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Abstract

Video hashing is a technique of encoding videos into binary vectors,
facilitating efficient video storage and high-speed computation. Cur-
rent approaches to video hashing predominantly utilize sequential
frame images to produce semantic binary codes. However, videos
encompass not only visual but also audio signals. Therefore, we
propose a tri-level Transformer-based audio-visual hashing tech-
nique for video retrieval, named AVHash. It first processes audio
and visual signals separately using pre-trained AST and ViT large
models, and then projects temporal audio and keyframes into a
shared latent semantic space using a Transformer encoder. Subse-
quently, a gated attention mechanism is designed to fuse the paired
audio-visual signals in the video, followed by another Transformer
encoder leading to the final video representation. The training of
this AVHash model is directed by a video-based contrastive loss as
well as a semantic alignment regularization term for audio-visual
signals. Experimental results show that AVHash significantly out-
performs existing video hashing methods in video retrieval tasks.
Furthermore, ablation studies reveal that while video hashing based
solely on visual signals achieves commendable mAP scores, the
incorporation of audio signals can further boost its performance
for video retrieval.

CCS Concepts

« Information systems — Top-k retrieval in databases; « Com-
puting methodologies — Visual content-based indexing and
retrieval.
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1 Introduction

In this digital age, short videos! have evolved into a prominent con-
tent form, emerging as a new narrative style, information source,
communication mode, self-expression avenue, and interaction space,
significantly influencing modern cognitive psychology, aesthetic
experiences, and value preferences [27]. Therefore, the manage-
ment and processing of videos are crucial yet challenging due to
their vast scale and continuous expansion. Video hashing [28], the
technique that encodes a video into a binary vector, can not only
reduce memory requirements but also facilitate further indexing
and computation, making it a potential tool for video analysis and
understanding [1, 45].

Current video hashing methods begin by summarizing a given
video through a series of keyframes, which are then modeled us-
ing non-temporal or temporal networks such as MLP [29, 36],
CNN [21, 22], LSTM [7, 16], and Transformer [39]. To name just
a few, MCMSH [13] models video feature contexts at three granu-
larities, integrating them into an MLP-Mixer for a comprehensive
representation; SRH [12] employs pre-trained CNN features of
video keyframes as inputs to an LSTM network for binary code
generation; DSVH [2] utilizes 3D convolutions on spatio-temporal
keyframes via a 3DCNN to create {0, 1}-embeddings; ConMH [42]
leverages a Transformer encoder-decoder on sequential pre-trained
CNN features to learn binary codes of videos in a self-supervised
fashion. It is evident that the underlying assumption of these ap-
proaches is as follows. The current computing capabilities face
challenges, or are relatively insufficient, for processing all frames
of a video clip, including short videos lasting just a few minutes.
However, due to the high redundancy in video frames, summariz-
ing a video’s semantic content through keyframe extraction is an
effective strategy.

Furthermore, we also observe that existing approaches to video
hashing tend to view videos as Silent Films, neglecting a crucial
element — audio signals — which are prevalent today and vitally
important for full video comprehension. Neuroscience research [8]
suggests that the combined effect of multiple sensory stimuli can

!https://digitaldelane.com/the-rise-of-short-form-video-content
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Figure 1: The architecture of AVHash: from separate spaces to the common latent semantic space, and to the final video space.

produce an effect where “the whole is greater than the sum of its
parts”. For example, the concurrent stimulation of sight and sound
during the viewing of TV shows or movies can evoke deep and
holistic emotions, as well as enhance understanding of the content.
In the context of machine learning, the principle that multi-modal
learning works better than single-modal has also been mathemati-
cally analyzed and empirically validated by Huang et al. [17]. This
inspires our investigation into video hashing that integrates both
audio and visual signals, instead of solely relying on frame images.

Given a video with synchronized audio-visual signals, we first
extract N (e.g., 25) keyframe images and divide its audio into N
sound waveform segments; then, we map them to a shared latent
space through separate visual-Transformer and audio-Transformer
networks respectively; in the end, we combine the audio-visual
embeddings into the ultimate video representation using a cross-
attention mechanism and an av-Transformer. This completes our
method for translating a video from its original signals to its fi-
nal semantic representation. Given its novel integration of audio
and visual signals, we designate this method as “AVHash”, whose
primary contributions are highlighted below:

o It distinguishes itself by learning to hash videos with both
audio and visual components, not merely frame images, and
introduces a three-tier Transformer network to map its sep-
arate original signals to a shared latent space and finally to
the video representation. To the best of our knowledge, this

is the first work that fully leverages both audio and visual
elements for video hashing.

o It engages in video-oriented contrastive learning within the
final video space and also ensures semantic alignment be-
tween audio and visual signals in the common latent space.
This approach stems from the understanding that a video’s
audio-visual signals can be considered not only separately
but also collectively as a whole.

o It is validated through comprehensive experiments on two
public datasets, ActivityNet and FCVID, under various con-
ditions against a number of state-of-the-art competitors. No-
tably, AVHash demonstrates significant improvements over
those existing methods, showing that while visual-based
video hashing already achieves high mAP scores, incorpo-
rating audio signals further enhances these metrics.

2 Related Work

Video hashing [26, 34, 35, 43, 44, 46] aims to generate a semantic bi-
nary code for each video, and therefore significantly reduce storage
space and enhance computation speed. This process would be of
great benefit to downstream applications including video retrieval,
analysis, and understanding.

Current video hashing methods first extract a video’s representa-
tive image frames and then apply non-temporal or temporal models
to create {0, 1} embeddings. The early approaches typically leverage
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a pre-trained CNN to extract features from video keyframes first,
and then average them to obtain an overall representations. Subse-
quently, these methods employ image hashing techniques such as
LSH [9], ITQ [11], SDH [24, 33], COSDISH [19], SCDH [4], CSQ [47],
LTH [3], and MDSH [40] to produce a binary vector, which serves
as the video’s hash code. More recent approaches predominantly
use deep neural networks. For example, DVH [28] utilizes tempo-
ral pooling across sequential MLP outputs from video keyframes;
SRH [12] captures keyframe CNN features and feeds them into an
LSTM network for supervised learning; DSVH [2] extends 2DCNN
to 3DCNN for modeling spatio-temporal keyframes; ConMH [42]
inputs pre-trained CNN features of sequential keyframes into a
Transformer encoder-decoder network, enabling self-supervised
learning to hash.

To sum up, existing learning-to-hash methods for video retrieval
only utilize visual signals (i.e., frame images) of videos, overlooking
a crucial component: audio waveforms. By contrast, our proposed
AVHash technique learns to project videos into Hamming space
using both visual and audio signals jointly.

In addition, while AVHash utilizes multi-modal signals, it is
fundamentally different from existing multi-modal hashing meth-
ods such as CLIP4Hashing [49], S?BIN [31], EDMH [5, 6], and
SDAH [30]. Those multi-modal hashing techniques aim to learn
hash codes for each individual modality (e.g., text, image, or video)
for cross-modal retrieval tasks (e.g., image-to-text, text-to-image,
video-to-text, text-to-video searches). However, AVHash just learns
one-modality’s embeddings by fully utilizing its audio-visual com-
ponents and only performs video-to-video retrieval task. Conversely,
AVHash focuses on learning binary embeddings for a single modal-
ity, video, while leveraging its audio-visual components, for the
purpose of performing video-to-video retrieval better.

3 The Proposed Method

3.1 Problem Statement

Given a set of V videos, denoted as S = {v,—}lV:l, our AVHash aims
to learn a hash function that maps each video to a compact binary
code.

: s . N
Specifically, each video is represented by its N keyframes {I; }j:1
and N audio segments {A ; }jlil . We extract ViT features [32] {ij }jj\il

for keyframes and AST features [10] {fJA }]Ji , for audio segments,
where I and A correspond to the image and audio modalities re-
spectively. These modal features are then fed into their respective
branches of the AVHash architecture (see Fig. 1), where the features
sequentially pass through separate Transformer encoders to gen-
erate image/audio embeddings, a cross-attention for inter-modal
interactions, a gated-attention for feature fusion, a multimodal
Transformer encoder, and conclude at a hash layer to produce the
video’s embedding. This embedding is then binarized into the final
hash code b; € {-1,+1}7 using a Sign(-) function for video v;,
where q represents the code length.

3.2 Model Architecture

Our AVHash consists of the following modules: “Input”, “ Modality-
Specific Encoder”, “Cross Attention”, “Gated Attention”, “Multi-

Modal Encoder”, “Hash Layer”, and “Loss Function” (see Fig. 1).
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Table 1: The configurations of our AVHash architecture.

‘ Layer ‘ Configurations ‘

Audio Segments: {A1,--- ,AN};
Sequential Keyframes: {I1,--- ,IN}.
Image: CLIP Visual Branch

(L=24, H=1024, A=16);

FC layer (1024 X 768);
Audio: AST (L=12, H=768, A=12).
Image: (Ls=1, Hg=768, As=12);
Audio: (Lg=1, Hs=768, Ag=12).
1— A: (Ly—a=1, Hj—,4=768, A[_,2=12);
A —> L (Lasr=1, Ha—,1=768, Ay—1=12).
FC layer (1536 X 2);

0: Input

—_

: Feature

[\

: Modality-Specific Encoder

w

: Cross-Attention

Gated Attention Fusion

4 Tanh(-);
Module Softmax(-).
5: Multi-Modal Encoder Transformer Blocks (Las=1, Hy=768, Ap=12).

FC layer(768 x q);
Tanh(-).
Output (Bianry Codes) Sign(-).

*

Hash Layer (Binary-like)

N

Input. To enable the model to process data from these modalities,
we use the AST [10] and CLIP [32] models to extract features from
audios and images, respectively, resulting in {f]’.“}jl\i 1 € RN X768
and {f}}jl\il € RN*768 Before feeding them into the subsequent
modules, a CLS token needs to be added in front of the feature
sequence, i.e.,

ZOA = [CISA;ff‘;f?; T §f]<‘]] + Eg‘os7 (1)
Z? — [Clsf;fll;le; . sf}I\]] + E}I)OS, (2)

where Efj‘os and E{)os correspond to the position encodings of time-
series audios and temporal keyframes, respectively.

Modality-Specific Encoder. AVHash comprises two modality-
specific encoders, designed to capture the unique characteristics
inherent to each modality. We employ standard Transformer as
audio and visual encoders. Each encoder consists of Lg Transformer
layers, and each Transformer layer is mainly composed of Multi-
Head Self-Attention (MSA) (with the number of multi-heads as Ag)
and an MLP layer. The output of (£ — 1)-th MLP layer is fed to
the (£)-th Multi-Head Self-Attention (MSA) layer. Layer Normaliza-
tion (LN) is applied before each layer, and a residual connection is
incorporated after each layer. The MLP layer contains two linear
fully connected (FC) sub-layers with a non-linear GELU activation
function:

24, = MSA(LN(z5; 1)) + 25, 3)
zf, = MLP(LN(z%)) + . (4)
where £ = 1,...,Ls, m € {A, I} denotes the audio or visual modal-
ity. By following the above procedure, we could get the latent

representation zfns of video v;’s audio and keyframe features.
Notice that the output zj;ns of each encoder contains (1 + N)
parts corresponding to the preset token CLS and N audio/visual
features. Then, we use the first part’s embedding, dubbed z,LnS [0],
as the holistic representation and the second part’s embedding,
dubbed z{“ns [1:], as the representation for each feature.
Cross-Modality Attention. After unimodal feature encoding,
we employ a cross attention to capture the semantic interactions
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Table 2: Dataset Statistics

Datasets ‘ #Training ‘ #Validation ‘ #Testing ‘ #Total

ActNet-20 930 237 228 1,395
ActNet-50 2,544 666 636 3,846
ActNet-all 10,023 2,512 2,413 | 14,948
FCVID-20 3,060 1,520 1,520 6,100
FCVID-50 7,993 3,973 3,983 | 15,899
FCVID-all 45,508 22,754 22,754 | 91,016

between audio and visual modalities. Concretely, we use a multi-
head cross-attention (MCA) with a linear fully connected (FC) layer:

Zmy—m; = FCMCA(zps [1 g [1:D) +zps[1:], ()

where mq denotes the target modality and m; is the source modality,
and the MCA is given as follow:

MCA(zm,, Zm,) = Concat(heady, . .., head4 )W, 6)
my g T

head; = Softmax | =-——%
l ( =

V™®i=1,...A., ()

1

and
Q' = 2y x W2, ®)
K" = 2,y x WK, ©)
VI = 2, x WY, (10)

where W, WlQ WF ,and WY are learnable matrice, and A. equals
to Ag_1 or A;_, 4. Thus, we obtain representations enriched with
cross-modal information z4_,J, 7, 4, by the following formula:

za—s1 = FO(MCA(z)*[1 1, 255 [1 1)) + 2/ [1 ], (11)
21-a = FO(MCA(z55[1 ], 205 [1 ) + 253 [1 1], (12)

Gated-Attention Fusion Module. To fuse semantics of differ-
ent modalities, we introduce a gated attention to determine the
importance of each modality. For simplicity, we implement this
module via a linear layer followed by a Tanh activation function.
This module accepts two modalities’ features as input and concate-
nates the features of each modality by rows. The output of the
module is fed into the Softmax function to ensure that the sum of
weights across two modalities equals to 1:

[a, 1 — ] = Softmax(tanh(FC([z1— A, Za—1]))); (13)
the final fused features are then formulated as:

zar = zZfsa+(1—a) 24 (14)

Table 3: The number of parameters of different methods.

‘ Methods ‘ #Parameters H Methods ‘ #Parameters ‘
MCMSH [13] 1.2M || DSVH [2] 63M
BTH [25] 2M || SRH [12] 4.5M
DKPH [23] 4M || AVH [41] 22M
SSTH [48] 5M || AVHash (Ours) 28.4M
ConMH [42] 11.3M || — -

Yuxiang Zhou, Zhe Sun, Rui Liu, Yong Chen, and Dell Zhang.

Multi-Modal Encoder. After fusing the two modality features,
to obtain the final representation of the video, we introduce a mul-
timodal Transformer encoder. This encoder consist of L Trans-
former layers, with each composed of Multi-head Self-Attention
(MSA) (the number of multi-heads is Aps) and an MLP layer. Before
feeding z4j, a cls token is added at the beginning of z47, and its
corresponding output serves as the video’s final representation:

z(‘), = [cls;zar] + E‘;OIS, (15)

zf;/ = MSA(LN(zf;*l)) + zéﬁl, (16)

z{, = MLP(LN(z})) + 2§/, 17)

where £ = 1, ..., L. By following the above procedure, we can

get the latent representation zéM of video v;. Note that the output

z{‘,’v’ of each encoder also contains (1 + N) parts corresponding to

the preset token CLS and N multimodal features. We employ the
first part’s embedding, i.e., z{‘/M [0], as its final representation.

Hash Layer. To obtain the final hash codes of video v;, we add
a hash layer, i.e., a FC network with the Tanh(-) function, on top of
the Multi-Modal Encoder. Formally, given video v;, we transform its
Multi-Modal Encoder’s output z]‘“,M [0] into a g-dimensional binary-
like real-valued vector g; via:

gi = Tanh(FC(z}" [0])) € RY, (18)

which is then forwarded to the Sign(-) function for the final binary
code b;, ie.,
b; = Sign(g;) € {-1, +1}9. (19)
Loss Function. We leverage the InfoNCE loss [14, 37] to train
our network. InfoNCE loss consists of three types samples: an an-
chor sample a, a positive sample p, and n, negative samples {n; ?:"1.
The anchor and positive samples belong to the same class, while
the anchor and negative samples belong to different classes. This
InfoNCE loss maximizes the agreement between positive pairs and
the dis-agreement between positive and negative samples, which

is formulated as:
exp ( sim(ra,p) )

Zn_u exp (sim(:,nl-)) + exp (SIm(Ta,p))
(20)
where sim(-, -) denotes the similarity function (e.g., cosine similar-
ity), 7 and n, are two pre-set hyper-parameters. In our experiments,
we build 5 types of positive and negative sample pairs:
Ly = La@® p™ {nf'}{2) + Ly’ p. {nf} 7,

+Lra(al, p, {nf'}0) + Lag(a®, p!, {nf}70),

L(a,p, {n;};2)) = ~log

(1)

and

Ly =Ly(a".p". {n] }[2). (22)
where L; is the semantic alignment between audio and visual sig-
nals in the common latent semantic space, and Ly represents the
video-based contrastive loss in the video space. Then, the overall
objective can be constructed as:

L =alq +1La, (23)
where a is hyperparameter. By minimizing the InfoNCE loss, AVHash

can learn discriminative hash codes, thereby realizing efficient large-
scale video retrievals.
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Table 4: Different methods’ mAP@ 100 values on ActivityNet and FCVID datasets with 32 and 64 bits.

\ \ ActivityNet \ FCVID \
Method/mAP/ ‘

Dataset
\ | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits |

-20 \ -50 \ -all \ -20 \ -50 \ -all \

MCMSH [13] 0.1059  0.2149 | 0.1508 0.2846 | 0.1488  0.2849 | 0.2705  0.2963 | 0.3642  0.3930 | 0.3442  0.3723

BTH [25] 0.1835  0.2283 | 0.1845 0.2634 | 0.1845  0.2721 | 0.2762  0.3458 | 0.3083  0.3680 | 0.2987  0.3593
DKPH [23] 0.1668  0.2251 | 0.1648  0.2252 | 0.1528  0.2283 | 0.2937  0.3535 | 0.3235  0.3820 | 0.3256  0.3731
SSTH [438] 0.1636  0.2124 | 0.1765  0.2408 | 0.1727  0.2395 | 0.2017  0.2671 | 0.2428  0.3057 | 0.2275  0.3037
ConMH [42] 0.2536  0.2973 | 0.2887  0.3268 | 0.2974  0.3312 | 0.3784  0.4020 | 0.4040  0.4304 | 0.3899  0.4232
DSVH [2] 0.1463  0.2200 | 0.2003  0.2903 | 0.2056  0.2979 | 0.2205  0.2900 | 0.2560  0.3373 | 0.2616  0.3683
SRH [12] 0.2659  0.3116 | 0.3538  0.4574 | 0.3205 0.4266 | 0.3511  0.4768 | 0.3102  0.4708 | 0.3699  0.4783
AVH [41] 0.3320  0.4203 | 0.3756  0.4621 | 0.3576  0.4722 | 0.3273  0.4580 | 0.3227  0.4745 | 0.3318  0.4818

AVHash (Ours) ‘ 0.9559 0.9731 | 0.9392 0.9440 | 0.8530 0.8676 ‘ 0.9592 0.9622 ‘ 0.9507 0.9566 | 0.9208 0.9213

Table 5: The mAP@ 100 values of AVHash with different components on ActivityNet and FCVID datasets with 32 and 64 bits.

\ \ ActivityNet \ FCVID \
| Method/mAP/ | -20 | -50 | -all | -20 | 50 | -all |
Dataset

\ | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits | 32bits 64 bits |
audio 0.6546  0.6709 | 0.4071  0.4135 | 0.2113  0.2175 | 0.7819  0.7863 | 0.6495  0.6551 | 0.3956  0.4007
visual 09372  0.9474 | 0.9164 0.9370 | 0.8209 0.8443 | 0.9184  0.9246 | 0.9308  0.9361 | 0.9038  0.9076
audio+visual | 0.9559 0.9731 | 0.9392 0.9440 | 0.8530 0.8676 | 0.9592 0.9622 | 0.9507 0.9566 | 0.9208 0.9213

3.3 Training and Inference Each dataset is split into three partitions: training, validation,

The specific configurations of AVHash'’s architecture is provided in and testing sets. Their statistics are presented in Table 2.

Table 1, and AVHash is implemented and trained (from Layer-0 to
Layer-6 in Table 1) via pytorch. 4.2 Metrics and Competitors
Given a new video vy, We can use the trained AVHash model

We evaluate the retrieval performance of different approaches using
to compute its real-valued binary-like vector:

the most widely-adopted metric, mean Average Precision at top-K

goos = AVHash(vos) (24) results (mAP@K) [5, 12, 41, 42]. For our study, we set K to 100.
When conducting video retrieval experiments, we designate the
first and then binarize it into the final hash code: testing samples as the query set, with the validation and training
boos = Sign(goos)- (25) sets serving as the video database. Additionally, we order the re-

trieved results by their Hamming distances from the queries and
record the performances of different methods with code lengths of
4 Experiments 32 as well as 64 bits.

Regarding baseline approaches, we include SSTH [48], BTH [25],
4.1 Datasets DKPH [23], MCMSH [13], ConMH [42], SRH [12], AVH [41], and

We assess A;/Hash using two public video datasets: ActivityNet® [15] DSVH [2], chosen for their competitive retrieval performances.
and FCVID- [18]. ActivityNet comprises 14,948 videos, which are The first five methods are unsupervised, while the last three are
categorized into 200 classes. From these, we randomly selected 20 supervised.

and 50 categories to create two smaller datasets, named ActNet-20
and ActNet-50, respectively. The complete dataset is referred to as 4.3 Implementation Details
ActNet-all. Consequently, we have three ActNet datasets for our ) i i

experiments. Likewise, FCVID includes 91,016 videos classified into Image processing. Consistent with SSTH [48], BTH [25], and

239 categories, from which we formed three variants: FCVID-20, ConMH [42], we uniformly sample 25 frames from each video
FCVID-50, and FCVID-all. in the ActivityNet and FCVID datasets. Each image is resized to

336x336%3 and segmented into 14x14 patches. These images are
2https//activity-net.org/ then processed using the visual branch of CLIP, which features
3https://fvl.fudan.edu.cn/dataset/fcvid/list.htm a depth of 24 layers, 16 multi-head attentions, and a hidden size
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Figure 2: The mAP@100 values of each class in the ActNet-all dataset (partial classes). The red bars indicate the results of
AVHash with audio and visual signals, while the grey bars indicate the results of AVHash only with visual signals.
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Figure 3: The mAP@100 values of each class in the FCVID-all dataset (partial classes). The red bars indicate the results of
AVHash with audio and visual signals, while the grey bars indicate the results of AVHash only with visual signals.

of 1024, resulting in high-level image representations within a
1024-dimensional feature space. These features are subsequently
transformed to 768-dimensional vectors via a fully connected layer.
Audio processing. We also evenly divide each audio track from
the ActivityNet and FCVID datasets into 25 segments, correspond-
ing to the 25 frames. These audio segments are then processed
using AST [10], which is characterized by an embedding dimen-
sion of 768, 12 layers, and 12 heads, generating high-level audio
representations within a 768-dimensional feature space.
Network Architecture. Our architecture comprises three pri-
mary components: the Audio Encoder, the Image Encoder, and the
Multi-modal Encoder. Each component employs a Transformer en-
coder architecture, configured with a single layer, 12 multi-head
attentions, and a hidden layer size of 768. Notably, we limit each

component to one layer to ensure that our AVHash network, which
has 28.4M learnable parameters, remains comparable in size to com-
petitors such as AVH [41] with 22M parameters and DSVH [2] with
63M parameters, as illustrated in Table 3.

Model training. During the training phase, we employ the
Adam optimizer [20] for gradient descent, setting the learning rate
at 10* and the batch size at 128. In accordance with Eq. (20), we use
four negative samples (n,=4) and a temperature parameter () of
0.1. Our AVHash model is implemented using PyTorch on an Nvidia
Tesla V100 GPU (32GB). Additional details is available in our code
release on Github website: https://github.com/iFamilyi/AVHash.
For comparative purposes, the source codes and parameters of com-
peting models are accessible on Github or provided courtesy of
their authors.
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Figure 4: The mAP@100 values w.r.t. different settings of hyper-parameter Ir and ¢ on ActNet-all and FCVID-all datasets.

4.4 Results

Table 4 presents the mAP@K (K=100) values of all the methods in
comparison on the ActivityNet (-20, -50, and -all) and FCVID (-20, -
50, and -all) datasets. Our AVHash method consistently outperforms
the others, including AVH [41], SRH [12], and ConMH [42], across
all configurations. Specifically, AVHash achieves impressively high
mAP scores — generally exceeding 0.9 — while the scores of com-
peting methods seldom reach 0.5. For instance, at a code length of
32 bits, the mAP@100 scores for AVHash (0.9559 and 0.9731) are
approximately 2.88 and 2.32 times higher than those of AVH (0.3320
and 0.4203) on the ActNet-20 and FCVID-20 datasets, respectively.
These results strongly suggest the superior efficacy of our proposed
approach to video hashing.

One may question why the performance gap between 32-bit
and 64-bit configurations is marked for the baseline methods but
negligible for our AVHash. This difference can be attributed to the
architecture of AVHash (Fig. 1), where the only variation between
the 32-bit and 64-bit models is in their final fully connected layer
(768%32 vs. 768%x64), with both configurations having a similar scale
of learnable parameters.

4.5 Ablation Studies

We would like to explore the impact of visual and audio signals on
the performance of AVHash in video retrieval tasks. This curios-
ity leads us to conduct comparative experiments: AVHash (with
both signals) vs. AVHash with visual input only vs. AVHash with
audio input only, denoted as “audio+visual”, “visual”, and “audio”
respectively, as detailed in Table 5. The findings reveal a hierarchy:
“audio+visual” outperforms the others, followed by “visual”, and “au-
dio” ranks last. It is noteworthy that while visual signals alone could
enable AVHash to achieve commendably high mAP@100 scores,
the addition of audio signals would further improve AVHash’s per-
formance, which affirmatively highlights the positive contribution
of audio.

Moreover, we selectively analyze subsets of ActNet-all and FCVID-
all, illustrating the mAP@100 values for AVHash under both “au-
dio+visual” and “visual” settings in Fig. 2&3. These figures demon-
strate that audio signals generally enhance video comprehension,
as indicated by the predominance of red bars over white ones. How-
ever, there are instances where audio waveforms might confuse the

interpretation of frame images, suggesting an opportunity for the
development of more sophisticated models.

4.6 Parameter Sensitivity

Two critical parameters, the learning rate Ir and regularization
factor a (Eq. (23)), significantly influence our model’s performance.
Fig. 4 compiles and illustrates their impacts upon mAP@100 scores.
Insights from Fig. 4(a)&4(b) reveal that an Ir of 1e-4 enables AVHash
to attain high performance on both the ActivityNet and FCVID
datasets. Likewise, analysis from Fig. 4(c)&4(d) suggests setting
a to 50 for optimal results, regardless of whether the dataset is
ActivityNet or FCVID. Consequently, we adopt [r=1e-4 and a=50
as the default settings for our AVHash method.

4.7 Convergence Curves

Fig. 5 displays the mAP@100 scores and loss curves for AVHash
on both datasets, utilizing 32-bit and 64-bit codes. Each subplot
indicates the iteration number on the x-axis, while the left and
right y-axes, in blue and red respectively, denote the mAP@100
scores and normalized values of the objective function*. The plots
clearly demonstrate that AVHash achieves convergence within 300
iterations, thereby confirming the efficacy of AVHash’s training
process.

4.8 t-SNE Visualizations

We selected 10 classes at random, each with 50 samples from the
ActNet-all and FCVID-all datasets, and projected them into a 2D
space using t-SNE [38], as illustrated in Fig. 6&7. Notably, our
AVHash method clusters these videos more distinctly than both
the competitive supervised methods AVH/DSVH and the unsuper-
vised approach MCMSH. This demonstrates AVHash’s superior
capabilities in representation learning.

5 Conclusions

This paper sets itself apart from previous studies on video hashing
by utilizing both audio and visual components of videos in a tri-
level Transformer architecture, named AVHash, for creating binary
embeddings of videos. Specifically, AVHash first maps separate
audio and video signals to a shared latent semantic space, before

“The loss for each iteration is normalized via dividing it by the loss of the first iteration.
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Figure 7: t-SNE visualizations of AVHash and 3 most competitive methods on FCVID-all dataset.

projecting them onto the final video space. It then establishes a
contrastive loss in the video space, along with a regularization con-
straint for aligning audio and visual signals in the common latent
semantic space, to guide model training. Extensive experiments
conducted on two widely used large video datasets demonstrate

that AVHash significantly outperforms existing video hashing tech-
niques in video retrieval tasks. Our findings indicate that, while
a high mAP score for video retrieval could be achieved using vi-
sual signals alone in video hashing, incorporating audio signals
effectively would further improve the system’s performance.
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