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Introduction
The topic of this research is automatic adaptation strategies for stream learning.

• Non-stationary data streams require adaptation of the predictive mode
• Often multiple adaptive mechanisms (AM) available for each time step
• Which AM to deploy? A sequential decision problem.
• Here: Using multi armed bandit algorithms to solve this problem.
• Why? Computationally inexpensive, theoretical guarantees.
• Results comparable to custom algorithms.

Formulation
- Prediction: �𝑦𝑦𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝒙𝒙𝒕𝒕,Θ𝑓𝑓)
- After every time step true value 𝑦𝑦𝑡𝑡 is revealed and loss 𝑙𝑙𝑡𝑡 𝑦𝑦𝑡𝑡, �𝑦𝑦𝑡𝑡 is calculated
- Adaptive Mechanism: 𝑔𝑔𝑡𝑡 𝑓𝑓𝑡𝑡, �𝑦𝑦,𝑉𝑉𝑡𝑡,Θ𝑔𝑔 : 𝑓𝑓𝑡𝑡 → 𝑓𝑓𝑡𝑡+1
- Multiple AMs: ∅,𝑔𝑔1, … , gH = G
- Adaptation: at each time step 𝑡𝑡, 𝑓𝑓𝑡𝑡+1 = ght(𝑓𝑓𝑡𝑡)
- Adaptation sequence (AS):, gh1 , gh2 , …
- Question: How to choose ℎ1,ℎ2, … to minimize the total loss ∑𝑡𝑡 𝑙𝑙 over {𝑿𝑿,𝒚𝒚}?

Empirical evaluation
- Dynamic Weighted Majority [Kolter and Maloof 2007]
- Paired Learner [Bach and Maloof 2010]

Comparing their custom (original) adaptation scheme to the ones learned by 
bandit algorithms.

• Cold vs “warm” start.
• All possible or only custom AMs.

Data
26 synthetic and 7 real-world classification data sets with different levels/types of 
non-stationarity

Results
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Example: Dynamic Weighted Majority custom adaptation 

Bandit algorithms
Comparing the custom (original) adaptation scheme to the ones learned by 
bandit algorithms:
- LinUCB [Li et al., 2010] – Contextual bandit algorithm
- KL-UCB [Garivier and Cappé, 2011] – Non-contextual algorithm
- ɛ-greedy algorithm - baseline

Context (for LinUCB)
- Last deployed AM
- Last classification result

Options
• Cold vs “warm” start.
• All possible or only custom AMs.

Discussion
• Multiple Adaptive Mechanisms framework can adapt models on multiple levels, 

including the structure, parameters, hyperparameters, etc.
• Adaptation strategies learned by bandit algorithms (LinUCB and KL-UCB) provide 

comparable empirical performance to custom adaptation algorithms, particularly 
with custom AMs and warm start.

• LinUCB can provide theoretical guarantees in terms of suffered cumulative regret.
• Surprisingly, performance of LinUCB and KL-UCB is similar; hence the chosen 

context features need to be revisited.
• Full-information setting and “transfer learning” between different datasets for 

warm start can be investigated.
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