
A Experimental setup

A.1 Synthetic data experiments

Dataset. As described in the main paper, the synthetic dataset (§3.4) is based on [34, §4.1]. The
complexity of the dataset was increased by allowing two (instead of one) target training samples for
each input. The probability q(x) of sampling two targets instead of a single one for input x is chosen
as the piece-wise affine function such that q(0) = q(1) = 1 and q( 12 ) = 0. This modification aimed
to demonstrate how rMCL handles multiple targets sampled for each input during training.

Architectures. We use a three-layer perceptron backbone with 20 output hypotheses and a ReLu
activation function for each layer and 256 hidden units. The multi-hypothesis splitting is carried out
at the final layer stage. The scoring heads of the rMCL model receive the same representation as the
hypothesis heads. The ensemble members have the same backbone but use a single hypothesis at the
output stage. The rMCL⇤ model has the same architecture as rMCL but utilizes a different training
loss (see Section 3.2).

Training details. For each model, the training was performed on 100,000 training samples and
25,000 validation samples with a batch size of 1024. We employed 20 training epochs with Adam
optimizer [24]. The checkpoint retained corresponded to the one with the lowest validation loss. For
the Stochastic Multiple Choice Learning (sMCL) model, the multi-target version of the Winner-takes-
all loss was used. The rMCL and rMCL⇤ models were trained with unit scoring loss weight (� = 1,
see §3.2), but the rMCL⇤ training differed in that it only updated one negative hypothesis (compared
to all in standard rMCL). When trained in this manner, the rMCL⇤ model can be considered a more
memory-efficient version of the proposed rMCL. The Independent Ensemble (IE) members were
trained with a single target update (in the sMCL, the best hypothesis is updated for each target)
as it resulted in a better fit to the data. The predictions from the IE members, trained with several
initialization instances, were then stacked. The IE results were not plotted in Figure 1 for clarity and
comparison purposes, as they were significantly worse (average Earth Mover’s Distance at test time
for the IE: 0.62± 0.11) compared to the other evaluated models.

Evaluation details. Figure 1, §3.4 (left) displays the Earth Mover’s Distance (EMD) values using `2
underlying distance calculated for 50 equally spaced input x values in the comparative evaluation.
At each input and for each model, the EMD was computed between 1, 000 samples taken from the
ground-truth distribution, viewed as a mixture of Dirac deltas and the predicted hypothesis. The
centroids in each cell (described in the right part of the figure) were computed using 35, 000 samples
from the ground-truth distribution for each input.

A.2 Audio data experiments

Datasets preprocessing. As indicated in §4.2, the experimental setup incorporates the ANSYN and
RESYN datasets, which feature spatially localized events under anechoic and reverberant conditions
respectively [1]. We used the first-order Ambisonics (FOA) format with four input audio channels.
The events from 11 possible classes (Clearing throat, Coughing, Door knock, Door slam, Drawer,
Human laughter, Keyboard, Keys put on a table, Page turning, Phone ringing and Speech), extracted
from the DCASE16 Sound Event Detection dataset, were randomly placed in a spatial grid (see
[1]). We adhered to the dataset preprocessing described by Schymura et al. in [37, 36]. The audio
signals, with a sampling frequency of 44.1 kHz, were converted into 30-second files. From those
files, non-overlapping chunks of 0.5 s were generated to be used as training inputs. Spectrogram
computation was performed offline for saving computation, using Hann window with length 0.04 s
used for Short Term Fourier Transform (STFT) estimation, with 50% overlapping frames and 2048
Fast Fourier Transform (FFT) bins. The input for the model comprised both amplitude and phase
information, stacked channel-wise.

Architecture. We employed the SELDNet backbone [1]. After raw audio preprocessing, it accepts
the spectrograms of fixed duration with phase information as input and returns localization output
in the chosen output resolution (here, T = 25 output time steps were considered for each chunk).
The processing includes several feature extraction modules (CNNs, Bi-directional GRUs layers) that
generate a representation at each time step in the output resolution. These latent representations
are then mapped to the output localization estimates through FC layers. To accommodate the MCL
setup, the final FC layers were split into K FC heads, each producing a 2D output at each time step.
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The rMCL architecture also includes full confidence heads at the output stage, each producing a
scalar output in [0, 1] through a sigmoid function. Therefore, the number of added parameters in the
architecture is negligible (⇠ 4 k when using 5 output hypotheses for an architecture with ⇠ 1.5 M
parameters).

Training details. The training setup is the same as the one used in [37, 36]. Unless specified
otherwise, the training details correspond to those in [37], for which the official code was released,
in particular, the implementation of the PIT variant used. The trainings were conducted using the
AdamW optimizer [30], with a batch size of 128, an initial learning rate of 0.05, and following the
scheduling scheme from [43]. The MCL models were trained using the multi-target version of the
Winner-takes-all loss. The rMCL version was trained using confidence weight � = 1. As for the
synthetic data experiments, the training of IE members was performed using different random seeds
and single hypothesis loss with a single target update for each.

Evaluation details. As outlined in Section 4.2, the Oracle and EMD metrics with spherical distance
were employed for evaluation purposes. The EMD metric is an extension to solve the assignment
problem, often tackled using the Hungarian method [25]. Similar to prior studies (e.g., [1, 37, 36]),
the localization metric was computed solely for frames (the active frames) where at least one active
source is present in the sound scene. For each test sample, the metrics were computed and averaged
over the active frames among the output T frames. Furthermore, we computed the standard deviation
from the average metric for each subsection of the test set (D1, D2, and D3) sample-wise, as presented
in the Tables. The standard deviations of the metrics when performing the exact same experiments
from different random states are also provided in Appendix B.3. On a separate note, the frame recall
metric, which indicates the percentage of time frames in which the number of active sound sources
was estimated correctly, is omitted in the results for the sake of conciseness. This is because the EMD
already penalizes missing sources in the predictions. In the rMCL model, the number of sources in
the sound scene can nevertheless be computed before the normalization described in §3.2 by summing
the output scores

P
k �

k
✓(x).

Visualizations of rMCL outputs for input test samples from the ANSYN dataset are given in Figure
A.1.

Figure A.1: Qualitative comparisons. Results for randomly chosen input audio clips (different rows)
from the D3 test subset of the ANSYN dataset. The columns correspond to the temporal predictions at
different time steps t. For each prediction (subplot), the abscissa and ordinates stand for azimuth and
elevation angles, respectively (in degrees). We notice the competitive performance of the proposed
rMCL model (with shaded blue circles for whose the score intensity is displayed in the colorbar)
compared with the Permutation Invariant Training (PIT) approach (orange squares, baseline used for
Tables 1 to 4) for predicting the positions of the targets (green stars).
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Figure B.1: Histogram of winner hypotheses’ indexes at test time for a 20-hypothesis model
trained on ANSYN. The x-axis displays the hypothesis index, and the y-axis the fraction of test
samples on which hypothesis k was selected. We observe a high entropy distribution, which shows
that the collapse did not occur for this model.

A.3 Computation details

We utilized the Hydra library for experimental purposes within the Pytorch deep learning framework.
Our coding was inspired by [32, 37, 36, 1].

Our experiments were conducted on NVIDIA A100 GPUs. The total computing resources used for
this project, including failed experiments, amount to approximately 2,000 GPU hours.

B Further discussions

B.1 About the collapse problem

As highlighted in the main paper, the collapse issue in MCL refers to a theoretical situation where
one (or a few) of the K hypotheses become dominant, i.e., are almost always selected as a winner and
receive the gradient update. In this situation, the other hypothesis heads are not updated, therefore
shrinking the diversity of the predictions. As a way to measure the collapse phenomenon for a trained
model f✓ = (f1

✓ , . . . , f
K
✓ ) using a validation dataset D , {(xn,Yn)}, one can compute for each k,

the number of samples in D for which hypothesis k is a winner, that is:

Nk(D) , |{(xn,Yn) 2 D : 9y 2 Yn, y 2 Yk(xn)}|.

The negative entropy of the histogram values {Nk(D)}k should therefore inform about the collapse
level; if the histogram shows a wide diversity of the selected hypotheses (i.e., a histogram with almost
uniform values for each bin), then there is no collapse. On the opposite, if the histogram has only one
non-zero bin, the collapse level is maximum.

In our experiments with audio data, we did not observe the collapse problem in practice, neither
with WTA nor with the proposed rMCL model. To verify this, one can compute the histogram of the
{Nk(D)} values as explained above. See Fig. B.1 for an example of visualization for a 20-hypotheses
model trained on ANSYN (corresponding to the results of Table 4 in the paper). As mentioned in
[19] (p.8), we believe this issue is, in practice, solved by the variability of the data samples and the
training stochasticity.

B.2 Robustness in the presence of target outliers

This section aims to provide insights into how the proposed model can handle the presence of outliers
in the output space, which may be critical in real-world datasets. Let’s consider a setting where we
have outliers in the training dataset, for instance, the toy use-case presented in the paper, where for
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Figure B.2: Robustness of rMCL to outliers. Evaluation results on the toy example when corrupting
the training dataset with outliers, modeled by a bivariate Cauchy distribution. (Left) Sorted values of
the unnormalized scores predicted from the hypotheses scoring heads at x = 0.6. (Right) Inference at
x = 0.1, 0.6, 0.9 with zoomed prediction in [�1, 1]2 (top) and Voronoi tessellations in the full plane
(bottom) with the same organization as in Figure 1.

each training example sampled, the probability of getting an outlier is ⇢ ⌧ 1. Then, whenever an
outlier is sampled, one hypothesis will be pushed towards it with its associated score heads updated.
As the training goes on, some of the hypotheses will manage the outlier samples; let’s name them
the ‘outlier hypotheses’. Thanks to the proposed hypothesis scoring heads, the model will also learn
the probability that an outlier hypothesis is chosen for a given training sample. Provided that the
outlier likelihood is ⇢ ⌧ 1, the scoring heads will therefore prevent outlier hypotheses output from
deteriorating the quality of the predicted distribution by rMCL. In Fig. B.2 an illustration of this
phenomenon is proposed using a Cauchy distribution (we used ⇢ = 0.02, and corrupted samples
having norm  2 were rejected). We notice the above-explained phenomenon, where the so-called
outlier hypotheses account for the outlier samples, while the other hypotheses lie in the square
[�1, 1]2 representing the samples from the ground-truth distribution.

Provided that the probability of sampling an outlier ⇢ is small enough and the outliers are far enough
from the ground-truth distribution to predict, the proposed rMCL model is therefore potentially robust
to outliers. In this case, some specific hypotheses, namely the outlier hypotheses, will be assigned to
them, preventing the non-outlier hypotheses from being heavily affected. At inference time, it will
indeed be possible to set to zero the very low-score hypotheses given an arbitrary threshold so that
the outlier hypotheses are not taken into account.

B.3 Further results on audio datasets

We provide in this section further benchmarks of the method on sound source localization (SSL)
datasets. Additionally to the results presented in Tables 1-4, where the mean and sample-wise
standard deviation of the metrics on ANSYN and RESYN datasets are computed, we provide in
Figures B.3 and B.4 further results considering the statistics of the metrics after several runs from
different random states, and also including the REAL [1] and DCASE19 [3] datasets. In those
datasets, the maximum number of overlapping events is respectively three and two.

Further datasets. In contrast to ANSYN and RESYN datasets which employ simulated Room
Impulse Responses (RIRs) for audio spatialization, the REAL and DCASE19 datasets utilize RIRs
recorded in real sound scenes. These were captured with a Spherical Microphone Array [1, 3].
Specifically, the recordings took place in various indoor settings inside a university. The REAL and
DCASE19 RIRs were convoluted respectively with sound events from the UrbanSound8k [35] and
DCASE16 datasets to achieve spatialization. Additionally, ambient noise was collected from the
environment of the RIR recordings in the DCASE19 dataset. The same dataset pre-processing and
sub-splitting process as presented in ANSYN and RESYN datasets was employed in REAL. For
DCASE19, the four development dataset splits were consolidated to form the training set, while
the official evaluation dataset served as the test set. The DCASE19 dataset comprises 60-second
recordings. Notably, it has a low percentage of frames with overlapping events. To avoid bias from
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the dominance of monophonic events in some polyphonic recordings, the unimodal and multimodal
splitting for the results in Figures B.3 and B.4 was executed at the prediction level, not the recording
level, for this dataset. For each dataset, the WTA variants were trained with n = 3 and " = 0.5.

The outcomes from both the REAL and DCASE19 datasets mirror the patterns identified in the
previous datasets in Section 4.3. Within these results, the vanilla WTA approach, represented by the
pink diamonds, marginally outperforms our proposed method on the oracle metric when an equivalent
number of hypotheses is used. However, a substantial disparity is observed concerning the Earth
Mover’s Distance (EMD) metric when multiple hypotheses are predicted. Whenever a single source
is present in the scene, the IE with five members (yellow line, triangles) still tend to outperform the
other methods both in term of EMD and Oracle. In every multimodal setting within those datasets,
we discern competitive results while comparing the EMD of rMCL (blue line, circles) and the other
baselines.

Consistently with Section 4.5’s analysis, increasing the number of hypotheses K improves the oracle,
but it may also degrade slightly the EMD when K is too large. Furthermore, top-n-WTA shows a
disparity of results across datasets. For instance, the EMD results of top-n between ANSYN and
other datasets reveal a contrary trend as the number of sources grows. Finally, it is noteworthy that,
while oracle results remain stable, greater variability is seen in the rMCL unimodal EMD results in
REAL and DCASE19 compared to prior datasets. This fluctuation may be attributed to the stochastic
optimization sensibility to the challenging audio conditions, particularly when a single source is
active and multiple hypotheses are utilized. Investigation on the explicit evaluation of the uncertainty
estimated by rMCL, e.g., due to possible label noise, is left for further work.
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(a) Statistics of the metrics on ANSYN.

(b) Statistics of the metrics on RESYN.

(c) Statistics of the metrics on REAL.

(d) Statistics of the metrics on DCASE19.

Figure B.3: Statistics of the metrics over four datasets. Mean and standard deviation of EMD (left)
and Oracle (right) over three training runs, on ANSYN, RESYN, REAL and DCASE19 datasets
(a-d). Details and interpretation of the results are discussed in Sec. B.3.
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(a) Sensitivity analysis on ANSYN.

(b) Sensitivity analysis on RESYN.

(c) Sensitivity analysis on REAL.

(d) Sensitivity analysis on DCASE19.

Figure B.4: Effect of the number of hypotheses on the performance of rMCL. Mean and standard
deviation of EMD (left) and Oracle (right) over three training runs, on ANSYN, RESYN, REAL and
DCASE19 datasets (a-d). Details and interpretation of the results are discussed in Sec. B.3.
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