this action: E(rg) =

Rg,t

t . Then,
the action with the highest reward is chosen with a probability of 1− ε, (so called exploitation) and
a random action is chosen with a probability of ε (exploration).

The second bandit algorithm is Kullback-Leibler Upper Confidence Bounds (KL-UCB) (Garivier
and Cappé, 2011), a superior variation of the standard Upper Confidence Bounds (UCB) algorithm
(Lattimore and Szepesvári, 2020). UCB chooses the action with a highest upper confidence bound of
reward at each time step. While time-invariant rewards assumption that KL-UCB has does not hold
in our case, meaning that its reward bounds are not applicable, it still provides good results.

To satisfy the condition of rewards’ dependency on non-stationarity and previous actions (the
context), we include a contextual bandit algorithm LinUCB (linear UCB) (Li et al., 2010). It assumes
a linear relationship between the context and the reward, which is estimated via ridge regression.
For a standard version of LinUCB, at time t we include two context variables, the result of the last
classification (1 if ˆyt−1 = yt−1, 0 otherwise) and the last deployed action ht−1. For experiments with
sets of all possible AMs both for DWM and PL adaptations styles, we have also used hybrid LinUCB,
which also includes the context on the actions. LinUCB has the regret bound of Õ(

√
KdT ) where K

is the number of arms and d is number of context features.

5. Results

5.1 Dynamic Weighted Majority

Synthetic data. The results of the experiments using DWM AMs are shown via Nemenyi plots
on Figure 1a,b. With all available AMs, DWM is a leader, however KL-UCB(w) and LinUCB
Hybrid(w) achieve statistically comparable performance. LinUCB algorithms show a relatively
poor performance. For DWM custom AMs DWM again has the best mean performance rank. This
time LinUCB algorithms provide comparable outcome.

4. Note that the classifiers are trained from the scratch to avoid data leakage, and while predicting on the instances
for which the reward was already calculated may be overly optimistic, the results don’t show this bias.
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Figure 1: Nemenyi plots (lower is better) of adaptation using bandit-based and custom adaptive
strategies on synthetic datasets.

Real data. Results on real data on all AMs (Table 1a) show DWM having the top accuracy
for most of the datasets. However, only in three cases, the performance of PL is more than 1%
higher than the runner-up algorithm. Among bandit based methods KL-UCB(w) appears to be
a strong contender, while ε-greedy is lagging behind. The situation is different when considering
custom AMs only (Table 2a), as algorithms don’t have to test the “weak” AMs (e.g. “do nothing")
and suffer a possible reward penalty. Here LinUCB algorithms, especially LinUCB(w) are leaders,
with KL-UCB also showing good performance.

5.2 Paired Learner

Synthetic data. The results of the experiments using PL AMs are shown via Nemenyi plots on
Figure 1c,d. With all available AMs many bandit based adaptive strategies achieve comparable
average performance to the original PL algorithm, with both LinUCB Hybrid(w) and KL-UCB(w)
being slightly better. LinUCB and ε-greedy based strategies were less successful for this case.
Similarly for PL custom AMs KL-UCB(w) shows a slightly better performance.

Real data. Results on real data on all AMs (Table 1b) show a slightly different picture, with PL
having the top accuracy for most of the datasets. However, the performance of PL is more than 1%
higher than the runner-up algorithm only in two cases. Among bandit based methods both LinUCB
and KL-UCB appear to be strong contenders, while ε-greedy is lagging behind. Similar situation is
observed using custom AMs only (Table 2b). Here KL-UCB is a strong runner up to PL.

6. Conclusions

In this paper we have used several bandit algorithms for learning the adaptive strategies for streaming
data given a set of adaptive mechanisms on-the-fly. These methods provide easy automation of the
adaptation process, avoiding the need to come up with the custom adaptation strategy, some of
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Table 1: Accuracy values of adaptation for bandit-based with all AMs and custom adaptive strategies
on real datasets. Top accuracy values are bold, runner-ups are bold-italic.

a) DWM style Lin
UCB

Lin
UCB(w)

LinUCB
Hyb

LinUCB
Hyb(w)

KL-
UCB

KL-
UCB(w)

ε-grd ε-grd
(w)

DWM

Electricity 0.855 0.843 0.853 0.853 0.845 0.872 0.847 0.847 0.874
Power 0.592 0.539 0.675 0.544 0.522 0.669 0.651 0.655 0.677
Contraceptive 0.418 0.453 0.412 0.381 0.379 0.465 0.379 0.388 0.399
Iris 0.748 0.864 0.808 0.846 0.866 0.873 0.884 0.849 0.891
Yeast 0.403 0.468 0.278 0.468 0.468 0.469 0.312 0.314 0.297
Gas 0.893 0.916 0.852 0.889 0.893 0.925 0.919 0.919 0.943
Gestures 0.917 0.915 0.911 0.923 0.913 0.926 0.883 0.881 0.937
b) PL style Lin

UCB
Lin
UCB(w)

LinUCB
Hyb

LinUCB
Hyb(w)

KL-
UCB

KL-
UCB(w)

ε-grd ε-grd
(w)

PL

Electricity 0.860 0.862 0.861 0.859 0.859 0.858 0.839 0.840 0.866
Power 0.508 0.491 0.625 0.539 0.588 0.678 0.653 0.644 0.645
Contraceptive 0.445 0.445 0.445 0.434 0.434 0.433 0.410 0.415 0.413
Iris 0.730 0.858 0.856 0.860 0.872 0.733 0.870 0.828 0.879
Yeast 0.284 0.385 0.289 0.470 0.470 0.337 0.288 0.287 0.320
Gas 0.816 0.901 0.910 0.891 0.897 0.898 0.887 0.889 0.929
Gestures 0.848 0.849 0.841 0.851 0.847 0.845 0.775 0.773 0.894

Table 2: Accuracy values of adaptation for bandit-based with custom AMs and custom adaptive
strategies on real datasets. Top accuracy values are bold, runner-ups are bold-italic.

a) DWM style Lin
UCB

Lin
UCB(w)

KL-
UCB

KL-
UCB(w)

ε-grd ε-
grd(w)

DWM

Electricity 0.874 0.874 0.875 0.875 0.873 0.874 0.874
Power 0.673 0.679 0.677 0.675 0.676 0.675 0.677
Contraceptive 0.403 0.407 0.398 0.395 0.396 0.395 0.399
Iris 0.889 0.882 0.878 0.893 0.891 0.884 0.891
Yeast 0.378 0.393 0.330 0.312 0.325 0.364 0.297
Gas 0.939 0.938 0.937 0.936 0.939 0.939 0.943
Gestures 0.930 0.930 0.928 0.929 0.929 0.929 0.937
b) PL style Lin

UCB
Lin
UCB(w)

KL-
UCB

KL-
UCB(w)

ε-grd ε-
grd(w)

PL

Electricity 0.860 0.861 0.861 0.860 0.860 0.859 0.866
Power 0.637 0.640 0.670 0.675 0.628 0.628 0.645
Contraceptive 0.409 0.409 0.408 0.409 0.413 0.408 0.413
Iris 0.886 0.867 0.853 0.856 0.860 0.860 0.879
Yeast 0.292 0.305 0.332 0.333 0.297 0.294 0.320
Gas 0.901 0.901 0.902 0.907 0.901 0.904 0.929
Gestures 0.849 0.842 0.850 0.850 0.843 0.846 0.894
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them offering theoretical guarantees in addition. The results show that some bandit algorithms,
such as LinUCB and KL-UCB compare favourably and often beat the custom streaming methods,
particularly with warm-start. These algorithms are not computationally intensive, with the most
time consuming operation being an inverse calculation of d2 dimensional matrix at each step for
LinUCB. Further research includes identifying a well-suited set of context features for contextual
bandit algorithms, for example considering a window of recent actions instead of only the last one.
Another direction is considering a full-information setting, where all of AM would be updated at
each time step instead of limited-information bandit setting, where a reward estimate of only the
chosen AM is updated. This is likely to result in faster convergence. To improve the convergence
transfer-learning type methods can be considered as well, where rewards learned on one dataset can
be used for another dataset.
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Table 3: Algorithms hyper-parameters

Algorithm Hyper-parameter selection
DWM Weights decay factor β = 0.5, expert removal weight threshold θ = 0.01

PL Reactive learner window size l = 20, switching threshold θ = 1
LinUCB α = 0.5
ε-greedy ε = 0.1
KL-UCB c = 0

Table 4: Synthetic classification datasets used in experiments, with N instances and C classes,
from (Bakirov and Gabrys, 2013). Column “Drift" specifies number of drifts/changes in data, the
percentage of change in the decision boundary and its type. All datasets have 2 input features.

# Data type N C Drift Noise/overlap

1 Hyperplane 600 2 2x50% rotation None
2 Hyperplane 600 2 2x50% rotation 10% uniform noise
3 Hyperplane 600 2 9x11.11% rotation None
4 Hyperplane 600 2 9x11.11% rotation 10% uniform noise
5 Hyperplane 640 2 15x6.67% rotation None
6 Hyperplane 640 2 15x6.67% rotation 10% uniform noise
7 Hyperplane 1500 4 2x50% rotation None
8 Hyperplane 1500 4 2x50% rotation 10% uniform noise
9 Gaussian 1155 2 4x50% switching 0-50% overlap
10 Gaussian 1155 2 10x20% switching 0-50% overlap
11 Gaussian 1155 2 20x10% switching 0-50% overlap
12 Gaussian 2805 2 4x49.87% passing 0.21-49.97% overlap
13 Gaussian 2805 2 6x27.34% passing 0.21-49.97% overlap
14 Gaussian 2805 2 32x9.87% passing 0.21-49.97% overlap
15 Gaussian 945 2 4x52.05% move 0.04% overlap
16 Gaussian 945 2 4x52.05% move 10.39% overlap
17 Gaussian 945 2 8x27.63% move 0.04% overlap
18 Gaussian 945 2 8x27.63% move 10.39% overlap
19 Gaussian 945 2 20x11.25% move 0.04% overlap
20 Gaussian 945 2 20x11.25% move 10.39% overlap
21 Gaussian 1890 4 4x52.05% move 0.013% overlap
22 Gaussian 1890 4 4x52.05% move 10.24% overlap
23 Gaussian 1890 4 8x27.63% move 0.013% overlap
24 Gaussian 1890 4 8x27.63% move 10.24% overlap
25 Gaussian 1890 4 20x11.25% move 0.013% overlap
26 Gaussian 1890 4 20x11.25% move 10.24% overlap
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Figure 2: Synthetic datasets visualisation (Bakirov and Gabrys, 2013).

Table 5: Real world classification datasets.N stands for number of instances, M for number of
features and C for number of classes.

# Name N M C Brief description
1 Power 4489 2 4 The task is prediction of hour of the day (03:00, 10:00, 17:00

and 21:00) based on supplied and transferred power measured
in Italy. (Zhu, 2010; Chen et al., 2015).

2 Contra-
ceptive

4419 9 3 Contraceptive dataset from UCI repository (Newman et al.,
1998) with artificially added drift (Minku et al., 2010).

3 Iris 450 4 4 Iris dataset (Anderson, 1936; Fisher, 1936) with artificially
added drift (Minku et al., 2010).

4 Yeast 5928 8 10 Yeast dataset from UCI repository (Newman et al., 1998)
with artificially added drift (Minku et al., 2010).

5 Gas 13910 129 6 Dataset from chemical sensors utilized in simulations for dis-
crimination task of 6 gases at various levels of concentrations
(Vergara et al., 2011).

6 Gestures 9873 33 5 Dataset composed by features extracted from 7 videos with
people gesticulating, for Gesture Phase Segmentation. (Madeo
et al., 2013).

7 Electricity 27887 6 2 Widely used concept drift benchmark dataset thought to
have seasonal and other changes as well as noise. Task is
the prediction of whether electricity price rises or falls while
inputs are days of the week, times of the day and electricity
demands (Harries, 1999).
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