
GEAR: A GPU-Centric Experience Replay System
for Large Reinforcement Learning Models

Hanjing Wang * 1 2 Man-Kit Sit * 3 Congjie He 3

Ying Wen 1 Weinan Zhang 1 Jun Wang 4 Yaodong Yang 5 Luo Mai 3

Abstract

This paper introduces a distributed, GPU-centric
experience replay system, GEAR, designed to
perform scalable reinforcement learning (RL)
with large sequence models (such as transform-
ers). With such models, existing systems such
as Reverb face considerable bottlenecks in mem-
ory, computation, and communication. GEAR,
however, optimizes memory efficiency by en-
abling the memory resources on GPU servers
(including host memory and device memory) to
manage trajectory data. Furthermore, it facili-
tates decentralized GPU devices to expedite vari-
ous trajectory selection strategies, circumventing
computational bottlenecks. GEAR is equipped
with GPU kernels capable of collecting trajec-
tories using zero-copy access to host memory,
along with remote-directed-memory access over
InfiniBand, improving communication efficiency.
Cluster experiments have shown that GEAR can
achieve performance levels up to 6× greater than
Reverb when training state-of-the-art large RL
models. GEAR is open-sourced at https://
github.com/bigrl-team/gear.

1. Introduction
Recent breakthroughs in AI technologies have paved the
way for training large sequence models (Vaswani et al.,
2017), such as Gato (Reed et al., 2022), DB1 (Wen et al.,
2022b), MAT (Wen et al., 2022a) and GPT (Brown et al.,
2020), using a reinforcement learning (RL) approach (Ope-
nAI, 2023). These models have set new benchmarks in

*Equal contribution 1Shanghai Jiao Tong University
2Digital Brain Lab 3University of Edinburgh 4University
College London 5Peking University. Correspondence
to: Ying Wen <ying.wen@sjtu.edu.cn>, Weinan Zhang
<wnzhang@sjtu.edu.cn>, Luo Mai <luo.mai@ed.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

complex decision-making such as game playing, robotics
control, and question answering (Reed et al., 2022; Chen
et al., 2021; Wen et al., 2022a; Janner et al., 2021), recom-
mender systems (Geng et al., 2022; Sima et al., 2022) and
AI-assisted generated content (Ramesh et al., 2022; Shen
et al., 2023).

A pivotal component that makes RL viable for these large
sequence models, or ”large RL models,” is the experience
replay system. This system archives past experiences, or-
ganized as trajectories, for RL agents. These trajectories
are gathered by RL policies through on-policy, off-policy,
or offline methods (Bellemare et al., 2013; Todorov et al.,
2012). For each training batch, the experience replay system
chooses trajectories based on a certain strategy, such as first-
in-first-out (FIFO), last-in-first-out (LIFO), weighted replay,
or prioritized replay. These selected trajectories are then
acquired by GPU-based training servers, executing multi-
dimensional parallelism for sequence models (Huang et al.,
2019; Rasley et al., 2020).

Training large RL models using experience replay systems
presents several challenges: (i) Such systems necessitate
a substantial number of servers to store hundreds of ter-
abytes of trajectories in memory (Reed et al., 2022). This
requirement makes operating these experience replay sys-
tems exceedingly expensive. (ii) The complexity of trajec-
tory selection strategies often escalates with the size of the
batch (Berner et al., 2019) and the total number of trajecto-
ries (Reed et al., 2022), leading to significant computational
costs. (iii) Training large RL models invariably involves us-
ing large batch sizes, which can result in collecting massive
trajectories over the network per training iteration. This pro-
cess imposes exorbitant communication costs. Given these
challenges, it is crucial to consider the storage, computa-
tional, and communication costs incurred by an experience
reply system when supporting large RL models with experi-
ence replay systems.

Existing experience replay systems, unfortunately, fall short
in fully addressing the aforementioned challenges. Most
of these systems, such as RLlib (Liang et al., 2018), RL-
Zoo (Ding et al., 2021), stable-baselines (Hill et al., 2018),
rlpyt (Stooke & Abbeel, 2019), tianshou (Weng et al.,

1

https://github.com/bigrl-team/gear
https://github.com/bigrl-team/gear

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

2022a), TorchOpt-RL (Liu et al., 2022; Ren et al., 2022),
sample factory (Petrenko et al., 2020), and envpool (Weng
et al., 2022b), are incorporated as part of single-server
RL frameworks and fail to offer distributed trajectory stor-
age, selection, and collection. The recent development in
distributed experience replay systems, exemplified by Re-
verb (Cassirer et al., 2021), allows for storing trajectories on
memory-optimized servers. Reverb utilizes CPU processors
for trajectory selection and collection during training. How-
ever, it remains significantly inefficient: to store massive
trajectories, Reverb demands the deployment of numerous
additional servers, thereby incurring high storage costs. It
also struggles with performance issues when executing se-
lection tasks on a large number of trajectories due to the
restricted parallelism of CPU processors. Furthermore, Re-
verb employs RPC libraries (specifically, gRPC) to collect
trajectories, leading to excessive memory copies and data se-
rialization. This methodology exhibits low communication
efficiency.

In this paper, our objective is to design an experience re-
play system that can be effectively employed in training
large RL models. We have observed that the training servers
typically possess vast memory, computation, and commu-
nication resources. These servers boast a large amount of
host memory (usually ranging from 1 to 4 terabytes) and
multiple GPUs (up to 8). These GPUs have high-bandwidth
memory and are interconnected with high-bandwidth con-
nectivity including NVlink and InfiniBand. Our primary
design strategy, therefore, involves leveraging these training
servers to: (i) Store and manage trajectories in their host
memory, eliminating the need to use additional servers for
trajectory storage. (ii) Speed up trajectory selections with
the help of distributed GPUs. (iii) Ensure efficient collec-
tion of trajectories using InfiniBand, which provides high
bandwidth and zero-copy direct access to remote data.

To realize the above idea, we design and implement GEAR,
a novel distributed GPU-centric experience replay system.
The design of GEAR makes the following contributions in
scaling the training of large RL models:

(1) Trajectory management on training servers. GEAR
can divide trajectories into shards and allocate these shards
across distributed training servers. The trajectory sharding
strategy enhances data locality by factoring in the topology
of pipeline parallelism and trajectory priorities during selec-
tion. Moreover, GEAR incorporates an optimized trajectory
storage format wherein trajectory fields selected together
are placed in continuous memory, thereby maximizing data
locality and bandwidth utilization.

(2) GPU-optimized distributed trajectory selection.
GEAR allows various trajectory selection strategies to bene-
fit from distributed GPUs. It realizes centralized trajectory

selection which guarantees deterministic selection results
when using distributed GPUs. It further realizes decentral-
ized trajectory selection, thus parallel GPUs can contribute
partial trajectory selection results, significantly improving
the efficiency of selecting trajectories in extremely large
datasets (e.g., those with 100s TB trajectories).

(3) GPU-centric trajectory collection. GEAR has opti-
mized GPU kernels that maximize the communication effi-
ciency in collecting trajectories in GPUs. For trajectories in
local host memory, the GPU kernels use zero-copy directed-
memory-access (DMA), bypassing CPUs and avoiding data
copies and serialization. For trajectories on remote servers,
the GPU kernels can launch RDMA send/receive to retrieve
the trajectories over InfiniBand.

We evaluated GEAR in a 24-GPU cluster with state-of-
the-art large RL models including Gato (Reed et al., 2022)
and MAT (Wen et al., 2022a). Experimental results show
that GEAR achieves up to better 6x performance (35 GB/s
throughput in collecting trajectories) compared to the state-
of-the-art Reverb (6 GB/s) with a wide range of config-
urations (different trajectory sizes, different models and
different datasets).

2. Background and Motivation
In this section, we describe the background and motivation
for designing GEAR.

2.1. Reinforcement learning for large sequence models

Recent studies have demonstrated the considerable benefits
of incorporating RL into large sequence model training. Typ-
ically, an RL-based sequence model training system com-
prises (1) actors, which generate trajectories online through
simulation environments such as Atari (Mnih et al., 2013),
Mujoco (Todorov et al., 2012), and Google Football (Ku-
rach et al., 2020), and (2) learners, which persistently select
a batch of trajectories to train a deep neural network, herein
referred to as the model (Liang et al., 2018).

Furthermore, trajectories can also be produced by empirical
expert policies offline, allowing large sequence models to
mimic or even surpass the performance of these policies.
Real-world datasets are another valuable source of trajec-
tories (Janner et al., 2021), such as D4RL (Fu et al., 2020),
Minecraft (Fan et al., 2022), and robot manipulation (Jang
et al., 2022).

Current large sequence models possess billions or even tril-
lions of parameters. To counter the memory restrictions of
a single GPU, developers must employ multi-dimensional
parallelism. This involves partitioning and replicating the
model, with different model partitions being executed us-
ing multi-dimensional parallelism (Zheng et al., 2022): a

2

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

combination of data parallel (Mai et al., 2020), model par-
allel (Rajbhandari et al., 2020), and pipeline parallel ap-
proaches (Huang et al., 2019).

A pivotal component in large RL model training systems is
the experience replay system, which manages massive on-
line and offline produced trajectories. This system enables
the model training system to select a batch of trajectories
continuously, based on a specific trajectory selection strat-
egy. Following trajectory selection, the training system
computes gradients to refine the models. For online RL, the
models also return actions to the simulation environments.

2.2. Challenges for experience replay systems

Training large RL models, while promising, presents several
significant challenges today. The key challenges include:

(1) High storage costs incurred by trajectory storage.
The need for extensive datasets to train large RL models has
intensified, incorporating massive offline-generated trajecto-
ries by various empirical models and trajectories collected
over extended periods from parallel environment simulators.
For instance, the dataset used to train the DB1 model (Wen
et al., 2022b) encompasses 110 TBs (over 350 billion to-
kens), mirroring the datasets employed for training the Deep-
Mind Gato (Reed et al., 2022). These trajectories must be
retained in server memory for subsequent selection and
transport to training servers. However, since commodity
servers only offer up to a few TBs of memory, storing the en-
tire dataset necessitates hundreds of servers, leading to sub-
stantial memory costs. For example, a memory-optimized
server with 1TB of memory in a public cloud can cost sev-
eral dollars per hour. Thus, using multiple servers to store a
dataset of 110 TBs could lead to storage costs amounting to
several thousand dollars per hour.

(2) High computation costs associated with trajectory
selection. The process of selecting trajectories for the train-
ing of large RL models presents considerable computational
challenges. Even with the support of auxiliary data struc-
tures (Cassirer et al., 2021), such as max heaps and prefix-
sum trees, to facilitate the selection process, the need for
large batch sizes and the high volume of trajectories often
required in training results in a significant number of iter-
ations necessary to complete the selection. For instance,
using a prefix-sum tree to conduct priority-based trajectory
selection has a time complexity of O(B × logN), where N
is the total number of trajectories and B is the batch size.
When B is 1 million and N is 1000 million, the prefix-sum
tree still requires more than 10 million iterations to com-
plete trajectory selection. This computational demand can
be burdensome for CPUs.

(3) High communication costs due to trajectory collec-

tion. Training large RL models often necessitates the collec-
tion of an extensive amount of sizeable trajectories within a
training batch. A trajectory can vary in size from hundreds
of kilobytes to megabytes. This is attributable to (i) the use
of large RL models in long-term planning tasks, such as the
game of Go (Silver et al., 2016), which often involve trajec-
tories tied to thousands of timestamps (Vinyals et al., 2019;
Berner et al., 2019), and (ii) the fact that large RL models
may also employ trajectories with multi-modal data (Nair
et al., 2022), including text, images, and videos (Fan et al.,
2022). The collection of such a vast number of large tra-
jectories places a significant demand on communication
bandwidth at the training servers. For instance, gathering
one million trajectories, each sized at 100 KBs, necessitates
the transfer of more than 100 GBs of data. This rate poses
a challenge for current communication technologies (Mai
et al., 2015), such as Ethernet and the PCIe bus, which re-
spectively offer 10-40 Gbps and 32 GBs of bandwidth (Ko-
liousis et al., 2019).

2.3. Limitations of existing systems

Existing experience replay systems such as RLlib (Liang
et al., 2018), stable-baseline (Hill et al., 2018), rlpyt (Stooke
& Abbeel, 2019), tianshou (Weng et al., 2022a), sample fac-
tory (Petrenko et al., 2020), and envpool (Weng et al., 2022b)
have been predominantly designed for relatively smaller RL
models and their implementations are confined to single-
server contexts. Consequently, they are not equipped to
handle the distributed trajectory storage, selection, and col-
lection necessary for training large RL models.

Recently, DeepMind presented Reverb (Cassirer et al.,
2021), a distributed experience replay system and a key com-
ponent of their Acme research framework (Hoffman et al.,
2020). Reverb employs a collection of memory-optimized
servers for trajectory storage and relies on CPU processors
for trajectory selection. Subsequently, the chosen trajecto-
ries are conveyed to training servers via gRPC, which uses
network sockets.

However, despite its strengths, Reverb falls short of fully
tackling the challenges inherent in training large RL models.
To store datasets featuring hundreds of terabytes of trajec-
tories, Reverb necessitates a considerable number of CPU
servers, leading to elevated storage costs. Furthermore, the
limited parallelism offered by CPU processors translates to
lengthy selection times (spanning several seconds), which
is starkly contrasting to the time required to complete a
batch of GPU training (typically in the order of hundreds
of milliseconds) (Shoeybi et al., 2019). In addition, the use
of network sockets for trajectory transfer involves multiple
data copies, such as moving trajectories from user space
to the operating system kernel, and necessitates the serial-
ization and deserialization of trajectory data. This restricts

3

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

Figure 1. Overview of GEAR

Reverb’s throughput to a few gigabytes per second, which
is an order of magnitude less than the throughput (hundreds
of gigabytes per second) required by large RL models.

3. GEAR Design and Implementation
In this section, we delve into the design and implementation
of GEAR. Our design approach stems from an observation
that modern training servers for large RL models are typ-
ically equipped with substantial memory resources (such
as terabyte-scale server memory and SSDs), computation
accelerators (for instance, 8-16 GPU devices), and high-
bandwidth networks (including 40 GB/s InfiniBand and 600
GB/s GPU NVLink).

We utilize these training servers to: (i) leverage the host
memory for storing and managing trajectories, thereby elim-
inating the need for additional storage servers, (ii) employ
parallel CUDA kernels to hasten the process of trajectory
selection, and (iii) incorporate GPU-centric data commu-
nication methods to gather trajectories through PCIe and
high-bandwidth networks.

3.1. Overview

Figure 1 offers an overview of GEAR. Within GEAR, tra-
jectory generators both write trajectories to and read trajec-
tories from the system. GEAR is responsible for managing
and transporting these trajectories between the trajectory
generator and the distributed DL system. Ultimately, GEAR
operates in tandem with a distributed DL system that trains
and infers large sequence models using multi-dimensional
parallelism.

GEAR is designed to support two training scenarios for
large sequence models: offline RL and online RL. (i) In the
offline RL scenario, GEAR ingests trajectories from training
datasets that have been pre-collected offline. These trajecto-
ries are then inserted into GEAR’s trajectory storage. The
DL system subsequently samples trajectory batches from
GEAR in order to update the model parameters. (ii) In the
online RL scenario, GEAR employs environment simulators
to generate observations. These observations are recorded
in GEAR and subsequently transferred to the DL system,

Model
Partition 0

Trajectory Shard 0

Client

Trajectory
Generator

Model
Partition 0

Trajectory Shard 2

Client

Trajectory
Generator

Model
Partition 1

Trajectory Shard 1

Client

Trajectory
Generator

Model
Partition 1

Trajectory Shard 3

Client

Trajectory
Generator

Pipeline Parallelism

D
at

a
Pa

ra
lle

lis
m

col0 col1 Client

Column Tables

Trajectory Shard

col2

Range

Block

Server 3 (Head) Server 4

Server 0 (Head) Server 1

Index Mgrs.

Status
Table

Block
Allocator

Figure 2. Trajectory management on distributed training servers

which responds with actions. These actions are relayed back
to the simulators to continue the simulation process.

3.2. Trajectory management on training servers

Enabling trajectory management on distributed training
servers exhibits several unique challenges: (i) The train-
ing servers realize pipeline parallelism, and based on their
assigned roles in the pipeline, the servers need to be as-
signed with different shards of trajectories (e.g., only the
first server in a training pipeline will need to collect trajec-
tories), (ii) The trajectory sharding scheme must optimize
data locality (that is, the majority of the trajectories col-
lected by the servers reside in local memory), and (iii) The
trajectory storage format needs to optimize for the unique
data access pattern of trajectories (that is, trajectories are
collected based on their priorities, a range of timestamp and
a sub-group of fields specified by the developers of large RL
models).

Pipeline-aware trajectory sharding. Figure 2 gives an
overview of the management system design in pipeline paral-
lel training servers. In this figure, we have 4 training servers,
where server 0 and 3 are the head servers in pipeline paral-
lelism. The trajectory storage is partitioned into equal-sized
shards to allow for storing very large amounts of trajectories.
Each shard is hosted by one machine. As each GPU server
contains up to several TB of system memory, the shards are
stored in the system memory of the GPU servers.

The client (1) can write to the local shard and read from
the remote shards. Trajectory generators (2) write trajec-
tories to the store through the client, which can be either
offline (from datasets) or online (from simulators). The
placement controller decides the placement of the shards to
improve data locality. The placement controller considers
both the type of trajectory generator and parallelism. With
pipeline parallelism, only the head servers which run the
input layer needs to read the shards. Therefore, for offline

4

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

generators, we place the data with a higher probability (i.e.
higher priority) to be selected in the head machines. For
an online generator, the trajectories are written to the local
shard where the trajectories are generated to reduce write
overheads.

Shard storage format. Clients typically need to read only
certain fields of trajectories (such as observation, action, or
reward) and write to the storage field by field. To facili-
tate this access pattern, we chose a column-based storage
system, which stores the same type of fields together in a
consecutive manner. Each shard is composed of two main
components: column tables and index managers. These
components are allocated in shared memory, allowing direct
access by client processes without the overhead of inter-
process communication (IPC).

A column table holds a specific field type of a trajectory.
Since the shape of the fields is defined by the users at cre-
ation, the tables are implemented as continuous arrays di-
vided into blocks of equal size. Each block represents a field
of a trajectory and serves as the basic unit of read/write op-
erations. The fields within a block are stored as a sequential
chain of flattened tensors. The storage capacity is defined by
the number of blocks in a table, and all tables share the same
capacity, representing the maximum number of trajectories
that a shard can accommodate.

Index manager. The Index Manager comprises a Block
Allocator and a Status Table. Each block within a table can
be uniquely identified by an index, with a row of blocks
(i.e., blocks sharing the same index across different tables)
forming a complete trajectory.

The Block Allocator is tasked with block allocation and
the subsequent status updates. To manage the indices of
free blocks – those that are either empty or contain out-
dated trajectories awaiting eviction – the allocator employs
a single queue. The processes of allocation and release in-
volve dequeue and enqueue operations, respectively. The
Status Table, on the other hand, maintains essential statistics
such as priorities and timestamps that reflect the usability
of indices and their associated trajectories. The priorities of
indices that represent ongoing or evicted trajectories are set
to zero to avoid their selection. When allocation or eviction
events occur, the updates on block status are consolidated
and committed to the Status Table.

GEAR utilizes a multi-controller architecture, where client
programs are duplicated and run to manage exclusive por-
tions of hardware resources, such as GPU devices. For
preventing data corruption, GEAR directs clients and index
managers to periodically synchronize with each other, ensur-
ing clients have up-to-date information on block allocation.

In line with the principles of a multi-controller architecture,

GPU

GPU

GPU

Server 2

Server 4

GPU

comm selection

Column
Table

Column
Table

Column
Table

Column
Table

1

3

Server 0

Server 1

2

(a) Centralized selection

GPU

GPU

GPU

Server 0

Server 1

Server 2

Server 4

GPU

Column
Table

Column
Table

Column
Table

comm sampling

1 3

1

2 4

Column
Table

(b) Decentralized selection

Figure 3. Centralized and decentralized trajectory selection

trajectory shards are further divided and managed by in-
dividual local index managers. Each local index manager
is tied to a specific client process to minimize local syn-
chronization overhead. This arrangement enables the Index
Manager to smoothly integrate with existing deep learning
libraries, including Torch-DDP and DeepSpeed.

Trajectory insertion and deletion. To insert a trajectory
into the store, the client initiates an allocate operation,
which generates a buffer containing memory views of the
blocks. As demonstrated in Figure 2, this operation involves
several steps: 3 The client requests a free index from the
block allocator. 4 The client retrieves the memory locations
of the indexed blocks from each column table. These mem-
ory locations are encapsulated into a buffer, which the client
then fills with trajectory data. After writing the blocks, the
client 5 commits the buffer, triggering an update in the
Status Table. This update designates the index as available
for selection. All write operations are performed in place to
avoid unnecessary memory copying.

Releasing a row requires the block allocator to enqueue the
freed index and designate it as unavailable for selection.
This occurs when either (1) the block allocator receives
a request but no index is available, or (2) the number of
selectable indices reaches the preset maximum capacity. In
these scenarios, the allocator automatically selects a victim
index to be released according to a user-defined removal
strategy (e.g., FIFO, LIFO).

3.3. Trajectory selection with distributed GPUs

GEAR facilitates efficient trajectory selection using dis-
tributed GPUs on training servers. It addresses key chal-
lenges, such as (i) ensuring deterministic selection results
for consistent training outcomes of large RL models; (ii)
maintaining consensus among all participants on the se-
lected indices to avoid data corruption; and (iii) controlling
communication overheads for effective scaling.

5

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

Figure 4. Trajectory collection on distributed GPUs

Centralized trajectory selection. Figure 2(a) illustrates the
process of centralized trajectory selection, which consists
of the following steps: 1 The GPU in the central server
conducts a global gathering operation to collect selectable
indices and weights from all servers. 2 A selection algo-
rithm then picks from these collected indices and generates
a list of selected indices. 3 The central server broadcasts
this list of selected indices to the other servers.

GEAR supports both uniform sampling and weighted sam-
pling as centralized selection algorithms. We’ve imple-
mented an optimized CUDA kernel for weighted sampling.
This kernel first computes a prefix sum array using the
decoupled look-back algorithm and then performs binary
searching to locate the bins associated with uniformly gen-
erated random numbers. The prefix sum calculation and the
searching procedure require k×logN

s steps, where s is the
degree of parallelism, k is the number of samples, and N is
the sample size.

Decentralized trajectory selection. GEAR provides FIFO
and TopK selection implementation, which are deterministic
in decentralized selection scenarios. Therefore, all servers
can perform a local scan to generate k samples before the
global gathering operation, which can significantly reduce
the communication overhead from O(n) to O(mk) when
k ≪ n, where m is the parallel world size of servers.

As depicted by Figure 2(b), the decentralized trajectory se-
lection in GEAR will first run GPU kernels in each GPU to
compute the partially selected trajectories (e.g., the top-K
priority trajectories) (1). The partially selected trajectories
will be sent to the central GPU (2) to compute the global
top-K selected trajectories. The global top-K selected trajec-
tories will be broadcast to all GPUs and allow these GPUs
to retrieve their trajectories (3).

3.4. GPU-centric trajectory collection

GEAR aims to eliminate data copies and serialization, uti-
lizing high-bandwidth networks for GPUs, thereby reduc-
ing latency when collecting trajectories for training servers.
However, we identify two key research gaps: (i) Modern
GPUs can directly read from shared memory, negating the
need for data copying and serialization over CPU-managed
memory. This capability is yet to be fully exploited in cur-
rent machine learning frameworks. (ii) GPU servers often
have InfiniBand, providing high bandwidth and efficient
hardware-assisted data copy and serialization. However, in
existing machine learning frameworks: InfiniBand is pri-
marily used for synchronizing the gradients for RL models,
leaving it underutilized in collecting trajectories.

Index translation. As the selected list of indices is global
indices, it is translated into lists of local indices for each
server. Since the shards have equal size, it is simple to
determine if an index belongs to which machine by dividing
the index by the capacity. The translated lists of local indices
are sent to the collector.

Trajectory collection. GEAR enables GPUs to directly
collect trajectory in host memory by facilitating one-sided
data accesses. The collector consists of a collector client
and a collector server. For local collection, the collector
utilizes the zero-copy access feature of NVIDIA GPUs,
which allows GPU threads directly access the host memory
without the help of the CPU. Compared to the more common
DMA-based data transfer, it is more suitable for sparse data
accesses (Tan et al., 2023), as it allows GPUs to send more
fine-grained memory requests to the system memory directly
through PCIe. To enable zero-copy, the memory of the
tables is pinned to page-lock the table data (1 in Figure 4).
The collector client launches one CUDA kernel per table to
collect trajectories from host memory to GPU memory. For
remote trajectory collection, the collector utilizes NCCL to
copy trajectories from remote shards through InfiniBand.

Collection example. For example, in Figure 4, a client
wants to collect field "col0" and "col1" of indices 2, 4,
25, 26 from the store, it calls collect([2, 4, 25,
26], ["col0", "col1"]). The indices are trans-
lated into [2, 4] and [1, 2] which are the local indices of
server 0 and server 1 respectively (2). The collector client
launches 2 CUDA kernels to read locally from each of the
requested tables (3). The client sends [1, 2] to the collector
server in server 1 to request the trajectories remotely (4).
After the collector server collected the trajectories, it sends
them to the collector client (5). The local and remote col-
lected trajectories are concatenated and converted to Pytorch
Tensor.

6

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

3.5. Implementation details

The current implementation of GEAR comprises 4,300 lines
of C/C++ code and 2,000 lines of Python code. GEAR sup-
ports large RL models authored in PyTorch and parallelized
by DeepSpeed, a popular distributed training and inference
library for sizable transformers. It facilitates the import
of offline PyTorch and TensorFlow datasets and accommo-
dates data generated by a diverse assortment of environment
simulators, such as Atari, Google Football, Starcraft II, and
Robot Arms.

Multi-framework support. GEAR is designed as a
framework-independent library, enabling its integration with
various machine learning frameworks. Currently, it exposes
trajectory data via the PyTorch Tensor interface, facilitating
seamless interaction and data exchange between GEAR and
PyTorch models.

Moreover, GEAR is incorporated into DeepSpeed to support
multi-dimensional parallelism when training large sequence
models. Distributed communication and additional data
placement optimizations that hinge on pipeline parallelism
can be facilitated by DeepSpeed’s parallel topology unit.

Failure recovery. GEAR allows for trajectory shards to be
checkpointed on local SSDs. Developers frequently trigger
checkpointing processes at data epoch boundaries which are
aligned with model parameter checkpoint boundaries (Mai
et al., 2020). Since GEAR is incorporated into the Deep-
Speed framework, it relies on DeepSpeed to detect failures
and recover trajectory shards.

4. Experiments
In this section, we outline our experiment settings and re-
sults to assess the performance and accuracy of GEAR.

Cluster. We conduct benchmarking tests and RL train-
ing tasks on a three-server cluster, each being a standard
NVIDIA DGX-A100 server. Each server houses dual
AMD Rome 7742 processors, eight NVIDIA A100 GPUs,
1000GB of RAM, and high-bandwidth NVLink and IB con-
nections. This setup enables us to evaluate GEAR’s scalabil-
ity for distributed training and its effectiveness as a seamless
substitute for the existing RL codebase without impacting
model convergence.

Baseline. We choose Reverb, a widely adopted distributed
experience replay system, as our comparison baseline. We
conduct extended benchmarks to measure the average sam-
pling throughput and compare GEAR’s performance against
Reverb. It’s worth noting that Reverb relies heavily on
TensorFlow, complicating its direct integration with our
PyTorch-based benchmark kits. To tackle this, we develop
mock clients for both GEAR and Reverb that merely collect

1 2 3
#Servers

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

B/
s)

GEAR
Reverb

Figure 5. End-to-end throughput comparison with Reverb

and instantly discard data, bypassing the conversion proce-
dure and neutralizing potential benchmarking biases due to
different data interfaces.

4.1. Trajectory throughput

In our study, we compare the trajectory selection throughput
between GEAR and Reverb. This involves the implementa-
tion of clients that concurrently generate selection requests
and gather data from a central server process—a common
practice in Single-Program-Multiple-Data (SPMD) parallel
programs.

In the Reverb setup, the server process is hosted on server
0. In contrast, for GEAR, global aggregations and selection
are managed by GPU 0 on server 0. Additionally, each GPU
within GEAR is allocated to a unique client process. All
these processes then form a data parallel group, enabling
synchronized data retrieval and consumption. The purpose
of this experimental setup is to push both GEAR and Re-
verb to their maximum potential throughput. This offers a
rigorous assessment of their performance when tasked with
handling heavy workloads.

The results depicted in Figure 5 illustrate that, under single-
node settings, Reverb reaches its peak single-node through-
put at 6.73 GB/s with 64 parallel clients. Conversely, GEAR
achieves a maximum throughput of 17.1 GB/s with only 8
clients involved in globally synchronized sampling loops.

In multi-server experiments, GEAR attains a total through-
put of 29.1 GB/s with 16 clients spread across two nodes,
and a total throughput of 33.0 GB/s with 24 clients span-
ning three nodes. This demonstrates that GEAR exceeds
Reverb’s performance by a factor of five.

We observed that GEAR’s total throughput increases more

7

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

32 64 128 256 512 1024
Batch Sizes

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

B/
s)

GEAR

Figure 6. Trajectory collection throughput with varied batch sizes

slowly than the scale, particularly when expanding from two
nodes. This is primarily due to the strict global synchroniza-
tion policy that was adopted to align with Reverb’s behavior.
This effect could be mitigated by implementing parallel
sampling techniques such as reservoir sampling and divide-
and-conquer sampling. These methods can be executed prior
to global synchronization, reducing communication over-
head. However, it’s important to note that these techniques
could have side effects in distributed scenarios. For instance,
they might provide less strict theoretical guarantees or might
adversely affect the reproducibility performance of down-
stream algorithms. Therefore, we leave the decision to the
user as to whether or not to implement these techniques.

4.2. Batch size

In our experiment, we investigate the impact of varying
batch size (Mai et al., 2019) on both the computation cost
and the communication cost of trajectory selection and col-
lection in GEAR. We carried out a set of tests with GEAR
using a range of batch sizes: 32, 64, 128, 256, 512, and
1024. The results of this experiment are presented in Fig-
ure 6. As observed from the figure, GEAR can achieve a
linear scalability in trajectory collection performance with
increasing batch sizes: its throughput starts at 8 GB/s using
a small batch size 32 and the throughput jumps to 36 GB/s
when a large batch size of 1024 is employed. This show-
cases GEAR’s ability to effectively scale its performance
with larger batch sizes.

4.3. Model convergence

We evaluate the correctness of trajectory selection of GEAR
by showing the convergence results of using GEAR for
training two popular large RL models: Gato (Reed et al.,

2022) and MAT (Wen et al., 2022a). The former covers the
scenarios where trajectories are produced offline and the
latter covers the cases where trajectories are produced by
environment simulators online.

Gato. We implement the GATO model using PyTorch and
reproduce similar loss performance consistent with what
they reported in their paper. The GATO model has 1 billion
parameters and it is trained with a dataset that has 100 TBs
trajectories. We report a minimal GATO experiment and
convergence performance with GEAR in the D4RL mujuco
hopper task pretrained with the D4RL expert dataset. As
we can see from Figure 5, the episode length convergence
to 1k and episode return converged to 3000 These results
show that GEAR has been correctly integrated with exist-
ing pipeline parallelism libraries and it can correctly select
trajectories that make SOTA RL models to converge.

MAT. We also implement the MAT model, the state-of-the-
art online multi-agent model that uses transformers as the
backbone. The muli-agent RL model actually has a more
challenging requirement for trajectory selection. Through
this experiment, we show that GEAR enables many multi-
agent researchers to work on large RL models. The MAT
model can be scalable to larger sizes flexibly. In this case,
to illustrate GEAR does not affect model convergence, we
use a MAT model of 1 block of hidden size 64, which is
aligned We report the MAT performance with GEAR in the
StartCraftII tasks, namely 2c vs 64zg, 3s5z, 27m vs 30m,
which are correspondingly the ”easy”, ”hard” and ”super
hard” tasks in SC2 environments. As we can see from
Figure 6, GEAR integrates MAT converged to 20 in terms
of environment returns, which is the desired convergence
result of SC2.

4.4. Performance Breakdown

To provide a holistic understanding of GEAR’s performance,
we carry out evaluations to analyze the individual contribu-
tions of each component and to quantify the enhancements
they offer:

Computation. We contrast GPU trajectory sampling with
its CPU equivalents used in Reverb. Our results indicate
that distributed GPU sampling is typically 100-1000 times
quicker than the CPU versions.

Memory access. We assess the GPU kernel that enables
direct access to trajectories in host memory. This exhibits
an impressive throughput of 17 GB/s, significantly outper-
forming the 2 GB/s achieved when a CPU thread is used
to orchestrate data movement, as is the current practice in
PyTorch and TensorFlow. This amounts to a performance
increase by a factor of 8.5.

8

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

0 20 40 60 80 100 120
#Iterations (K)

200

400

600

800

1000
E

N
V

 R
et

ur
n

(a) Episode length

0 20 40 60 80 100 120
#Iterations (K)

500
1000
1500
2000
2500
3000
3500

E
N

V
 R

et
ur

n

(b) Episode return

Figure 7. Convergence experiment of GATO with GEAR. The x-axis is the number of iterations and the y-axis is the environment return.

0 1 2 3 4 5
Environment steps 1e6

10

12

14

16

18

20

re
wa

rd

2c_vs_64zg

MAT

(a) 2cvs64zg

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment steps 1e6

4

6

8

10

12

14

16

18

20

re
wa

rd

3s5z

MAT

(b) 3s5z

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e7

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

re
wa

rd

27m_vs_30m

MAT

(c) 27mvs30m

Figure 8. Convergence experiment of MAT with GEAR. The x-axis is the environment steps and the y-axis is the reward.

Communication. With respect to InfiniBand-based dis-
tributed trajectory collection, we juxtapose GEAR and Re-
verb, which employs gRPC for trajectory communication.
The evaluation reveals that GEAR exhibits superior scala-
bility when compared to Reverb. When utilizing four ma-
chines, GEAR reaches a communication throughput of 35
GB/s, outpacing Reverb, which caps at 5 GB/s.

5. Conclusion
This paper presents GEAR, a distributed GPU-centric ex-
perience replay system designed to enhance the efficiency
of large RL model training. GEAR explores a novel design
approach, employing a GPU-centric architecture for expe-
rience replay systems. It stores trajectories on distributed
training servers, utilizes distributed GPUs to expedite trajec-
tory selection, and enables GPUs to efficiently gather trajec-
tories through directed memory access technologies. Our
experimental evaluations demonstrate that GEAR signifi-
cantly enhances experience replay performance compared
to leading systems: Reverb. We anticipate GEAR playing a
pivotal role in facilitating the training of large and complex
RL models and await future advancements in this field.

Limitations. However, it’s important to acknowledge sev-
eral existing constraints in our proposed system. Firstly,
while GEAR is specifically designed for large RL models,
further research is needed to examine its scalability with in-
creasingly large models and datasets. Secondly, our current
focus is on the experience replay segment of the RL pipeline.

Consequently, additional investigations are required to un-
derstand how our system could be seamlessly integrated
with other pipeline segments such as model training and
evaluation.

Acknowledgements
The authors from Shanghai Jiao Tong University are sup-
ported by the National Key R&D Program of China
(2022ZD0114804), Shanghai Municipal Science and Tech-
nology Major Project (2021SHZDZX0102), Shanghai Sail-
ing Program (21YF1421900), and National Natural Science
Foundation of China (No. 62106141 & 62076161).

References
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

9

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

Advances in neural information processing systems, 33:
1877–1901, 2020.

Cassirer, A., Barth-Maron, G., Brevdo, E., Ramos, S., Boyd,
T., Sottiaux, T., and Kroiss, M. Reverb: a framework
for experience replay. arXiv preprint arXiv:2102.04736,
2021.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Ding, Z., Yu, T., Zhang, H., Huang, Y., Li, G., Guo, Q.,
Mai, L., and Dong, H. Efficient reinforcement learning
development with rlzoo. In Proceedings of the 29th ACM
International Conference on Multimedia, pp. 3759–3762,
2021.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y.,
Zhu, H., Tang, A., Huang, D.-A., Zhu, Y., and Anand-
kumar, A. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. arXiv preprint
arXiv:2206.08853, 2022.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Geng, S., Liu, S., Fu, Z., Ge, Y., and Zhang, Y. Recommen-
dation as language processing (rlp): A unified pretrain,
personalized prompt & predict paradigm (p5). In Pro-
ceedings of the 16th ACM Conference on Recommender
Systems, pp. 299–315, 2022.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A.,
Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol,
A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,
and Wu, Y. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Hoffman, M., Shahriari, B., Aslanides, J., Barth-Maron, G.,
Behbahani, F., Norman, T., Abdolmaleki, A., Cassirer, A.,
Yang, F., Baumli, K., et al. Acme: A research framework
for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F.,
Lynch, C., Levine, S., and Finn, C. Bc-z: Zero-shot
task generalization with robotic imitation learning. In
Conference on Robot Learning, pp. 991–1002. PMLR,
2022.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in neural information processing systems, 34:
1273–1286, 2021.

Koliousis, A., Watcharapichat, P., Weidlich, M., Mai, L.,
Costa, P., and Pietzuch, P. Crossbow: Scaling deep learn-
ing with small batch sizes on multi-gpu servers. Proceed-
ings of the VLDB Endowment, 12(11), 2019.

Kurach, K., Raichuk, A., Stańczyk, P., Zajac, M., Bachem,
O., Espeholt, L., Riquelme, C., Vincent, D., Michalski,
M., Bousquet, O., et al. Google research football: A
novel reinforcement learning environment. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 4501–4510, 2020.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gold-
berg, K., Gonzalez, J., Jordan, M., and Stoica, I. Rllib:
Abstractions for distributed reinforcement learning. In
International Conference on Machine Learning, pp. 3053–
3062. PMLR, 2018.

Liu, B., Feng, X., Ren, J., Mai, L., Zhu, R., Zhang, H., Wang,
J., and Yang, Y. A theoretical understanding of gradient
bias in meta-reinforcement learning. Advances in Neural
Information Processing Systems, 35:31059–31072, 2022.

Mai, L., Hong, C., and Costa, P. Optimizing network perfor-
mance in distributed machine learning. In 7th USENIX
Workshop on Hot Topics in Cloud Computing. USENIX
Association, 2015.

Mai, L., Koliousis, A., Li, G., Brabete, A.-O., and Pietzuch,
P. Taming hyper-parameters in deep learning systems.
ACM SIGOPS Operating Systems Review, 53(1):52–58,
2019.

Mai, L., Li, G., Wagenländer, M., Fertakis, K., Brabete,
A.-O., and Pietzuch, P. Kungfu: Making training in
distributed machine learning adaptive. In Proceedings
of the 14th USENIX Conference on Operating Systems
Design and Implementation, pp. 937–954, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nair, S., Mitchell, E., Chen, K., Savarese, S., Finn, C.,
et al. Learning language-conditioned robot behavior from
offline data and crowd-sourced annotation. In Conference
on Robot Learning, pp. 1303–1315. PMLR, 2022.

OpenAI. Gpt-4 technical report, 2023.

Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., and
Koltun, V. Sample factory: Egocentric 3d control from

10

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models

pixels at 100000 fps with asynchronous reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 7652–7662. PMLR, 2020.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 3505–3506,
2020.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Ren, J., Feng, X., Liu, B., Pan, X., Fu, Y., Mai, L., and Yang,
Y. Torchopt: An efficient library for differentiable opti-
mization. In OPT: Optimization for Machine Learning
(NeurIPS 2022 Workshop), 2022.

Shen, S., Hou, L., Zhou, Y., Du, N., Longpre, S., Wei, J.,
Chung, H. W., Zoph, B., Fedus, W., Chen, X., Vu, T.,
Wu, Y., Chen, W., Webson, A., Li, Y., Zhao, V., Yu, H.,
Keutzer, K., Darrell, T., and Zhou, D. Flan-moe: Scal-
ing instruction-finetuned language models with sparse
mixture of experts, 2023.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sima, C., Fu, Y., Sit, M.-K., Guo, L., Gong, X., Lin, F., Wu,
J., Li, Y., Rong, H., Aublin, P.-L., et al. Ekko: A {Large-
Scale} deep learning recommender system with {Low-
Latency} model update. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pp. 821–839, 2022.

Stooke, A. and Abbeel, P. rlpyt: A research code base for
deep reinforcement learning in pytorch. arXiv preprint
arXiv:1909.01500, 2019.

Tan, Z., Yuan, X., He, C., Sit, M.-K., Li, G., Liu, X., Ai, B.,
Zeng, K., Pietzuch, P., and Mai, L. Quiver: Supporting
gpus for low-latency, high-throughput gnn serving with
workload awareness. arXiv preprint arXiv:2305.10863,
2023.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Wen, M., Kuba, J. G., Lin, R., Zhang, W., Wen, Y.,
Wang, J., and Yang, Y. Multi-agent reinforcement learn-
ing is a sequence modeling problem. arXiv preprint
arXiv:2205.14953, 2022a.

Wen, Y., Wan, Z., Zhou, M., Hou, S., Cao, Z., Le, C.,
Chen, J., Tian, Z., Zhang, W., and Wang, J. On realiza-
tion of intelligent decision-making in the real world: A
foundation decision model perspective. arXiv preprint
arXiv:2212.12669, 2022b.

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A.,
Zhang, M., Su, Y., Su, H., and Zhu, J. Tianshou: A
highly modularized deep reinforcement learning library.
Journal of Machine Learning Research, 23(267):1–6,
2022a. URL http://jmlr.org/papers/v23/21-
1127.html.

Weng, J., Lin, M., Huang, S., Liu, B., Makoviichuk, D.,
Makoviychuk, V., Liu, Z., Song, Y., Luo, T., Jiang,
Y., et al. Envpool: A highly parallel reinforcement
learning environment execution engine. arXiv preprint
arXiv:2206.10558, 2022b.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., et al. Alpa:
Automating inter-and {Intra-Operator} parallelism for
distributed deep learning. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 559–578, 2022.

11

http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

