
A More Visualizations for Autism Dataset

We have visualized real and reconstructed brain images from the nine subsets of autism dataset
(Caltech, Leuven, MaxMun, NYU, SBL, Stanford, UM, USM, and Yale sites) along with zW

0 after
training DMFA on the full autism dataset, in Fig. S1. DMFA clustered together temporal latent
variables associated with each imaging site without supervision in zW

0 . As depicted, the variation
among different imaging sites dominates the cognitive differences between ASD group and control,
hence, a downstream connectivity matrix classification (using the learned temporal weights, W ) helps
better in differentiating ASD group from control in multi-site analysis.

B Hyperparameters for Real Data

We chose K = 100 in real experiments to make it roughly at par with the number of regions in the
AAL atlas. In practice, K should be selected by a practitioner depending on the desired granularity.
We set the size of temporal latents zwt to be 2-dimensional as we found it helpful for visualization
purposes and because larger sizes had marginal effect on the results. We selected the size of the
hidden layer for the temporal transition network Dt from {2, 3 ,5}, and picked the model with highest
prediction accuracy on a small validation set. We set the size of the hidden layer for the temporal
emission network De to the geometric mean between the size of zwt and K (i.e., size of wt), which is
De =

√
2× 100 ∼ 15.

C Background on TFA Models

TFA approximates each fMRI sequence Yn as a product between temporal weights Wn =
[
wn,k,t

]
and spatial factors Fn =

[
fn,k,v

]
, and defines a hierarchical Gaussian prior over each of these latent

variables:
Yn ∼ Norm

(
W>n Fn, σ

Y I
)
,

wn,k,t ∼ Norm(µwn,k, σ
w
n,k), µwn,k ∼ p(µw), σwn,k ∼ p(σw),

fn,k,v = RBF(v; ρn,k, γn,k), ρn,k ∼ p(ρ), γn,k ∼ p(γ).

TFA treats each fMRI sequence as independent. HTFA works similarly to TFA, but places an
additional constraint over the factors to bias all of the sequences to exhibit similar factors:

µwn,k ∼ p(µwn,k | µ̄wk ), µ̄wk ∼ p(µ̄w), σwn,k ∼ p(σwn,k | σ̄wk ), σ̄wk ∼ p(σ̄w),

ρn,k ∼ p(ρn,k | ρ̄k), ρ̄k ∼ p(ρ̄), γn,k ∼ p(γn,k | γ̄k), γ̄k ∼ p(γ̄).

In this way, whereas TFA attempts to find the factors that best explain an individual sequence, HTFA
assumes that the factors across sequences vary around a shared Gaussian prior. NTFA extends HTFA
for task fMRI by incorporating neural networks onto its framework. NTFA assumes separate latent
embeddings for participants and stimuli and from there maps into the temporal and spatial latents with
neural networks. However, it is evident from the priors in TFA methods that the temporal weights are
independent as a function of time and therefore these models do not encode temporal dynamics.

D Likelihood Approximation

The model’s likelihood is intractable, however, we computed an importance sampling based lower-
bound approximation of the likelihood which is also adopted in Krishnan et al. [2017], Kingma and
Welling [2014]. Let’s denote Y as the train data and Ȳ as the test data. We approximated the test set
posterior-predictive likelihood from L = 100 samples as follows:

log p(Ȳ | Y ) ≥ E[L̄] ≈ 1

L

∑
l

∑
t

log pθ(Ȳt | w̄(l)
t , ρ̄(l), γ̄(l), z̄

w(l)
t , z

w(l)
t−1 , z

F(l),C(l)), (1)

where superscript (l) indexes a sample. We sampled zw
t−1, zF, and C from their variational distribu-

tions and the remaining latent variables from their priors, i.e., the generative model:

z
w(l)
t−1 ∼ q(zw

t−1), zF(l) ∼ q(zF), C(l) ∼ q(C),

z̄
w(l)
t ∼ p(z̄w

t | z
w(l)
t−1 ), w̄

(l)
t ∼ p(w̄t | z̄

w(l)
t ), ρ̄(l), γ̄(l) ∼ p(ρ̄, γ̄ | zF(l)).

The likelihood is estimated per subject and the average is reported in Table 2 of the paper.
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Algorithm S1 DMFA Generative Model

1: for n in 1, . . . , N do
2: zF

n ∼ Norm(0, I)
3: ρn,1, . . . , ρn,K , γn,1, . . . , γn,K ∼ Norm(µF

θ(z
F
n), σF

θ(z
F
n))

4: for k in 1, . . . ,K do
5: for v in 1, . . . , V do
6: fn,k,v ← RBF(v; ρn,k, γn,k)

7: Fn ←
[
fn,k,v

]
8: Cn ∼ Cat(π), π = {π1, . . . , πS}
9: zW

n,0 ∼ Norm(µcn ,Σcn)
10: for t in 1, . . . , T do
11: zW

n,t ∼ Norm
(
µZ
θ(z

W
n,t−1), σZ

θ(z
W
n,t−1)

)
12: wn,t ∼ Norm

(
µW
θ (zW

n,t), σ
W
θ (zW

n,t)
)

13: Wn ←
[
wn,t

]
14: Yn ∼ Norm(W>n Fn, σ

YI)

E DMFA Generative Algorithm

We have summarized the generative model of DMFA in Algorithm S1.

F Autism Separation Accuracy

Table S1 includes the autism separation accuracy for all the subsets of autism dataset and all the
methods.

G Sensitivity Analysis

Table S2 provides test set prediction errors for Dt ∈ {2, 3, 5} and σY ∈ {0.001, 0.005, 0.01} on
different datasets. DMFA proves stable w.r.t. to these hyperparameters. Note that Dt is the dimension
of hidden layer for the temporal transition network and σY is the observation noise.

H Societal Impact

Analysing brain imaging scans are intended for research aimed at understanding the pathophysiology
of neurodegenerative disease and the development of treatments for use in the presymptomatic
phase. However, an important neuroethical issue is the predictive and diagnostic imaging for
progressive diseases that lack effective treatments, such as Alzheimer’s disease. These imaging
scans could be used for other reasons by the worried employers or insurers. In such cases, the
benefits of foreknowledge, for example the greater opportunity to plan, must be weighed against the
psychological burden of this knowledge and its potential impact on employability or insurability.

Table S1: Comparison of autism separation accuracy (%).

Method
Dataset Caltech Leuven MaxMun NYU SBL Stanford UM_1 USM Yale Full

DMFA 70 50 57 52 62 71 59 51 56 51

DMFA+SVM 48± 6 55± 5 60± 6 59± 3 63± 7 77± 6 66± 4 65± 6 52± 6 64± 2

ROI+SVM 42± 8 54± 6 54± 7 66± 3 46± 9 63± 8 67± 4 67± 6 47± 7 60± 2

ICA+SVM 43± 8 54± 6 55± 8 66± 3 45± 9 64± 7 66± 4 67± 6 48± 8 59± 3
The best results are highlighted in bold fonts.
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Table S2: Prediction error (NRMSE%) of DMFA versus Dt and σY on the test sets.

Dataset
Hyperparameter

Dt = 2 Dt = 3 Dt = 5 σY = 0.001 σY = 0.005 σY = 0.01

Autism (Caltech) 5.75 5.39 5.44 5.32 5.41 5.44

Depression 6.50 6.48 6.35 6.35 6.43 6.78

Synthetic 2.07 2.12 2.28 2.06 2.09 2.07

In other cases, brain imaging analysis raises new ethical, legal, and social issues that stem directly
from the special relationship between brain and mind. The ability of brain imaging to deliver
information about our psyches—about who we are and what we might be thinking or feeling while
in the scanner—opens up a range of ethical challenges with few, if any, direct precedents. In other
words, to the extent that brain imaging can actually deliver useful information about a person’s mental
states or traits, the issue of privacy gets important. To the extent that it cannot, but people believe that
it can, the issue of public misunderstanding gets important. On the face of things, brain imaging poses
a novel challenge to privacy in that it can in principle deliver information about thoughts, attitudes,
beliefs, and traits even when someone offers no behavioral responses. On the other hand, studies
suggest that laypersons may attribute greater objectivity and certainty to brain images than to other
types of information about the human mind. This may contribute to the premature commercialization
of brain imaging for various real-world applications [Farah, 2012].
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See section 5.3. In general, the
mean-field approximation of posterior distributions imposes limitation on capturing
temporal dynamics. Also, the variation among different imaging sites dominates the
cognitive differences between clinical groups and makes the multi-site analysis hard
(see figure S1 in supplementary).

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Kindly
see supplementary.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The code and
experiments are submitted as supplementary.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Kindly see section 4 and section 5 throughout.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See figure 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Figure S1: Real and reconstructed brain images from the nine subsets of Autism dataset (Caltech, Leuven,
MaxMun, NYU, SBL, Stanford, UM, USM, and Yale sites) showing the smoothing given by sparse factorization.
Visualizing zW

0 after training DMFA on the full autism dataset. DMFA clustered together temporal latent
variables associated with each acquisition site without supervision. As depicted, the variation among different
imaging sites dominates the variation in cognitive state of the brain (ASD group vs. control), hence, a downstream
connectivity matrix classification helps better in differentiating ASD group from control in multi-site analysis.
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