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Supplementary Information

Network connectivity

The network consists of N = 600 neurons, which represent positions in L one-dimensional periodic
environments. A distinct spatial map is generated for each environment, by choosing a random
permutation that assigns all place cells to a set of preferred firing locations that uniformly tile this
environment.

The synaptic connectivity between place cells is expressed as a sum over contributions from all spatial
maps:

J =

L∑
l=1

J l (S1)

where J l
i,j depends on the periodic distance between the preferred firing locations of cells i and j in

environment l, as follows

J l
i,j =

Aexp

[
−
(
dli,j

)2
2σ2

]
+ b i ̸= j

0 i = j

(S2)

The first term is an excitatory contribution to the synaptic connectivity that decays with the periodic
distance dli,j , with a Gaussian profile

(
0 ≤ dli,j < N/2

)
. The second term is a uniform inhibitory

contribution. The parameters A > 0, σ, and b < 0 are listed in Network parameters. Note that the
connectivity matrices corresponding to any two maps l and k are related to each other by a random
permutation:

J l
i,j = Jk

πl,k(i),πl,k(j) (S3)

where πl,k denotes the random permutation from map k to map l. Even though J is a N ×N matrix,
it has only

(
N2 −N

)
/2 unique terms since J = JT and since Ji,i = 0.
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Dynamics

The dynamics of neural activity are described by a standard rate model. The total synaptic current Ii
into place cell i evolves in time according to the following equation:

τ İi = −Ii + h+

N∑
j=1

Ji,j · ϕ (Ij) (S4)

The synaptic time constant τ is taken for simplicity to be identical for all synapses (Network
parameters). The external current h is constant in time and identical for all cells. This current includes
two terms: h = h0 − (L − 1)NJ̄R̄. The first term, h0, is the baseline current required to drive
activity when a single spatial map is embedded in the connectivity. In the second term, J̄ is the
average of the elements in a row of the single-map connectivity matrix, and R̄ is the average firing
rate of place cells in the bump steady state when L = 1. The second term compensates on average
for the inputs arising from the connectivity associated with the L− 1 maps other than the active map.
It thus guarantees that the mean input to all neurons in an idealized bump state will be independent of
the number of embedded maps.

The transfer function ϕ determines the firing rate (in Hz) of place cells (r) as a function of their total
synaptic inputs. To resemble realistic neuronal F-I curves, it is chosen to be sub-linear:

ϕ (x) =

{
0 x ≤ 0√
x x ≥ 0

(S5)

Note that ϕ′ (x) ≥ 0 ∀x, which implies that the Lyapunov energy (Eq. S8) cannot increase. We
implemented the dynamics using the Euler-method for numeric integration, with a time step ∆t
(Network parameters).

Network parameters

A 0.665 Hz
σ 15 neuron units
b −0.2076 Hz
τ 15 ms
∆t 0.2 ms

h0 10 Hz2

Bump score and location analysis

To identify whether the place cell network expresses a bump state, and to identify its location x and
associated spatial map l, we define an overlap coefficient ql (x) that quantifies the normalized overlap
between the population activity pattern and the activity pattern corresponding to position x in spatial
map l:

ql (x) =
∑
i

P l
i (x) · r̂i (S6)

where r̂i is the normalized firing rate of place cell i such that the maximal firing rate across all cells is
1, and P l

i (x) is the normalized firing rate of neuron i in an idealized bump state localized at position
x in map l. The idealized bump (as defined above) is obtained from the activity of a network in which
a single map (map l) is embedded in the neural connectivity, and therefore there is no quenched noise.
This definition of the bump score is similar to use of the overlap measure between the memory pattern
and the network state in the theory of Hopfield networks.

Next, we define a bump score for each spatial map, defined as the maximum of ql (x) over all
positions x in spatial map l:

Ql = max
x

ql (x) (S7)
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Finally, the map with the highest Ql value is considered as the winning map, and the location x that
generated that value is considered as the location of the place cell bump within that map.

Connectivity modifications to flatten the energy landscape

The Lyapunov energy depends on the total synaptic current of all neurons, represented by the vector
I⃗ , and on the synaptic connectivity J as follows (Cohen and Grossberg, 1983),

E(I⃗ ,J) =

N∑
i=1

∫ Ii

0

dziziϕ
′ (zi)− hϕ (Ii)−

1

2

N∑
j=1

ϕ (Ii)Ji,jϕ (Ij)

 (S8)

The evaluation of the energy landscape was performed for all attractors at uniformly distributed
positions where the synaptic activities I⃗ were centered around place cell preferred firing positions.
These synaptic activities were either idealized bumps or the converged activities obtained through
constrained gradient optimization (described in the next subsection).

After evaluating the energy landscape, we sought to find a connectivity modification matrix M, such
that its addition to the connectivity J will result in an identical energy value for each activity pattern
I⃗k,l used for the energy landscape evaluation (I⃗k,l represents the population activity which encodes
the k’th place cell preferred firing position in the l map). Thus, we demanded that

E
(
I⃗k,l,J+M

)
= C (S9)

where C, is an unknown constant energy value. Note that only the third term of Eq. S8 directly
depends on the connectivity J, and since this dependence is linear, Eq. S8 can be decomposed into

E(I⃗ ,J+M) =

N∑
i=1


∫ Ii

0

dziziϕ
′ (zi)︸ ︷︷ ︸

T1

−hϕ (Ii)︸ ︷︷ ︸
T2

− 1

2

N∑
j=1

ϕ (Ii)Ji,jϕ (Ij)︸ ︷︷ ︸
T3

− 1

2

N∑
j=1

ϕ (Ii)Mi,jϕ (Ij)︸ ︷︷ ︸
T4


(S10)

To comply with the properties of J, we demanded that M = MT , and Mi,i = 0. Hence, the number
of unknown weight modifications was N2−N

2 . Consequently, writing the modification term T4 at the
evaluated k place cell position in map l (i.e., for activity I⃗k,l) yields,

T k,l
4 = −1

2
ϕ⃗k,l ·M · ϕ⃗k,lT = −

N∑
i=1

∑
j>i

Mi,jϕ
k,l
i ϕk,l

j (S11)

where ϕk,l is the transfer function output vector of the synaptic activity vector I⃗k,l which encodes the
k’th place cell preferred firing position in the l map. By rearranging only the desired N2−N

2 elements
of M into a column vector m⃗, and noting that Eq. S11 defines a set of N · L linear equations for
these elements, we can rewrite Eq. S11 as

Am⃗ = κ⃗ (S12)

where A is a matrix with N · L rows and N2−N
2 columns, and κ⃗ is the corresponding vector of

solutions (κ⃗ = C − [T1 + T2 + T3] evaluated in each element of κ⃗ for a specific combination of l
and k).

Subtracting the first equation from all equations yields a similar system of N · L− 1 linear equations
but which is independent of C. This system is underdetermined (∀ N ≥ 2L+1), and the least square
solution for the sought weight modifications is given by

3



m⃗ = AT
(
AAT

)−1

κ⃗ (S13)

Rearranging m⃗ back into the corresponding elements in the matrix M and updating the connectivity,
J+M → J, must yield a precisely flat energy landscape when evaluated using the same activities
I⃗k,l that were previously used to evaluate the energy landscape without the weight modifications.
Moreover, since the original state was a minimum of the Lyapunov energy function with respect to
the activities, deviations in the activities contribute only quadratically to the energy. Consequently,
the procedure described above equalizes the energy function across all states, to linear order in the
weight modifications.

Iterative constrained gradient optimization

In the iterative optimization scheme, the unstable idealized bumps were replaced with the converged
states obtained through a constrained optimization. These states exhibit distorted activity patterns
and lie at a local energy minimum subject to a constraint on the center of mass (position) of the
bump. These states are found by descending through the energy landscape, while constraining the
population activity bump to a fixed position.

To implement the constrained optimization, the objective function of the synaptic activities H
(
I⃗
)

is
defined as follows,

H
(
I⃗
)
= E

(
I⃗ ,J

)
+ λ

[
f
(
I⃗
)
− f0

]
(S14)

where λ is an adjusting Lagrange multiplier, the function f (specified next) returns the position (center
of mass) associated with I⃗ , and f0 is the encoded position of activity at initialization at timestep
t = 0. We seek all converged states I⃗k which minimize H while encoding all possible place cell
preferred firing positions. In the first iteration, these states are achieved by initializing the network
from idealized bump (ib) states I⃗kib centered around all possible place cell preferred firing positions in
all the embedded maps. In the following iterations, the network is initialized with the corresponding
converged states from the preceding iteration. From each such initial state, small updates in the
activity

−→
∆I are added to the activity which minimize the energy value but without changing the

output of f . The time evolution of activity states is written as

I⃗t+1 = I⃗t +
−→
∆It (S15)

The small changes in the activity
−→
∆It are determined through a gradient descent scheme where the

objective function is differentiated with respect to I⃗ ,

−→
∆It = −η ·

−→
∇H = −η

N∑
i=1

∂E

∂Ii
êi − ηλ

N∑
i=1

∂f

∂Ii
êi (S16)

where η > 0 is the learning rate and the êi’s are standard unit vectors spanning an orthonormal basis.
The change in the output position of f due to changes in the activity is written as

∆ft =

N∑
j=1

∂f

∂Ij
êj ·

−→
∆It (S17)

However, since the constraint enforces that there is no change in the encoded position during such
gradient steps, we demand that ∆ft = 0. Plugging the expression for

−→
∆It from Eq. S16 yields

N∑
j=1

∂f

∂Ij
êj ·

[
η

N∑
i=1

∂E

∂Ii
êi + ηλ

N∑
i=1

∂f

∂Ii
êi

]
= 0 (S18)
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For convenience, we omitted the timestep t index notation as it is shared with all terms from here
onward. The Lagrange multiplier, calculated at each timestep, is thus

λ = −

N∑
i=1

∂E

∂Ii
· ∂f
∂Ii

N∑
i=1

(
∂f

∂Ii

)2
(S19)

To obtain an explicit expression for λ, we conclude by evaluating
∂E

∂Ii
and

∂f

∂Ii
.

Since the connectivity is symmetric, the derivative of the energy with respect to Ii is given by

∂E

∂Ii
= Iiϕ

′ (Ii)− hϕ′ (Ii)−
1

2

N∑
a=1

ϕ′ (Ii)Ji,aϕ (Ia)−
1

2

N∑
a=1

ϕ (Ia)Ja,iϕ
′ (Ii)

= ϕ′ (Ii)

[
Ii − h−

N∑
a=1

Ji,aϕ (Ia)

] (S20)

To differentiate the constraint with respect to Ii, we first define the function f
(
I⃗
)

. For simplicity,

this function is defined in terms of the weighted averaged position of the rates r⃗ = ϕ
(
I⃗
)

, where the
weights represent the position of the neurons relative to a reference position xr in the vicinity of the
bump (the need to measure displacements relative to a reference position arises due to the periodic
boundary conditions). For simplicity, the reference position is chosen as the one that maximizes the
bump score. The displacement of the bump from this reference position is evaluated as

S (r⃗) =

∑N
i=1 ∆xi · ri∑N

i=1 ri
(S21)

where ∆xi is the displacement of neuron i from the reference position xr, defined using periodic
boundary conditions such that it lies in the range [−N/2, N/2]. Finally,

f
(
I⃗
)
= xr + S (S22)

Differentiating the constraint yields

∂f

∂Ii
=

∂S

∂ri
· ∂ri
∂Ii

= ϕ′ (Ii) ·
xi

∑
k rk −

∑
j rjxj

(
∑

k rk)
2 (S23)

Plugging back Eqs. S20 and S23 in Eq. S19 will yield the required Lagrange multiplier for each time
step.

Gradient of constrained energy with respect to weights

To derive Eq. 3 we evaluate the derivative of Ek,l with respect to the elements of M. Recall that Ik,l
is the state that minimizes the energy (Eq. 1) under a constraint on the position of the bump, and
that Ek,l is the energy associated with this state. Thus, both Ik,l and Ek,l depend on the weights
M. The gradient of Ek,l with respect to the weights can be obtained from Eq. 1, while taking into
account both the direct dependence of the energy on M, and the implicit dependence arising from the
influence of M on the state I⃗k,l:

∂Ek,l

∂Mij
= −1

2
ϕ
(
Ik,li

)
ϕ
(
Ik,lj

)
+∇Ek,l · ∂I⃗

k,l

∂Mij
(S24)
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where ∇ represents a gradient with respect to I⃗k,l, and R⃗k,l = ϕ
(
I⃗k,l

)
. The first term on the right

hand side is the contribution to the derivative with respect to Mij arising from the explicit dependence
of the Lyapunov function on M. This term is equivalent to the second term in Eq. 3. The second
term on the right hand side of Eq. S24 represents the contribution to the change in the Lyapunov
energy, arising from the change in the steady state activity pattern I⃗k,l in response to an infinitesimal
modification of of Mij . Since I⃗k,l obeys a constraint on the center of mass of the bump for any
choice of the weights, its derivative with respect to Mij is in a direction in the N dimensional neural
activity space in which the center of mass is kept fixed. On the other hand, the energy has been
minimized precisely within that subspace, and therefore its gradient with respect to I⃗k,l, projected
on this direction, must vanish (see also Supplementary Fig. 2). Hence, the second term in Eq. S24
vanishes, and up to linear order in ∆M only the explicit dependence of the energy on M contributes
to the gradient, as stated by Eq. 3.

Energy landscape shifts

Energy landscapes were uniformly shifted throughout the manuscript by a constant (Figs. 3a-b and
5a) in order to allow for the landscapes to be shown on the same plot for a single map and for 10 maps
(Fig. 3a). This constant was selected separately for each value of embedded maps L such that the
mean energy of idealized bump states across all states and maps (without any weight modification) is
zero: thus, the mean of the blue trace in the bottom panel of Fig. 3b is zero (as well as single map
blue traces, Fig. 3a). Uniform shifts of the energy landscape are inconsequential for the stability and
dynamics of the bump states and so this was consistently performed solely for visibility purposes of
Fig. 3a.

Statistical analysis

For each network with a different number of total embedded maps, 15 realizations were performed in
which the permutations between the spatial maps were chosen independently and at random. Standard
errors of the mean (SEM) were evaluated across these independent realizations. Error bars in Figs. 4,
5, 6 and Supplementary Figs. 1 and 4 are ±1.96 SEM, corresponding to 95% confidence interval.

Code availability

Code is available at public repository https://doi.org/10.5281/zenodo.10016179.
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Supplementary Figures
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Supplementary Figure 1: Only negligible dynamic changes persist in population activity three
seconds from initialization. Drift rates (top) and the rate of mean squared change in the firing rate
of all the neurons (bottom), without (blue) and with (orange) the weight modifications as a function
elapsed time since initialization for various total number of embedded maps (2, 4 ,8 and 12). Activity
can be approximated as settled to steady state 3 seconds from initialization. Error bars are ±1.96
SEM.
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Supplementary Figure 2: Bump position remains fixed and reaches a local energy minimum
during the gradient optimization. a, Two examples showing the relative bump position during
a constraint (blue) and unconstrained (orange) gradient optimization. The bump position remains
fixed during constrained optimization and systematically drifts during unconstrained optimization.
b, The energy along corresponding projections of representative population activity vectors in
the N dimensional space after gradient optimization has terminated (the scalar α multiplies the
multidimensional activity vectors). The energy along directions which are parallel to the constraint
(blue) are flat while the energy along directions which are orthogonal to the constraint are quadratic
(orange, yellow, and green traces. R2 = 0.99).
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Supplementary Figure 3: Energy landscape is flattened with increased gradient optimization
iterations. a, Evaluated energy landscapes at each optimization iteration for embedded map #3
(left), out of the total of ten embedded maps as used in Fig. 2 and for all embedded maps (right)
concatenated. b, Same as (a) but without plotting the first gradient evaluation, to emphasize the
flattening of the energy landscape as the number of optimization iterations increases.
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Supplementary Figure 4: Measured drifts using weighted population activity vector phase. Same
as Fig. 6e (light blue and yellow traces) but with superimposed measured drifts using the phase of
the population activity vector (dark blue and orange traces). Very similar results are obtained using
the two methods, up to L ≈ 12 embedded maps. The bump position obtained using the weighted
population activity phase is noisy as all the neuron’s activities contribute to the inference of the bump
position using the population vector phase. Therefore, as the load increases, neurons which are in the
periphery of the bump that start to fire contribute to an inaccurate inference of the bump position,
leading to larger measured drifts than those observed when using the bump score. Error bars are
±1.96 SEM.
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