Supplementary material

A Technical proofs

A.1 Proof of Theorem 1

(i) We have

$$\begin{split} &\frac{\pi_n}{n_n} \sum_{i=1}^{n_n} \ell(g(x_i^n), -1) - \frac{a\pi_n}{n_n} \sum_{i=1}^{n_n} \ell(g(x_i^n), +1) \\ &= (1-a) \frac{\pi_n}{n_n} \sum_{i=1}^{n_n} \ell(g(x_i^n), -1) + \frac{a\pi_n}{n_n} \sum_{i=1}^{n_n} (\ell(g(x_i^n), -1) - \ell(g(x_i^n), +1)) \\ &\geq (1-a) \frac{\pi_n}{n_n} \sum_{i=1}^{n_n} b_2(b_3 - |g(x_i^n)|) - a \frac{\pi_n}{n_n} \sum_{i=1}^{n_n} b_1 |g(x_i^n)| \\ &= (1-a) \pi_n b_2 b_3 - ((1-a)b_2 + ab_1) \frac{\pi_n}{n_n} \sum_{i=1}^{n_n} |g(x_i^n)|. \end{split}$$

(ii) We have (17) is a direct consequence of Theorem 1(i).

(iii) Considering the first case, $\lambda \geq \frac{((1-a)b_2+ab_1)^2\pi_nc^2}{4(1-a)b_2b_3}$ and $\mathbf{R}(w) = \|w\|_2^2$, we have

$$\lambda \mathbf{R}(w) + (1-a)\pi_n b_2 b_3 \stackrel{(a)}{\geq} \frac{((1-a)b_2 + ab_1)^2}{4(1-a)b_2 b_3} \frac{\pi_n}{n_n^2} (\sum_{i=1}^{n_n} |g(x_i^n)|)^2 + (1-a)\pi_n b_2 b_3$$

$$\stackrel{(b)}{\geq} ((1-a)b_2 + ab_1) \frac{\pi_n}{n_n} \sum_{i=1}^{n_n} |g(x_i^n)|,$$

where in (a) we used the property that $|g(x_i^n)| = |\langle w, \phi(x_i^n) \rangle| \le c ||w||_2$, and in (b) we used the inequality $u + v \ge 2\sqrt{uv}$ for all nonnegative u and v.

Consider the second case, $\mathbf{R}(w) = \|w\|_1$ and $\lambda \ge c_{\infty}((1-a)b_2 + ab_1)\pi_n$. Note that $|g(x_i^n)| = |\langle w, \phi(x_i^n) \rangle| \le c_{\infty} \|w\|_1$. Hence, we have

$$\lambda \mathbf{R}(w) + (1-a)\pi_n b_2 b_3 > c_{\infty}((1-a)b_2 + ab_1)\pi_n \|w\|_1 \ge ((1-a)b_2 + ab_1)\frac{\pi_n}{n_n} \sum_{i=1}^{n_n} |g(x_i^n)|.$$

Derivation of b_1 , b_2 and b_3 in Table 1

Hinge loss. We have

$$\ell(t,-1) - \ell(t,+1) = \max\{0, 1+t\} - \max\{0, 1-t\} = \begin{cases} t-1 & \text{if } t < -1, \\ 2t & \text{if } -1 \le t \le 1, \\ 1+t & \text{if } t > 1, \end{cases}$$
$$\geq -2|t|,$$

and

$$\ell(t,-1) - b_2(1-|t|) = \max\{0, 1+t\} - b_2(1-|t|) = \begin{cases} -b_2(1+t) & \text{if } t < -1, \\ t+1 - b_2 - b_2 t & \text{if } -1 \le t \le 0, \\ 1+t - b_2 + b_2 t & \text{if } t > 0, \end{cases}$$

Hence, the hinge loss with $b_1 = 2$, $b_2 = 1$ and $b_3 = 1$ satisfies (16).

Double hinge loss. Similarly, we have

$$\ell(t,-1) - \ell(t,+1) = \max\{0, (1+t)/2, t\} - \max\{0, (1-t)/2, -t\} = t \ge -|t|, t \ge -|t|$$

and

$$\ell(t,-1) - b_2(1-|t|) = \max\{0, (1+t)/2, t\} - b_2(1-|t|)$$

$$= \begin{cases} -b_2(1+t) & \text{if } t < -1, \\ t/2 + 1/2 - b_2 - b_2 t & \text{if } -1 \le t \le 0, \\ t/2 + 1/2 - b_2 + b_2 t & \text{if } 0 < t \le 1, \\ t - b_2 + b_2 t & \text{if } t > 1. \end{cases}$$

Hence, the double hinge loss with $b_1 = 1$, $b_2 = 1/2$ and $b_3 = 1$ satisfies (16).

Square loss. We have

$$\ell(t,-1) - \ell(t,+1) = \frac{1}{2}(t+1)^2 - \frac{1}{2}(t-1)^2 = 2t \ge -2|t|.$$

Note that when |t| > 1 we have (1/2 - |t|) < 0, which implies $\ell(t, -1) - 1/2(1/2 - |t|) > 0$. Considering $|t| \le 1$, when $b_2 = 1/2$ and $b_3 = 1/2$, we have

$$\ell(t,-1) - 1/2(1/2 - |t|) = 1/2(t+1)^2 - 1/2(1/2 - |t|) = \begin{cases} t^2 + 3/2t + 1/4 & \text{if } 0 \le t \le 1\\ t^2 + 1/2t + 1/4 & \text{if } -1 \le t \le 0. \end{cases}$$

Hence, the square loss with $b_1 = 2$, $b_2 = 1/2$, $b_3 = 1/2$ satisfies (16).4

Modified Huber loss. We have

$$\ell(t,-1) - \ell(t,+1) = \begin{cases} \max\{0,1+t\}^2 & \text{if } t \le 1\\ 4t & \text{if } t > 1 \end{cases} - \begin{cases} \max\{0,1-t\}^2 & \text{if } t \ge -1\\ -4t & \text{if } t < -1 \end{cases}$$
$$= 4t \ge -4|t|.$$

Considering $|t| \leq 1$, when $b_2 = 1$, $b_3 = 1/2$, we have

$$\ell(t,-1) - (1/2 - |t|) = \begin{cases} \max\{0, 1+t\}^2 & \text{if } t \le 1\\ 4t & \text{if } t > 1 \end{cases} - b_2(1/2 - |t|) \\ = \begin{cases} t^2 + 1/2 + t & \text{if } -1 \le t \le 0\\ t^2 + 5/2t + 1/2 & \text{if } 0 < t \le 1 \end{cases}.$$

Hence the modified Huber loss with $b_1 = 4$, $b_2 = 1$ and $b_3 = 1/2$ satisfies (16). Logistic loss. We have

$$\ell(t, -1) - \ell(t, +1) = t \ge -|t|.$$

When $t \ge 0$ then $\ln(1 + \exp(t)) \ge \ln 2 = b_3 \ge b_3 - |t|$. When $t \le 0$ we have

$$\ell(t, -1) - b_2(b_3 - |t|) = \ln(1 + \exp(t)) - (\ln 2 + t)$$
$$= \ln\left(\frac{1 + \exp(t)}{2\exp(t)}\right) \ge \ln 1 = 0.$$

Hence the logistic loss with $b_1 = 1$, $b_2 = 1$ and $b_3 = \ln 2$ satisfies (16). Sigmoid loss. When t > 0, we have $\ell(t, -1) = \frac{1}{1 + \exp(-t)} \ge 1/2 \ge b_2(1 - |t|)$. For $t \le 0$, we have

$$\ell(t,-1) - b_2(1-|t|) = \frac{1}{1+\exp(-t)} - \frac{1}{2}(1+t) = \frac{1-1/2(1+\exp(-t))(1+t)}{1+\exp(-t)}.$$

Note that the function $t \mapsto 1/2(1 + \exp(-t))(1 + t)$ is an increasing function on $(-\infty, 0]$ and its maximum value on $(-\infty, 0]$ is 1. Hence $\ell(t, -1) \ge 1/2(1 - |t|)$. On the other hand, we have

$$\ell(t, -1) - \ell(t, +1) = 2\ell(t, -1) - 1 \ge -|t|.$$

Hence, the sigmoid loss with $b_1 = 1$, $b_2 = 1/2$ and $b_3 = 1$ satisfies (16).

Ramp loss. We have

$$\ell(t,-1) - b_2(b_3 - |t|) = \max\{0, \min\{1, (1+t)/2\}\} - 1/2(1-|t|)$$
$$= \begin{cases} -1/2(1+t) & \text{if } t \le -1 \\ 0 & \text{if } -1 \le t \le 0 \\ t & \text{if } 0 < t \le 1 \\ 1/2 + 1/2t & \text{if } t \ge 1. \end{cases}$$

Hence, $\ell(t, -1) \ge 1/2(1 - |t|)$. On the other hand, we have

$$\ell(t, -1) - \ell(t, +1) = 2\ell(t, -1) - 1 \ge -|t|.$$

Hence, the ramp loss with $b_1 = 1$, $b_2 = 1/2$ and $b_3 = 1$ satisfies (16).

A.2 Proof of Proposition 1

Proof of Inequality (21)

Note that $\mathbb{E}[\hat{\mathcal{R}}_s^{(2)}(g)] = \mathcal{R}(g)$. Considering $\hat{\mathcal{R}}_s^{(1)}(g)$, we have $\hat{\mathcal{R}}_s^{(1)}(g) = \hat{\mathcal{R}}_s^{(2)}(g)$ on $\mathcal{M}^+(g) := \{(\mathcal{N}, \mathcal{U}) : \hat{\mathcal{R}}_u^+(g) - \pi_n \hat{\mathcal{R}}_n^+(g) \ge 0\}.$

Denote $\mathcal{M}^-(g) := \{(\mathcal{N}, \mathcal{U}) : \hat{\mathcal{R}}^+_u(g) - \pi_n \hat{\mathcal{R}}^+_n(g) < 0\}$. We have

$$\mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)] - \mathcal{R}(g) = \mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g) - \hat{\mathcal{R}}_{s}^{(2)}(g)]$$

$$= \int_{(\mathcal{N},\mathcal{U})\in\mathcal{M}^{-}(g)} \left(\hat{\mathcal{R}}_{s}^{(1)}(g) - \hat{\mathcal{R}}_{s}^{(2)}(g)\right) dF(\mathcal{N},\mathcal{U})$$

$$= \int_{(\mathcal{N},\mathcal{U})\in\mathcal{M}^{-}(g)} a \left(\pi_{n}\hat{\mathcal{R}}_{n}^{+}(g) - \hat{\mathcal{R}}_{u}^{+}(g)\right) dF(\mathcal{N},\mathcal{U}) \quad (26a)$$

$$\leq \sup_{(\mathcal{N},\mathcal{U})\in\mathcal{M}^{-}(g)} a \left(\pi_{n}\hat{\mathcal{R}}_{n}^{+}(g) - \hat{\mathcal{R}}_{u}^{+}(g)\right) \int_{(\mathcal{N},\mathcal{U})\in\mathcal{M}^{-}(g)} dF(\mathcal{N},\mathcal{U})$$

$$= a \sup_{(\mathcal{N},\mathcal{U})\in\mathcal{M}^{-}(g)} \left(\pi_{n}\hat{\mathcal{R}}_{n}^{+}(g) - \hat{\mathcal{R}}_{u}^{+}(g)\right) \Pr(\mathcal{M}^{-}(g))$$

$$\leq a\pi_{n}C_{\ell}\Pr(\mathcal{M}^{-}(g)).$$
(26)

From (26a) we have $\mathbb{E}[\hat{\mathcal{R}}_s^{(1)}(g)] - \mathcal{R}(g) \ge 0$. On the other hand,

$$\begin{aligned} \Pr(\mathcal{M}^{-}(g)) &= \Pr(\hat{\mathcal{R}}_{u}^{+}(g) - \pi_{n}\hat{\mathcal{R}}_{n}^{+}(g) < 0) \\ &\leq \Pr(\hat{\mathcal{R}}_{u}^{+}(g) - \pi_{n}\hat{\mathcal{R}}_{n}^{+}(g) \leq \pi_{p}\mathcal{R}_{p}^{+}(g) - \pi_{p}\rho_{g}) \\ &= \Pr(\pi_{p}\mathcal{R}_{p}^{+}(g) - (\hat{\mathcal{R}}_{u}^{+}(g) - \pi_{n}\hat{\mathcal{R}}_{n}^{+}(g)) \geq \pi_{p}\rho_{g}) \\ &\leq \exp\left(-\frac{2(\pi_{p}\rho_{g})^{2}}{n_{u}(C_{\ell}/n_{u})^{2} + n_{n}(\pi_{n}C_{\ell}/n_{n})^{2}}\right) \\ &= \exp\left(-\frac{2\pi_{p}^{2}\rho_{g}^{2}}{C_{\ell}^{2}(1/n_{u} + \pi_{n}^{2}/n_{n})}\right), \end{aligned}$$

where we have used McDiarmid's inequality for the last inequality. Therefore, from (26) we have

$$\mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)] - \mathcal{R}(g) \le a\pi_{n}C_{\ell}\exp\left(-\frac{2\pi_{p}^{2}\rho_{g}^{2}}{C_{\ell}^{2}(1/n_{u} + \pi_{n}^{2}/n_{n})}\right).$$
(27)

Proof of Inequality (22) and (23) If an x_i^n is changed then the change of $\hat{\mathcal{R}}_s^{(1)}(g)$ would be no more than $\pi_n(a+1)C_\ell/n_n$. If an x_i^u is changed then the change of $\hat{\mathcal{R}}_s^{(1)}(g)$ would be no more than aC_ℓ/n_u . And if an x_i^p is changed then the change of $\hat{\mathcal{R}}_s^{(1)}(g)$ would be no more than $(1-a)\pi_pC_\ell/n_p$. For any $\delta > 0$, let

$$\varepsilon = C_{\ell} \sqrt{\left(\frac{(1+a)^2 \pi_n^2}{n_n} + \frac{(1-a)^2 \pi_p^2}{n_p} + \frac{a^2}{n_u}\right) \ln(2/\delta)/2}.$$

Applying McDiarmid's inequality, we get

$$\Pr(|\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)]| \ge \varepsilon)$$

$$\le 2 \exp\left(-\frac{2\varepsilon^{2}}{n_{n}(\pi_{n}(1+a)C_{l}/n_{n})^{2} + n_{p}((1-a)\pi_{p}C_{l}/n_{p})^{2} + n_{u}(aC_{\ell}/n_{u})^{2}}\right)$$

$$= \delta.$$
(28)

Hence,

$$|\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)]| \le \varepsilon \le C_{\ell} \sqrt{\ln(2/\delta)/2} \Big(\frac{(1+a)\pi_{n}}{\sqrt{n_{n}}} + \frac{(1-a)\pi_{p}}{\sqrt{n_{p}}} + \frac{a}{\sqrt{n_{u}}}\Big)$$

with probability at least $1 - \delta$. Together with (27) and

$$|\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathcal{R}(g)| \le |\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)]| + |\mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)] - \mathcal{R}(g)|,$$

we obtain Inequality (23) with probability at least $1 - \delta$.

Similarly, by applying McDiarmid's inequality, we obtain Inequality (22) with probability at least $1 - \delta$.

A.3 Proof of Theorem 2

Denote $\tilde{\mathcal{R}}_{nu}(g) = \pi_n \hat{\mathcal{R}}_n^-(g) + a \max\{0, \hat{\mathcal{R}}_u^+(g) - \pi_n \hat{\mathcal{R}}_n^+(g)\}$. Note that $\hat{\mathcal{R}}_s^{(1)}(g) = (1-a)\pi_n \hat{\mathcal{R}}_n^+ + \tilde{\mathcal{R}}_{nu}(g)$.

We have

$$\begin{aligned} \mathcal{R}(\hat{g}^{1}) - \mathcal{R}(g^{*}) &= \mathcal{R}(\hat{g}^{1}) - \hat{\mathcal{R}}_{s}^{(1)}(\hat{g}^{1}) + \hat{\mathcal{R}}_{s}^{(1)}(\hat{g}^{1}) - \hat{\mathcal{R}}_{s}^{(1)}(g^{*}) + \hat{\mathcal{R}}_{s}^{(1)}(g^{*}) - \mathcal{R}(g^{*}) \\ &\stackrel{(a)}{\leq} |\hat{\mathcal{R}}_{s}^{(1)}(\hat{g}^{1}) - \mathcal{R}(\hat{g}^{1})| + |\hat{\mathcal{R}}_{s}^{(1)}(g^{*}) - \mathcal{R}(g^{*})| \\ &\leq 2 \sup_{g \in \mathcal{G}} |\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathcal{R}(g)| \\ &\leq 2 \left(\sup_{g \in \mathcal{G}} |\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)]| + \sup_{g \in \mathcal{G}} |\mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)] - \mathcal{R}(g)| \right) \end{aligned}$$
(29)
$$\stackrel{(b)}{\leq} 2 \sup_{g \in \mathcal{G}} |\hat{\mathcal{R}}_{s}^{(1)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(1)}(g)]| + 2\epsilon \\ &\leq 2(1 - a)\pi_{p} \sup_{g \in \mathcal{G}} |\hat{\mathcal{R}}_{p}^{+} - \mathbb{E}[\hat{\mathcal{R}}_{p}^{+}]| + 2 \sup_{g \in \mathcal{G}} |\tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]| + 2\epsilon, \end{aligned}$$

where we used $\hat{\mathcal{R}}_{s}^{(1)}(\hat{g}^{1}) - \hat{\mathcal{R}}_{s}^{(1)}(g^{*}) \leq 0$ for (a), and used (21) for (b).

To obtain a bound for $\sup_{g \in \mathcal{G}} |\tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]|$ we adapt the technique of (Kiryo et al., 2017, Theorem 4). Note that for a fix g, $\mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]$ is a constant. Hence, if an x_i^n , or x_i^u is changed then the change of $\sup_{g \in \mathcal{G}} |\tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]|$ would be the supremum of the change of $\tilde{\mathcal{R}}_{nu}(g)$. By applying McDiarmid's inequality to $\sup_{g \in \mathcal{G}} |\tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]|$, we have

$$\sup_{g \in \mathcal{G}} \left| \tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)] \right| - \mathbb{E} \left[\sup_{g \in \mathcal{G}} \left| \tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)] \right| \right] \\ \leq C_{\ell} \sqrt{\ln(2/\delta)/2} \left(\frac{(1+a)\pi_n}{\sqrt{n_n}} + \frac{a}{\sqrt{n_u}} \right)$$
(30)

with probability at least $1 - \delta/2$.

Let $(\mathcal{N}', \mathcal{U}')$ be a ghost sample identical to $(\mathcal{N}, \mathcal{U})$. We have

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left|\tilde{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]\right|\right] \\
= \mathbb{E}_{(\mathcal{N},\mathcal{U})}\left[\sup_{g\in\mathcal{G}}\left|\tilde{\mathcal{R}}_{nu}(g;\mathcal{N},\mathcal{U}) - \mathbb{E}_{(\mathcal{N}',\mathcal{U}')}[\tilde{\mathcal{R}}_{nu}(g;\mathcal{N}',\mathcal{U}')]\right|\right] \\
= \mathbb{E}_{(\mathcal{N},\mathcal{U})}\left[\sup_{g\in\mathcal{G}}\left|\mathbb{E}_{(\mathcal{N}',\mathcal{U}')}[\tilde{\mathcal{R}}_{nu}(g;\mathcal{N},\mathcal{U}) - \tilde{\mathcal{R}}_{nu}(g;\mathcal{N}',\mathcal{U}')]\right|\right] \\
\leq \mathbb{E}_{(\mathcal{N},\mathcal{U}),(\mathcal{N}',\mathcal{U}')}\left[\sup_{g\in\mathcal{G}}\left|\tilde{\mathcal{R}}_{nu}(g;\mathcal{N},\mathcal{U}) - \tilde{\mathcal{R}}_{nu}(g;\mathcal{N}',\mathcal{U}')\right|\right],$$
(31)

where we applied Jensen's inequality. Furthermore, we have

$$\begin{aligned} \left| \tilde{\mathcal{R}}_{nu}(g;\mathcal{N},\mathcal{U}) - \tilde{\mathcal{R}}_{nu}(g;\mathcal{N}',\mathcal{U}') \right| \\ &\leq \pi_n \left| \hat{\mathcal{R}}_n^-(g;\mathcal{N}) - \hat{\mathcal{R}}_n^-(g;\mathcal{N}') \right| \\ &\quad + a \left| \max\{0, \hat{\mathcal{R}}_u^+(g;\mathcal{U}) - \pi_n \hat{\mathcal{R}}_n^+(g;\mathcal{N})\} - \max\{0, \hat{\mathcal{R}}_u^+(g;\mathcal{U}') - \pi_n \hat{\mathcal{R}}_n^+(g;\mathcal{N}')\} \right| \\ &\leq \pi_n \left| \hat{\mathcal{R}}_n^-(g;\mathcal{N}) - \hat{\mathcal{R}}_n^-(g;\mathcal{N}') \right| \\ &\quad + a \left| \hat{\mathcal{R}}_u^+(g;\mathcal{U}) - \hat{\mathcal{R}}_u^+(g;\mathcal{U}') \right| + a\pi_n \left| \hat{\mathcal{R}}_n^+(g;\mathcal{N}) - \hat{\mathcal{R}}_n^+(g;\mathcal{N}') \right|. \end{aligned}$$
(32)

Hence, from (31) and (32), we obtain

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left|\hat{\mathcal{R}}_{nu}(g) - \mathbb{E}[\tilde{\mathcal{R}}_{nu}(g)]\right|\right] \\
\leq \pi_{n} \mathbb{E}_{\mathcal{N},\mathcal{N}'}\left[\sup_{g\in\mathcal{G}}\left|\hat{\mathcal{R}}_{n}^{-}(g;\mathcal{N}) - \hat{\mathcal{R}}_{n}^{-}(g;\mathcal{N}')\right|\right] + a \mathbb{E}_{\mathcal{U},\mathcal{U}'}\left[\sup_{g\in\mathcal{G}}\left|\hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U}) - \hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U}')\right|\right] \\
+ a\pi_{n} \mathbb{E}_{\mathcal{N},\mathcal{N}'}\left[\sup_{g\in\mathcal{G}}\left|\hat{\mathcal{R}}_{n}^{+}(g;\mathcal{N}) - \hat{\mathcal{R}}_{n}^{+}(g;\mathcal{N}')\right|\right].$$
(33)

Now by using the same technique of (Kiryo et al., 2017, Lemma 5), we can prove that

$$\mathbb{E}_{\mathcal{N},\mathcal{N}'} \left[\sup_{g \in \mathcal{G}} \left| \hat{\mathcal{R}}_{n}^{-}(g;\mathcal{N}) - \hat{\mathcal{R}}_{n}^{-}(g;\mathcal{N}') \right| \right] \leq 4L_{\ell} \mathfrak{R}_{n_{n},p_{n}}(\mathcal{G}), \\
\mathbb{E}_{\mathcal{U},\mathcal{U}'} \left[\sup_{g \in \mathcal{G}} \left| \hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U}) - \hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U}') \right| \right] \leq 4L_{\ell} \mathfrak{R}_{n_{u},p}(\mathcal{G}), \\
\mathbb{E}_{\mathcal{N},\mathcal{N}'} \left[\sup_{g \in \mathcal{G}} \left| \hat{\mathcal{R}}_{n}^{+}(g;\mathcal{N}) - \hat{\mathcal{R}}_{n}^{+}(g;\mathcal{N}') \right| \right] \leq 4L_{\ell} \mathfrak{R}_{n_{n},p_{n}}(\mathcal{G}).$$
(34)

For completeness, let us provide the proof in the following.

Denote $\tilde{\ell}(t, y) = \ell(t, y) - \ell(0, y)$. Then, $\tilde{\ell}(0, y) = 0$. Note that $t \mapsto \tilde{\ell}(t, y)$ is also L_{ℓ} -Lipschitz continuous over $\{t : |t| \leq C_g\}$. Denote $\mathfrak{R}'_{n,q}(\mathcal{G}) := \mathbb{E}_{Z \sim q^n}[\mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} |\frac{1}{n} \sum_{i=1}^n \sigma_i g(Z_i)|]]$. We prove the first inequality of (34), the others can be proved similarly. We have

$$\begin{split} & \mathbb{E}_{\mathcal{N},\mathcal{N}'}\left[\sup_{g\in\mathcal{G}}\left|\hat{\mathcal{R}}_{n}^{-}(g;\mathcal{N})-\hat{\mathcal{R}}_{n}^{-}(g;\mathcal{N}')\right|\right] \\ &=\mathbb{E}_{\mathcal{N},\mathcal{N}'}\left[\sup_{g\in\mathcal{G}}\left|\frac{1}{n_{n}}\sum_{i=1}^{n_{n}}\ell(g(x_{i}^{n}),-1)-\frac{1}{n_{n}}\sum_{i=1}^{n_{n}}\ell(g(x_{i}'^{n}),-1)\right|\right] \\ &=\mathbb{E}_{\mathcal{N},\mathcal{N}'}\left[\sup_{g\in\mathcal{G}}\left|\frac{1}{n_{n}}\sum_{i=1}^{n_{n}}\left(\tilde{\ell}(g(x_{i}^{n}),-1)-\tilde{\ell}(g(x_{i}'^{n}),-1)\right)\right|\right] \\ &\stackrel{(a)}{=}\mathbb{E}_{\mathcal{N},\mathcal{N}',\sigma}\left[\sup_{g\in\mathcal{G}}\left|\frac{1}{n_{n}}\sum_{i=1}^{n_{n}}\sigma_{i}\big(\tilde{\ell}(g(x_{i}^{n}),-1)-\tilde{\ell}(g(x_{i}'^{n}),-1)\big)\big|\right] \\ &\leq 2\mathfrak{R}_{n_{n},p_{n}}'\big(\tilde{\ell}(\cdot,-1)\circ\mathcal{G}\big) \stackrel{(b)}{\leq} 4L_{\ell}\mathfrak{R}_{n_{n},p_{n}}'(\mathcal{G}) \stackrel{(c)}{=} 4L_{\ell}\mathfrak{R}_{n_{n},p_{n}}(\mathcal{G}), \end{split}$$

where in (a) we used the property that σ_i are independent uniformly distributed random variables taking values in $\{-1, +1\}$, in (b) we use (Ledoux & Talagrand, 1991, Theorem 4.12), and in (c) we use the assumption that both g and -g are in \mathcal{G} .

On the other hand, in a similar manner, we can prove that

$$\sup_{g \in \mathcal{G}} \left| \hat{\mathcal{R}}_p^+ - \mathbb{E}[\hat{\mathcal{R}}_p^+] \right| \le 4L_\ell \mathfrak{R}_{n_p, p_p}(\mathcal{G}) + C_\ell \frac{\sqrt{\ln(2/\delta)/2}}{\sqrt{n_p}}$$
(35)

with probability at least $1 - \delta/2$. From (29), (30), (33), (34), and (35), we obtain the result.

A.4 Proof of Theorem 3

We have

$$\begin{aligned} \mathcal{R}(\hat{g}^{2}) - \mathcal{R}(g^{*}) &= \mathcal{R}(\hat{g}^{2}) - \hat{\mathcal{R}}_{s}^{(2)}(\hat{g}^{2}) + \hat{\mathcal{R}}_{s}^{(2)}(\hat{g}^{2}) - \hat{\mathcal{R}}_{s}^{(2)}(g^{*}) + \hat{\mathcal{R}}_{s}^{(2)}(g^{*}) - \mathcal{R}(g^{*}) \\ &\stackrel{(a)}{\leq} \mathcal{R}(\hat{g}^{2}) - \hat{\mathcal{R}}_{s}^{(2)}(\hat{g}^{2}) + \hat{\mathcal{R}}_{s}^{(2)}(g^{*}) - \mathcal{R}(g^{*}) \\ &\leq \sup_{g \in \mathcal{G}} \left(\mathcal{R}(g) - \hat{\mathcal{R}}_{s}^{(2)}(g) \right) + \sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{s}^{(2)}(g) - \mathcal{R}(g) \right) \\ &\stackrel{(b)}{=} \sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{s}^{(2)}(g)] - \hat{\mathcal{R}}_{s}^{(2)}(g) \right) + \sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{s}^{(2)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(2)}(g)] \right) \end{aligned}$$
(36)

where in (a) we have used $\hat{\mathcal{R}}_s^{(2)}(\hat{g}^2) \leq \hat{\mathcal{R}}_s^{(2)}(g^*)$ and in (b) we have used $\mathbb{E}[\hat{\mathcal{R}}_s^{(2)}(g)] = \mathcal{R}(g)$ given g. We have

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{s}^{(2)}(g)] - \hat{\mathcal{R}}_{s}^{(2)}(g) \right) \leq a \sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{u}^{+}(g)] - \hat{\mathcal{R}}_{u}^{+}(g) \right) + (1 - a) \pi_{p} \sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{p}^{+}(g)] - \hat{\mathcal{R}}_{p}^{+}(g) \right) + \sup_{g \in \mathcal{G}} \left(\mathbb{E}[\pi_{n}\hat{\mathcal{R}}_{n}^{-}(g) - a\pi_{n}\hat{\mathcal{R}}_{n}^{+}] - (\pi_{n}\hat{\mathcal{R}}_{n}^{-}(g) - a\pi_{n}\hat{\mathcal{R}}_{n}^{+}) \right),$$

$$(37)$$

and

$$\sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{s}^{(2)}(g) - \mathbb{E}[\hat{\mathcal{R}}_{s}^{(2)}(g)] \right) \leq a \sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{u}^{+}(g) - \mathbb{E}[\hat{\mathcal{R}}_{u}^{+}(g)] \right) + (1-a)\pi_{p} \sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{p}^{+}(g) - \mathbb{E}[\hat{\mathcal{R}}_{p}^{+}(g)] \right) \\ + \sup_{g \in \mathcal{G}} \left((\pi_{n}\hat{\mathcal{R}}_{n}^{-}(g) - a\pi_{n}\hat{\mathcal{R}}_{n}^{+}) - \mathbb{E}[\pi_{n}\hat{\mathcal{R}}_{n}^{-}(g) - a\pi_{n}\hat{\mathcal{R}}_{n}^{+}] \right),$$

$$(38)$$

Applying McDiarmid's inequality to $\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_u^+(g)] - \hat{\mathcal{R}}_u^+(g) \right)$ we have

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{u}^{+}(g)] - \hat{\mathcal{R}}_{u}^{+}(g) \right) - \mathbb{E} \left[\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{u}^{+}(g)] - \hat{\mathcal{R}}_{u}^{+}(g) \right) \right] \le C_{\ell} \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_{u}}}$$
(39)

with probability at least $\delta/6$. Moreover, letting \mathcal{U}' be a ghost sample identical to \mathcal{U} , we have

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}[\hat{\mathcal{R}}_{u}^{+}(g)] - \hat{\mathcal{R}}_{u}^{+}(g)\right)\right] = \mathbb{E}_{\mathcal{U}}\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}_{\mathcal{U}'}[\hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U}')] - \hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U})\right)\right]$$

$$\stackrel{(a)}{\leq} \mathbb{E}_{\mathcal{U},\mathcal{U}'}\left[\sup_{g\in\mathcal{G}}\left(\hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U}') - \hat{\mathcal{R}}_{u}^{+}(g;\mathcal{U})\right)\right]$$

$$= \mathbb{E}_{\mathcal{U},\mathcal{U}'}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{n_{u}}\sum_{i=1}^{n_{u}}\ell(\ell(g(x'_{i}^{u}), +1) - \ell(g(x_{i}^{u}), +1)))\right)\right]$$

$$\stackrel{(b)}{\leq} \mathbb{E}_{\mathcal{U},\mathcal{U}',\sigma}\left[\sup_{g\in\mathcal{G}}\left(\frac{1}{n_{u}}\sum_{i=1}^{n_{u}}\sigma_{i}(\ell(g(x'_{i}^{u}), +1) - \ell(g(x_{i}^{u}), +1)))\right)\right]$$

$$\leq 2L_{\ell}\Re_{n_{u},p}(\mathcal{G}).$$

where we have used the sub-additivity of the supremum in (a) and the property of σ in (b). Together with (39) we get

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_u^+(g)] - \hat{\mathcal{R}}_u^+(g) \right) \le 2L_\ell \Re_{n_u, p}(\mathcal{G}) + C_\ell \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_u}}$$
(40)

with probability at least $\delta/6$. Similarly, we can prove the following inequalities hold with a probability of at least $1 - \delta/6$

$$\sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{u}^{+}(g) - \mathbb{E}[\hat{\mathcal{R}}_{u}^{+}(g)] \right) \leq 2L_{\ell} \mathfrak{R}_{n_{u},p}(\mathcal{G}) + C_{\ell} \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_{u}}},$$

$$\sup_{g \in \mathcal{G}} \left(\hat{\mathcal{R}}_{p}^{+}(g) - \mathbb{E}[\hat{\mathcal{R}}_{p}^{+}(g)] \right) \leq 2L_{\ell} \mathfrak{R}_{n_{p},p_{p}}(\mathcal{G}) + C_{\ell} \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_{p}}},$$

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\hat{\mathcal{R}}_{p}^{+}(g)] - \hat{\mathcal{R}}_{p}^{+}(g) \right) \leq 2L_{\ell} \mathfrak{R}_{n_{p},p_{p}}(\mathcal{G}) + C_{\ell} \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_{p}}},$$

$$\sup_{g \in \mathcal{G}} \left(\pi_{n} \hat{\mathcal{R}}_{n}^{-}(g) - a \pi_{n} \hat{\mathcal{R}}_{n}^{+} - \mathbb{E}[\pi_{n} \hat{\mathcal{R}}_{n}^{-}(g) - a \pi_{n} \hat{\mathcal{R}}_{n}^{+}] \right) \qquad (41)$$

$$\leq 2L_{\ell}(1+a) \pi_{n} \mathfrak{R}_{n,p_{n}}(\mathcal{G}) + C_{\ell}(1+a) \pi_{n} \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_{n}}},$$

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[\pi_{n} \hat{\mathcal{R}}_{n}^{-}(g) - a \pi_{n} \hat{\mathcal{R}}_{n}^{+}] - \pi_{n} \hat{\mathcal{R}}_{n}^{-}(g) - a \pi_{n} \hat{\mathcal{R}}_{n}^{+} \right)$$

$$\leq 2L_{\ell}(1+a) \pi_{n} \mathfrak{R}_{n_{n,p_{n}}}(\mathcal{G}) + C_{\ell}(1+a) \pi_{n} \sqrt{\ln(6/\delta)/2} \frac{1}{\sqrt{n_{n}}}.$$

From (36), (37), (38), (40), and (41), we get the result.

B Some definitions

Definition 1 A loss ℓ is said to be classification-calibrated if, for any $\eta \neq \frac{1}{2}$, we have $H_{\ell}^{-}(\eta) > H_{\ell}(\eta)$, where

$$H_{\ell}(\eta) = \inf_{\alpha \in \mathbb{R}} (\eta \ell(\alpha, +1) + (1-\eta)\ell(\alpha, -1)),$$

$$H_{\ell}^{-}(\eta) = \inf_{\alpha \in \mathbb{R}: \alpha(\eta - \frac{1}{2}) \le 0} (\eta \ell(\alpha, +1) + (1-\eta)\ell(\alpha, -1))$$

Examples of classification-calibrated loss include the scaled ramp loss, the hinge loss, and the exponential loss. (Bartlett et al., 2006, Theorem 1) shows that if ℓ is a classification-calibrated loss, then there exists a convex, invertible and nondecreasing transformation ψ_{ℓ} with $\psi_{\ell}(0) = 0$ and $\psi_{\ell}(I(g) - I^*) \leq \mathcal{R}(g) - \mathcal{R}^*$, which implies that

$$I(g) - I^* \le \psi_{\ell}^{-1}(\mathcal{R}(g) - \mathcal{R}^*) = \psi_{\ell}^{-1}(\mathcal{R}(g) - \mathcal{R}(g^*) + \mathcal{R}(g^*) - \mathcal{R}^*).$$
(42)

C Additional experiments

C.1 Additional experiments for shallow rAD

Table 5 reports the mean of the AUC of shallow rAD over the 30 trials for different values of π_p^e . Table 6 reports the mean of the AUC of shallow rAD over the 30 trials for different values of a.

C.2 Additional experiments for deep rAD

Sensitivity analysis for π_p^e Table 7 reports the mean and the standard error of the AUC of deep rAD over the 20 trials for different values of π_p^e .

Dataset	square $/\pi_p^e$				hinge/ π_p^e				m-Huber/ π_p^e			
	$1-\pi_n$	0.9	0.7	0.6	$1 - \pi_n$	0.9	0.7	0.6	$1 - \pi_n$	0.9	0.7	0.6
thyroid	0.98	0.995	0.996	0.996	0.97	0.994	0.996	0.996	0.99	0.996	0.996	0.996
Waveform	0.74	0.82	0.84	0.84	0.70	0.78	0.83	0.83	0.77	0.84	0.85	0.85
mnist	0.96	0.96	0.97	0.97	0.96	0.96	0.96	0.96	0.97	0.97	0.97	0.97
campaign	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
landsat	0.74	0.74	0.74	0.74	0.74	0.73	0.74	0.74	0.74	0.74	0.74	0.74
satellite	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.81	0.80	0.80	0.80
satimage-2	0.97	0.98	0.98	0.98	0.93	0.98	0.98	0.98	0.98	0.99	0.99	0.99
vowels	0.77	0.85	0.87	0.87	0.69	0.77	0.85	0.85	0.85	0.88	0.88	0.88
CIFAR10-1	0.69	0.73	0.77	0.77	0.66	0.71	0.76	0.76	0.71	0.74	0.77	0.77
SVHN-1	0.80	0.82	0.84	0.84	0.79	0.82	0.84	0.84	0.80	0.83	0.84	0.84
20news-1	0.64	0.67	0.70	0.70	0.56	0.59	0.65	0.66	0.72	0.75	0.75	0.75
agnews-1	0.94	0.96	0.97	0.97	0.88	0.91	0.95	0.96	0.96	0.98	0.98	0.98
amazon	0.72	0.78	0.82	0.82	0.66	0.72	0.77	0.77	0.76	0.80	0.84	0.84
imdb	0.75	0.80	0.83	0.83	0.69	0.74	0.79	0.80	0.78	0.82	0.85	0.85
yelp	0.82	0.87	0.90	0.90	0.74	0.80	0.85	0.86	0.85	0.89	0.92	0.92
vertebral	0.71	0.71	0.72	0.72	0.71	0.70	0.70	0.71	0.72	0.73	0.73	0.72
fault	0.65	0.63	0.65	0.65	0.63	0.60	0.63	0.64	0.66	0.65	0.66	0.66

Table 5: AUC means of shallow rAD over 30 trials for different π_p^e . The significant changes in the AUC means are highlighted in bold.

Table 6: AUC means of shallow rAD over 30 trials for different a. The significant changes in the AUC means are highlighted in bold.

Dataset	square/ a			ł	ninge/a	ţ	m-Huber/ a		
Dataset	0.3	0.7	0.9	0.3	0.7	0.9	0.3	0.7	0.9
thyroid	0.996	0.99	0.99	0.996	0.99	0.99	0.996	0.99	0.99
Waveform	0.84	0.81	0.80	0.82	0.80	0.77	0.85	0.83	0.81
mnist	0.97	0.96	0.96	0.96	0.96	0.96	0.97	0.96	0.96
campaign	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
landsat	0.74	0.74	0.73	0.74	0.74	0.73	0.74	0.74	0.74
satellite	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.81	0.81
satimage-2	0.98	0.99	0.98	0.98	0.99	0.98	0.99	0.99	0.98
vowels	0.87	0.85	0.83	0.85	0.81	0.78	0.88	0.87	0.86
CIFAR10-1	0.76	0.73	0.70	0.75	0.74	0.72	0.76	0.72	0.69
SVHN-1	0.84	0.83	0.82	0.83	0.83	0.82	0.84	0.83	0.81
20news-1	0.71	0.69	0.65	0.63	0.61	0.60	0.76	0.70	0.66
agnews-1	0.98	0.97	0.96	0.94	0.94	0.94	0.98	0.98	0.97
amazon	0.81	0.80	0.77	0.77	0.75	0.76	0.83	0.81	0.79
imdb	0.82	0.80	0.78	0.78	0.77	0.75	0.84	0.81	0.79
yelp	90	0.88	0.86	0.84	0.83	0.82	0.91	0.89	0.87
vertebral	0.72	0.73	0.73	0.73	0.74	0.73	0.74	0.75	0.74
fault	0.65	0.65	0.65	0.63	0.64	0.64	0.66	0.66	0.66

Dataset	Loss	$\pi_p^e = 1 - \pi_n$	$\pi_p^e = 0.9$	$\pi_p^e = 0.8$	$\pi_p^e = 0.7$	$\pi_p^e = \pi_n$
MUGT	square	0.66 (0.04)	0.70(0.03)	0.72(0.02)	0.68(0.03)	0.65 (0.03)
$(\pi_n = 0.01)$	sigmoid	0.68 (0.03)	0.76(0.03)	0.76(0.03)	0.77(0.03)	0.77(0.03)
	logistic	0.67 (0.03)	0.76(0.03)	0.80(0.03)	0.77(0.03)	0.77(0.03)
	m-Huber	0.68 (0.03)	0.74(0.03)	0.71(0.03)	0.72(0.03)	0.73(0.03)
	square	0.85(0.02)	0.87(0.01)	0.89(0.01)	0.89(0.01)	0.86(0.01)
$MNIST (\pi_n = 0.05)$	sigmoid	0.88(0.01)	0.91(0.01)	0.91(0.01)	0.93(0.01)	0.93(0.01)
	logistic	0.87(0.02)	0.89(0.01)	0.92(0.01)	0.92(0.01)	0.91(0.01)
	m-Huber	0.86(0.01)	0.88(0.01)	0.90(0.01)	0.90(0.01)	0.87(0.01)
	square	0.92(0.01)	0.92(0.01)	0.93(0.01)	0.93(0.01)	0.89(0.01)
MNIST $(\pi_n = 0.1)$	sigmoid	0.94(0.01)	0.94(0.01)	0.95(0.01)	0.95(0.01)	0.94(0.01)
(logistic	0.93(0.01)	0.93(0.01)	0.94(0.01)	0.94(0.01)	0.93(0.01)
	m-Huber	0.93(0.01)	0.93(0.01)	0.93(0.01)	0.94(0.01)	0.92(0.01)
	square	0.95(0.01)	0.95(0.01)	0.95(0.01)	0.96(0.01)	0.94(0.01)
MNIST $(\pi - 0.2)$	sigmoid	0.95(0.01)	0.95(0.01)	0.95(0.01)	0.95(0.01)	0.95(0.01)
$(n_n = 0.2)$	logistic	0.96(0.01)	0.96(0.01)	0.96(0.01)	0.96(0.01)	0.96(0.01)
	m-Huber	0.95(0.01)	0.94(0.01)	0.95(0.01)	0.95(0.01)	0.94(0.01)
	square	0.76 (0.02)	0.80(0.01)	0.83(0.02)	0.84(0.02)	0.78 (0.02)
F-MNIST	sigmoid	0.86(0.02)	0.87(0.02)	0.87(0.02)	0.88(0.02)	0.88(0.02)
$(\pi_n = 0.01)$	logistic	0.85(0.02)	0.87(0.02)	0.87(0.02)	0.88(0.02)	0.87(0.02)
	m-Huber	0.82 (0.02)	0.88(0.02)	0.87(0.02)	0.87(0.02)	0.83 (0.02)
	square	0.84(0.01)	0.86(0.01)	0.89(0.01)	0.91(0.01)	0.91(0.01)
F-MNIST	sigmoid	0.93(0.01)	0.93(0.01)	0.93(0.01)	0.94(0.01)	0.95(0.01)
$(\pi_n = 0.05)$	logistic	0.91(0.01)	0.92(0.01)	0.93(0.01)	0.93(0.01)	0.95(0.01)
	m-Huber	0.92(0.01)	0.94(0.01)	0.93(0.01)	0.93(0.01)	0.93(0.01)
	square	0.88(0.01)	0.88(0.01)	0.93(0.01)	0.94(0.01)	0.94(0.01)
F-MNIST	sigmoid	0.94(0.01)	0.94(0.01)	0.95(0.01)	0.95(0.01)	0.96(0.01)
$(\pi_n = 0.1)$	logistic	0.94(0.01)	0.94(0.01)	0.95(0.01)	0.95(0.01)	0.96(0.01)
	m-Huber	0.95(0.01)	0.95(0.01)	0.95(0.01)	0.95(0.01)	0.95(0.01)
	square	0.94(0.01)	0.92(0.01)	0.94(0.01)	0.95(0.01)	0.96(0.01)
F-MNIST	sigmoid	0.96(0.01)	0.95(0.01)	0.96(0.01)	0.96(0.01)	0.96(0.01)
$(\pi_n = 0.2)$	logistic	0.95(0.01)	0.93(0.01)	0.95(0.01)	0.96(0.01)	0.90(0.01)
	m Hubor	0.06(0.01)	0.04(0.01)	0.06(0.01)	0.96(0.01)	0.97(0.01)
	in-muber	0.50(0.01)	0.94(0.01)	0.50(0.01)	0.50(0.01)	0.50(0.01)
CIFAR-10	gigmoid	0.58(0.01)	0.58(0.02)	0.59(0.01)	0.57(0.02)	0.55(0.02)
$(\pi_n = 0.01)$		0.56(0.01)	0.58(0.02)	0.58(0.02)	0.57(0.02)	0.53(0.02)
	Ingistic	0.61(0.02)	0.58(0.02)	0.57(0.02)	0.50(0.02)	0.60(0.02)
	m-nuber	0.01(0.02)	0.33(0.02)	0.33(0.02)	0.33(0.02)	0.00(0.02)
CIFAR-10 ($\pi_n = 0.05$)	square	0.73(0.01)	0.72(0.01)	0.73(0.01)	0.72(0.01)	0.73(0.01)
	sigmoid	0.66(0.02)	0.68(0.01)	0.69(0.01)	0.67(0.01)	0.69(0.02)
	logistic	0.71(0.01)	0.71(0.02)	0.71(0.01)	0.70(0.01)	0.69(0.01)
	m-Huber	0.69(0.01)	0.70(0.01)	0.71(0.01)	0.72(0.01)	0.71(0.01)
CIFAR-10 $(\pi_n = 0.1)$	square	0.77(0.01)	0.77(0.01)	0.77(0.01)	0.78(0.01)	0.77(0.01)
	sigmoid	0.75(0.01)	0.75(0.01)	0.75(0.01)	0.76(0.01)	0.73(0.01)
	logistic	0.77(0.01)	0.77(0.01)	0.77(0.01)	0.77(0.01)	0.76(0.01)
	m-Huber	0.77(0.01)	0.77(0.01)	0.77(0.01)	0.78(0.01)	0.77(0.01)
	square	0.80(0.01)	0.80(0.01)	0.80(0.01)	0.80(0.01)	0.80(0.01)
$\begin{array}{l} \text{CIFAR-10} \\ (\pi_n = 0.2) \end{array}$	sigmoid	0.77(0.01)	0.74(0.01)	0.77(0.01)	0.77(0.01)	0.77(0.01)
	logistic	0.79(0.01)	0.78(261)	0.79(0.01)	0.80(0.01)	0.79(0.01)
	m-Huber	0.79(0.01)	0.79(0.01)	0.79(0.01)	0.80(0.01)	0.80(0.01)

Table 7: AUC means (and standard error) of deep rAD over 20 trials for different π_p^e . The significant changes in the AUC means are highlighted in bold.

Figure 6: AUC mean and std over 20 trials at various a for the datasets with $\gamma_l = 0.05$ and $\pi_n = 0.01$.

Figure 7: AUC mean and std over 20 trials at various a for the datasets with $\gamma_l = 0.05$ and $\pi_n = 0.05$.

Figure 8: AUC mean and std over 20 trials at various a for the datasets with $\gamma_l = 0.05$ and $\pi_n = 0.2$.

Figure 9: Representative ROC curves for different datasets with $\gamma = 0.05$ and $\pi_n = 0.1$.

Sensitivity analysis for a Fixing $\pi_p^e = 0.8$, Figure 6–8 show AUC mean and std of deep rAD with additional values of $a \in \{0.5, 0.9\}$ (a = 0.1 is the default setting) on the datasets with $\gamma_l = 0.05$ and $\pi_n = \in \{0.01, 0.05, 0.2\}$

ROC curves Figure 9 shows representative ROC curves obtained by a trial of running the methods (with default settings) on the datasets with $\gamma = 0.05$ and $\pi_n = 0.1$.