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ABSTRACT

Inspired by human conscious planning, we propose SKipper, a model-based rein-
forcement learning framework utilizing spatio-temporal abstractions to generalize
better in novel situations. It automatically decomposes the given task into smaller,
more manageable subtasks, and thus enables sparse decision-making and focused
computation on the relevant parts of the environment. The decomposition relies
on the extraction of an abstracted proxy problem represented as a directed graph,
in which vertices and edges are learned end-to-end from hindsight. Our theoret-
ical analyses provide performance guarantees under appropriate assumptions and
establish where our approach is expected to be helpful. Generalization-focused
experiments validate Skipper’s significant advantage in zero-shot generalization,
compared to some existing state-of-the-art hierarchical planning methods.

1 INTRODUCTION

Attending to relevant aspects in both time and space, human conscious planning breaks down long-
horizon tasks into more manageable steps, each of which can be narrowed down further. Stemming
from consciousness in the first sense (C1) (Dehaene et al.| [2020), this type of planning focuses
attention on mostly the important decision points (Sutton et al., [1999) and relevant environmental
factors linking the decision points (Tang et al.l 2020), thus operating abstractly both in time and
in space. In contrast, existing Reinforcement Learning (RL) agents either operate solely based
on intuition (model-free methods) or are limited to reasoning over mostly relatively shortsighted
plans (model-based methods) Kahneman| (2017). The intrinsic limitations constrain the real-world
application of RL under a glass ceiling formed by challenges of generalization.

Building on our previous work on conscious planning (Zhao et al., [2021), we take inspirations
to develop a planning agent that automatically decomposes the complex task at hand into smaller
subtasks, by constructing abstract “proxy” problems. A proxy problem is represented as a graph
where 1) the vertices consist of states imagined by a generative model, corresponding to sparse
decision points; and 2) the edges, which define temporally-extended transitions, are constructed by
focusing on a small amount of relevant information from the states, using an attention mechanism.
Once a proxy problem is constructed and the agent solves it to form a plan, each of the edges defines
a new sub-problem, on which the agent will focus next. This divide-and-conquer strategy allows
constructing partial solutions that generalize better to new situations, while also giving the agent
flexibility to construct abstractions necessary for the problem at hand. Our theoretical analyses
establish guarantees on the quality of the solution to the overall problem.

We also examine empirically advantages of out-of-training-distribution generalization of our method
after using only a few training tasks. We show through detailed controlled experiments that the
proposed framework, named Skipper, in most cases performs significantly better in terms of zero-
shot generalization, compared to the baselines and to some state-of-the-art Hierarchical Planning
(HP) methods (Nasiriany et al.,2019; Hafner et al., [2022)).

*Work largely done during Mingde, Harm and Romain’s time at Microsoft Research Montreal. Source code
of experiments available athttps://github.com/mila-igia/Skipper
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2 PRELIMINARIES

Reinforcement Learning & Problem Setting. An RL agent interacts with an environment via a
sequence of actions to maximize its cumulative reward. The interaction is usually modeled as a
Markov Decision Process (MDP) M = (S, A, P, R,d, ), where S and A are the set of states and
actions, P : § x A — Dist(S) is the state transition function, R : & x A x S — R is the reward
function, d : & — Dist(S) is the initial state distribution, and v € [0, 1] is the discount factor.
The agent needs to learn a policy 7 : S — Dist(.A) that maximizes the value of the states, i.e. the

expected discounted cumulative reward E p[ZtTio Y R(St, Aty St+1)|So ~ d], where T denotes
the time step at which the episode terminates. A value estimator @ : S X A — R can be used to
guide the search for a good policy. However, real-world problems are typically partially observable,
meaning that at each time step ¢, instead of states, the agent receives an observation z;4; € &,
where X is the observation space. The agent then needs to infer the state from the sequence of
observations, usually with a state encoder.

One important goal of RL is to achieve high (generalization) performance on evaluation tasks after
learning from a limited number of training tasks, where the evaluation and training distributions may
differ; for instance, a policy for a robot may need to be trained in a simulated environment for safety
reasons, but would need to be deployed on a physical device, a setting called sim2real. Discrepancy
between task distributions is often recognized as a major reason why RL agents are yet to be applied
pervasively in the real world (Igl et al.,[2019). To address this issue, in this paper, agents are trained
on a small set of fixed training tasks, then evaluated in unseen tasks, where there are environmental
variations, but the core strategies needed to finish the task remain consistent. To generalize well, the
agents need to build learned skills which capture the consistent knowledge across tasks.

Deep Model-based RL. Deep model-based RL uses predictive or generative models to guide the
search for policies (Silver et al.| 2017). In terms of generalization, rich models, expressed by Neural
Networks (NNs), may capture generalizable information and infer latent causal structure. Back-
ground planning agents e.g., Dreamer (Hafner et al., 2023)) use a model as a data generator to im-
prove the value estimators and policies, which executes in background without directly engaging
in the environment (Sutton, (1991). These agents do not improve on the trained policy at decision
time. In contrast, decision-time planning agents e.g., MuZero (Schrittwieser et al.,[2020)) and PlaNet
(Hafner et al., 2019) actively use models at decision time to make better decisions. Recently, |Alver
& Precup| (2022)) suggests that the latter approach provides better generalization, aligning with ob-
servations from cognitive behaviors (Momennejad et al.,|[2017).

Options & Goal-Conditioned RL. Temporal abstraction allows agents to use sub-policies, and
to model the environment over extended time scales, to achieve both better generalization and the
divide and conquer of larger problems. Options and their models provide a formalism for temporal
abstraction in RL (Sutton et al., [1999). Each option consists of an initiation condition, a policy,
and a termination condition. For any set of options defined on an MDP, the decision process that
selects only among those options, executing each to termination, is a Semi-MDP (SMDP) (Sutton
et all [1999] [Putermanl, [2014), consisting of the set of states S, the set of options O, and for each
state-option pair, an expected return, and a joint distribution of the next state and transit time. In this
paper, we focus on goal-conditioned options, where the initiation set covers the whole state space
S. Each such option is a tuple o = (m, §), where 7 : S — Dist(A) is the (intra-)option policy
and 5 : S — {0, 1} indicates when a goal state is reached. Hindsight Experience Replay (HER)
(Andrychowicz et al.,2017) is often used to train goal-conditioned options by sampling a transition
(x4, as,Te41, Te1) together with an additional observation x® from the same trajectory, which is
re-labelled as a “goal”.

3 Skipper: SPATIALLY & TEMPORALLY ABSTRACT PLANNING

In this section, we describe the main ingredients of Skipper - a framework that formulates a proxy
problem for a given task, solves this problem, and then proceeds to “fill in” the details of the plan.

3.1 PROXY PROBLEMS

Proxy problems are finite graphs constructed at decision-time, whose vertices are states and whose
directed edges estimate transitions between the vertices, as shown in Fig. We call the states
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selected to be vertices of the proxy problems checkpoints, to differentiate from other uninvolved
states. The current state is always included as one of the vertices. The checkpoints are proposed by
a generative model and represent some states that the agent might experience in the current episode,
often denoted as S© in this paper. Each edge is annotated with estimates of the cumulative discount
and reward associated with the transition between the connected checkpoints; these estimates are
learned over the relevant aspects of the environment and depend on the agent’s capability. As the
low-level policy implementing checkpoint transitions improves, the edges strengthen. Planning in a
proxy problem is temporally abstract, since the checkpoints act as sparse decision points. Estimating
each checkpoint transition is spatially abstract, as an option corresponding to such a task would base
its decisions only on some aspects of the environment state (Bengiol 2017} [Konidaris & Barto,|2009),
to improve generalization as well as computational efficiency (Zhao et al.| [2021).

A proxy problem can be viewed as a deterministic SMDP, where

each directed edge is implemented as a checkpoint-conditioned op- ? /
tion. It can be fully described by the discount and reward matrices,

I'" and V™, where yf] and UZT) are defined as:
T o T
v =Ex LSy = s;, 57, =8, (D) s
J [7 T| 0 i J] \Z\ ‘\.
o 2 Ee [T RISy = su5m =] @ OO O

A
By planning with I'" and V'™, e.g. using SMDP value iteration (Sut-

ton et al.,[1999), we can solve the proxy problem, and form a jumpy

plan to travel between states in the original problem. If the proxy Figure 1: A

problems can be estimated well, the obtained solution will be of on a Grid-World Navigation

good quality, as established in the following theorem: Task: the MDP of the origi-
nal problem is in gray and the

Theorem 1 Let p be the SMDP policy (high-level) and 7 be the terminal states are marked with

~ - squares. An agent needs to get
low-level policy. Let V™ and I'™ denote learned estimates of the fgom the (ﬁlledgred) position,gto

SMDP model. If the estimation accuracy satisfies: the goal (filled green). Distant
; - goals can be reached by lever-
b;; - L77TJ | < €Umar < (1 =) Vnar and ) aging a proxy problem with 12

‘%Wj — fym <e, < (1-— 7)? Vi, j. checkpoints (outlined ).

Then, the estimated value of the composite ¥,,0r () is accurate up to error terms linear in €, and €.,

0o k—1

. ) . . €4V €4V

Bpor(s) = va(s%sgﬂ) H Ar (87 18751) = Vuon (8) £ lv_m(,lyx + (17_’";;2 +olen +6)
k=0 £=0

where U (s;|s;) = o7 and Fr(sils;) = 47 and vpay denotes the maximum value.

The theorem indicates that once the agent achieves high accuracy estimation of the model for the
proxy problem and a near-optimal lower-level policy 7, it converges toward optimal performance
(proof in Appendix [D.2). The theorem also makes no assumption on 7, since it would likely be
difficult to learn a good 7 for far away targets. Despite the theorem’s generality, in the experiments,
we limit ourselves to navigation tasks with sparse rewards for reaching goals, where the goals are
included as permanent vertices in the proxy problems. This is a case where the accuracy assumption
can be met non-trivially, i.e., while avoiding degenerate proxy problems whose edges involve no
rewards. Following Thm. |1} we train estimators for v, and ~,. and refer to this as edge estimation.

3.2 DESIGN CHOICES

To implement planning over proxy problems, Skipper embraces the following design choices:
Decision-time planning is employed due to its ability to improve the policy in novel situations;

Spatio-temporal abstraction: temporal abstraction breaks down the given task into smaller ones,
while spatial abstractiorﬂ over the state features improves local learning and generalization;

"We use “spatial abstraction” to denote specifically the behavior of constraining decision-making to the
relevant environmental factors during an option. Please check SectionE-]for discussions and more details.
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Higher quality proxies: we introduce pruning techniques to improve the quality of proxy problems;

Learning end-to-end from hindsight, off-policy: to maximize sample efficiency and the ease of
training, we propose to use auxiliary (off-)policy methods for edge estimation, and learn a context-
conditioned checkpoint generation, both from hindsight experience replay;

Delusion suppression: we propose a delusion suppression technique to minimize the behavior of
chasing non-existent outcomes. This is done by exposing edge estimation to imagined targets that
would otherwise not exist in experience.

3.3 PROBLEM 1: EDGE ESTIMATION

First, we discuss how to estimate the edges of the proxy problem, given a set of already generated
checkpoints. Inspired by conscious information processing in brains (Dehaene et al.| 2020) and
existing approach in|Sylvain et al.|(2019), we introduce a local perceptive field selector, o, consisting
of an attention bottleneck that (soft-)selects the top-k local segments of the full state (e.g. a feature
map by a typical convolutional encoder); all segments of the state compete for the k attention slots,
i.e. irrelevant aspects of state are discouraged or discarded, to form a partial state representation
(Mott et al., [2019; [Tang et al, [2020; Zhao et all 2021} |Alver & Precupl [2023)). We provide an
example in Fig. [2] (see purple parts). Through o, the auxiliary estimators, to be discussed soon,
force the bottleneck mechanism to promote aspects relevant to the local estimation of connections
between the checkpoints. The rewards and discounts are then estimated from the partial state o(S),
conditioned on the agent’s policy.

3.3.1 BASIS FOR CONNECTIONS: CHECKPOINT-ACHIEVING POLICY

The low-level policy m maximizes an intrinsic reward, s.z. the target checkpoint S© can be reached.
The choice of intrinsic reward is flexible; for example, one could use a reward of +1 when Sy is
within a small radius of S® according to some distance metric, or use reward-respecting intrinsic
rewards that enable more sophisticated behaviors, as in (Sutton et al., 2022). In the following, for
simplicity, we will denote the checkpoint-achievement condition with equality: S; 1 = S©.

3.3.2 ESTIMATE CONNECTIONS

We learn the connection estimates with auxiliary reward signals that are designed to be not task-
specific (Zhao et al.| [2019). These estimates are learned using C51-style distributional RL, where
the output of each estimator takes the form of a histogram over scalar support (Dabney et al.|[2018).

Cumulative Reward. The cumulative discounted task reward v} is learned by policy evaluation on
an auxiliary reward that is the same as the original task reward everywhere except when reaching
the target. Given a hindsight sample (x, a;, 7411, Z¢11, 2®) and the corresponding encoded sample
(St, a1, T41, St1, s@>, we train V,; with KL-divergence as follows:

R R(st,ap, Se41) +70r(0(5041), ar1]0(s9)) i sp41 # 8¢

Ox(0(se), as|lo(s9)) < ' - 4

n(0(51), arlo(s)) {R(St,at, St+1) if 5441 = s© @
where o(s) is the spatially-abstracted from the full state s and ay 1 ~ (|0 (s141),0(5%)).

Cumulative Distances / Discounts. With C51 and uniform supports, the cumulative discount lead-
ing to s under 7 is unfortunately more difficult to learn than V., since the prediction would be
heavily skewed towards 1 if v ~ 1. Yet, we can instead effectively estimate cumulative (truncated)
distances (or trajectory length) under 7. Such distances can be learned with policy evaluation, where
the auxiliary reward is +1 on every transition, except at the targets:

1+ Dr(0(s41), ar|o(s9)) - if sp1 # 8¢
Dﬂ(0(8t>7at|0(8®)) — 1 if5t+1 = 5®
00 if 5,1 is terminal and sy 1 # s©
where a;y1 ~ 7(-|o(s¢11),0(s?)). The cumulative discount is then recovered by replacing the
support of the output distance histogram with the corresponding discounts. Additionally, the learned

distance is used to prune unwanted checkpoints to simplify the proxy problem, as well as prune far-
fetched edges. The details of pruning will be presented shortly.

Please refer to the Appendix [D.T]for the properties of the learning rules for 0. and 4.
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Figure 2: Skipper Framework: 1) Partial states consist of a few local fields, soft-selected via top-k attention
(Gupta et al., 2021). Skipper’s edge estimations and low-level behaviors 7 are based on the partial states. 2)
The checkpoint generator learns by splitting the full state into context and partial descriptions, and fusing them
to reconstruct the input. It imagines checkpoints by sampling partial descriptions and combining them with the
episodic contexts; 3) We prune the vertices and edges of the denser graphs to extract sparser proxy problems.
Once a plan is formed, the immediate checkpoint target is used to condition the policy. In the proxy problem
example, blue edges are estimated to be bidirectional and red edges have the other direction pruned.

3.4 PROBLEM 2: VERTEX GENERATION

The checkpoint generator aims to directly imagine the possible future states without needing to know
how exactly the agent might reach them nor worrying about if they are reachable. The feasibility of
checkpoint transitions will be abstracted by the connection estimates instead.

To make the checkpoint generator generalize well across diverse tasks, while still being able to
capture the underlying causal mechanisms in the environment (a challenge for existing model-based
methods) (Zhang et al., |2020), we propose that the checkpoint generator learns to split the state
representation into two parts: an episodic context and a partial description. In a navigation problem,
for example, as in Fig. 2] a context could be a representation of the map of a gridworld, and the
partial description be the 2D-coordinates of the agent’s location. In different contexts, the same
partial description could correspond to very different states. Yet, within the same context, we should
be able to recover the same state given the same partial description.

As shown in Fig. [2] this information split is achieved using two functions: the splitter £c 5, which
maps the input state .S into a representation of a context ¢(S) and a partial description z(.5), as well
as the fuser @ which, when applied to the input (c, z), recovers S. In order to achieve consistent
context extraction across states in the same episode, at training time, we force the context to be
extracted from other states in the same episode, instead of the input.

We sample in hindsight a diverse distribution of target encoded (full) states S©, given any current
S;. Hence, we make the generator a conditional Variational AutoEncoder (VAE) (Sohn et al., 2015)
which learns a distribution p(S®|C(S;)) = >, p(S®|C(S:), z)p(z|C(St)), where C(S;) is the
extracted context from S; and zs are the partial descriptions. We train the generator by minimizing
the evidence lower bound on (S;, S®) pairs chosen with HER.

Similarly toHafner et al.[|(2023)), we constrain the partial description as a bundle of binary variables
and train them with the straight-through gradients (Bengio et al.l 2013)). These binary latents can be
easily sampled or composed for generation. Compared to models such as that in Director (Hafner,
et al.,|2022), which generates intermediate goals given the on-policy trajectory, ours can generate
and handle a more diverse distribution of states, beneficial for planning in novel scenarios.

3.4.1 PRUNING

In this paper,we limit ourselves only to checkpoints from a return-unaware conditional generation
model, leaving the question of how to improve the quality of the generated checkpoints for future
work. Without learning, the proxy problem can be improved by making it more sparse, and making
the proxy problem vertices more evenly spread in state space. To achieve this, we propose a prun-
ing algorithm based on k-medoids clustering (Kaufman & Rousseeuw, |1990), which only requires
pairwise distance estimates between states. During proxy problem construction, we first sample a
larger number of checkpoints, and then cluster them and select the centers (which are always real
states instead of imaginary weighted sums of state representations).
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Notably, for sparse reward tasks, the generator cannot guarantee the presence of the rewarding
checkpoints in the proposed proxy problem. We could remedy this by explicitly learning the gener-
ation of the rewarding states with another conditional generator. These rewarding states should be
kept as vertices (immune from pruning).

In addition to pruning the vertices, we also prune the edges according to a distance threshold, i.e., all
edges with estimated distance over the threshold are deleted from the complete graph of the pruned
vertices. This biases potential plans towards shorter-length, smaller-scale sub-problems, as far-away
checkpoints are difficult for 7 to achieve, trading optimality for robustness.

3.4.2 SAFETY & DELUSION CONTROL

Model-based HRL agents can be prone to blindly optimizing for objectives without understanding
the consequences (Langosco et al.| [2022; |Paolo et al., 2022)). We propose a technique to suppress
delusions by exposing edge estimation to potentially delusional targets that do not exist in the expe-
rience replay buffer. Details and examples are provided in the Appendix.

4 RELATED WORKS & DISCUSSIONS

Temporal Abstraction. Resembling attention in human consciousness, choosing a checkpoint tar-
get is a selection towards certain decision points in the dimension of time, i.e. a form of temporal
abstraction. Constraining options, Skipper learns the options targeting certain “outcomes”, which
dodges the difficulties of option collapse (Bacon et al.,2017) and option outcome modelling by de-
sign. The constraints indeed shift the difficulties to generator learning (Silver & Ciosekl [2012; Tang
& Salakhutdinov, 2019). We expect this to entail benefits where states are easy to learn and gener-
ate, and / or in stochastic environments where the outcomes of unconstrained options are difficult to
learn. Constraining options was also investigated in|[Sharma et al.|(2019) in an unsupervised setting.

Spatial Abstraction is different from “state abstraction” (Sacerdoti, [1974; | Knoblockl, [1994), which
evolved to be a more general concept that embraces mainly the aspect of state aggregation, i.e. state
space partitioning (Li et al.| 2006)). Spatial abstraction, defined to capture the behavior of attention
in conscious planning in the spatial dimensions, focuses on the within-state partial selection of the
environmental state for decision-making. It corresponds naturally to the intuition that state represen-
tations should contain useful aspects of the environment, while not all aspects are useful for a par-
ticular intent. Efforts toward spatial abstraction are traceable to early hand-coded proof-of-concepts
proposed in e.g. |Dietterich| (2000). Until only recently, attention mechanisms had primarily been
used to construct state representations in model-free agents for sample efficiency purposes, with-
out the focus on generalization (Mott et al., 2019; [Manchin et al., [2019; Tang et al., 2020). In |Fu
et al.| (2021)); Zadaianchuk et al.| (2020); Shah et al.[|(2021)), 3 more recent model-based approaches,
spatial abstractions are attempted to remove visual distractors. Concurrently, emphasizing on gener-
alization, our previous work (Zhao et al.|[2021]) used spatially-abstract partial states in decision-time
planning. We proposed an attention bottleneck to dynamically select a subset of environmental en-
tities during the atomic-step forward simulation, without explicit goals provided as in [Zadaianchuk
et al.| (2020). Skipper’s checkpoint transition is a step-up from our old approach, where we now
show that spatial abstraction, an overlooked missing flavor, is as crucial for longer-term planning as
temporal abstraction (Konidaris & Bartol 2009).

Task Abstraction via Goal Composition The early work [ McGovern & Barto| (2001) suggested to
use bottleneck states as subgoals to abstract given tasks into manageable steps. [Nair et al.[(2018));
Florensa et al.|(2018)) use generative model to imagine subgoals while Eysenbach et al.|(2019) search
directly on the experience replay. In|Kim et al. (2021}, promising states to explore are generated and
selected with shortest-path algorithms. Similar ideas have been attempted for guided exploration
(Erragabi et al.} 2021} [Kulkarni et al., 2016). Similar to [Hafner et al.| (2022), |Czechowski et al.
(2021)) generate fixed-steps ahead subgoals for reasoning tasks, whileBagaria et al.[(202 1)) augments
the search graph by states reached fixed-steps ahead. Nasiriany et al.| (2019); Xie et al.| (2020); |Shi
et al.| (2022) employ CEM to plan a chain of subgoals towards the task goal (Rubinstein, [1997b).
Skipper utilizes proxy problems to abstract the given tasks via spatio-temporal abstractions (Bagaria
et al.l 2021). Checkpoints can be seen as sub-goals that generalize the notion of “landmarks” or
“waypoints” in|Sutton et al.|(1999); Dietterich|(2000); Savinov et al.|(2018)). |[Zhang et al.|(2021) used
latent landmark graphs as high-level guidance, where the landmarks are sparsified with weighted



Published as a conference paper at ICLR 2024

sums in the latent space to compose subgoals. In comparison, our checkpoint pruning selects a
subset of generated states, which is less prone to issues created by weighted sums.

Planning Estimates. [Zhang et al.| (2021) propose a distance estimate with an explicit regression.
With TDMs (Pong et al.| [2018), LEAP (Nasiriany et al [2019) embraces a sparse intrinsic reward
based on distances to the goal. Contrasting with our distance estimates, there is no empirical ev-
idence of TDMs’ compatibility with stochasticity and terminal states. Notably, [Eysenbach et al.
(2019) employs a similar distance learning scheme to learn the shortest path distance between states
found in the experience replay; while our estimators learn the distance conditioned on evolving
policies. Such aspect was also investigated in|Nachum et al.| (2018)).

Decision-Time HP Methods. Besides LEAP (Nasiriany et al.,[2019), decision-time planning with
evolutionary algorithms was investigated in [Nair & Finn| (2020); Hafner et al.|(2019).

5 EXPERIMENTS

As introduced in Sec. [2] our first goal is to test the zero-shot generalization ability of trained agents.
To fully understand the results, it is necessary to have precise control of the difficulty of the training
and evaluation tasks. Also, to validate if the empirical performance of our agents matches the formal
analyses (Thm. [T, we need to know how close to the (optimal) ground truth our edge estimations
and checkpoint policies are. These goals lead to the need for environments whose ground truth
information (optimal policies, true distances between checkpoints, etc) can be computed. Thus,
we base our experimental setting on the MiniGrid-BabyAl framework (Chevalier-Boisvert et al.,
2018bza; |Hui et al.l 2020). Specifically, we build on the experiments used in our previous works
(Zhao et al.,|2021};|Alver & Precup,2022): the agent needs to navigate to the goal from its initial state
in gridworlds filled with terminal lava traps generated randomly according to a difficulty parameter,
which controls their density. During evaluation, the agent is always spawned at the opposite side
from the goals. During training, the agent’s position is uniformly initialized to speed up training.
We provide results for non-uniform training initialization in the Appendix.

These fully observable tasks prioritize on the challenge of reasoning over causal mechanisms over
learning representations from complicated observations, which is not the focus of this work. Across
all experiments, we sample training tasks from an environment distribution of difficulty 0.4: each
cell in the field has probability 0.4 to be filled with lava while guaranteeing a path from the initial
position to the goal. The evaluation tasks are sampled from a gradient of OOD difficulties - 0.25,
0.35, 0.45 and 0.55, where the training difficulty acts as a median. To step up the long(er) term
generalization difficulty compared to existing work, we conduct experiments done on large, 12 x 12
maze sizes, (see the visualization in Fig . The agents are trained for 1.5 x 106 interactions.

We compare Skipper against two state-of-the-art Hierarchical Planning (HP) methods: LEAP
(Nasiriany et al.,[2019) and Director (Hafner et al.,|2022). The comparative results include:

Skipper-once: A Skipper agent that generates one proxy problem at the start of the episode, and
the replanning (choosing a checkpoint target based on the existing proxy problem) only triggers a
quick re-selection of the immediate checkpoint target;

Skipper-regen: A Skipper agent that re-generates a proxy problem when replanning is triggered;

modelfree: A model-free baseline agent sharing the same base architecture with the Skipper vari-
ants - a prioritized distributional Double DQN (Dabney et al., 2018 |Van Hasselt et al., 2016));

Director: A tuned Director agent (Hatner et al.l 2022) fed with simplified visual inputs. Since
Director discards trajectories that are not long enough for training purposes, we make sure that the
same amount of training data is gathered as for the other agents;

LEAP: A re-implemented LEAP for discrete action spaces. Due to low performance, we replaced
the VAE and the distance learning mechanisms with our counterparts. We waived the interaction
costs for its generator pretraining stage, only showing the second stage of RL pretraining.

Please refer to the Appendix for more details and insights on these agents.
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5.1 GENERALIZATION PERFORMANCE

Fig. [3] shows how the agents’ generalization performance evolves during training. These results
are obtained with 50 fixed sampled training tasks (different 50s for each seed), a representative
configuration of different numbers of training tasks including {1, 5, 25, 50, 100, oo}ﬂ whose results
are in the Appendix. In Fig. [3|a), we observe how well an agent performs on its training tasks. If an
agent performs well here but badly in b), ¢), d) and e), e.g. the modelfree baseline, then we suspect
that it overfitted on training tasks, likely indicating a reliance on memorization (Cobbe et al., [2020).

We observe a (statistically-)significant advantage in the generalization performance of the Skipper
agents throughout training. We have also included significance tests and power analyses (Colas et al.,
2018 |Patterson et al.|, [2023) in the Appendix, together with results for other training configurations.
The regen variant exhibits dominating performance over all others. This is likely due to the frequent
reconstruction of the graph makes the agent less prone to being trapped in a low-quality proxy prob-
lem and provides extra adaptability in novel scenarios (more discussions in the Appendix). During
training, Skippers behave less optimally than expected, despite the strong generalization on evalu-
ation tasks. As our ablation results and theoretical analyses consistently show, such a phenomenon
is a composite outcome of inaccuracies both in the proxy problem and the checkpoint policy. One
major symptom of an inaccurate proxy problem is that the agent would chase delusional targets. We
address this behavior with the delusion suppression technique, to be discussed in the Appendix.
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Figure 3: Generalization Performance of Agents During Training: the z-axes correspond to training
progress, while the aligned y-axes represent the success rate of episodes (optimal is 1.0). Each agent is trained
with 50 tasks. Each data point is the average success rate over 20 evaluation episodes, and each error bar (95%
confidence interval) is processed from 20 independent seed runs. Training tasks performance is shown in (a)
while OOD evaluation performance is shown in (b), (c), (d), (e).

Better than the modelfree baseline, LEAP obtains reasonable generalization performance, despite
the extra budget it needs for pretraining. In the Appendix, we show that LEAP benefits largely
from the delusion suppression technique. This indicates that optimizing for a path in the latent
space may be prone to errors caused by delusional subgoals. Lastly, we see that the Director agents
suffer in these experiments despite their good performance in the single environment experimental
settings reported by [Hafner et al.|(2022). We present additional experiments in the Appendix to
show that Director is ill-suited for generalization-focused settings: Director still performs well in
single environment configurations, but its performance deteriorates fast with more training tasks.
This indicates poor scalability in terms of generalization, a limitation to its application in real-world
scenarios.

5.2 SCALABILITY OF GENERALIZATION PERFORMANCE

Like (Cobbe et al.| (2020), we investigate the scalability of the agents’ generalization abilities across
different numbers of training tasks. To this end, in Fig. 4} we present the results of the agents’ final
evaluation performance after training over different numbers of training tasks.

With more training tasks, Skippers and the baseline show consistent improvements in generaliza-
tion performance. While both LEAP and Director behave similarly as in the previous subsection,
notably, the modelfree baseline can reach similar performance as Skipper, but only when trained
on a different task in each episode, which is generally infeasible in the real world beyond simulation.

200 training tasks mean that an agent is trained on a different task for each episode. In reality, this may lead
to prohibitive costs in creating the training environment.



Published as a conference paper at ICLR 2024

10
N Skipper-regen = LEAP = Director = modelfree

final success rate

S
[

e Skipper-once

=4
=3

1 5 25 50 100 inf 1 5 25 50 100 inf 1 5 25 50 100 inf 1 5 25 50 100 inf 1 5 25 50 100 inf
# train envs # train envs # train envs # train envs # train envs

(a) training, diff 0.4 (b) OOD, diff 0.25 (c) OOD, diff 0.35 (d) OOD, diff 0.45 (e) OOD, diff 0.55

Figure 4: Generalization Performance of Agents on Different Numbers of Training Tasks: each data point
and corresponding error bar (95% confidence interval) are based on the final performance from 20 independent
seed runs. Training task performance is shown in (a) while OOD performance is shown in (b), (c), (d), (e).
Notably, the Skipper agents as well as the adapted LEAP behave poorly during training when being trained
on only one task, as the split of context and partial information cannot be achieved. Training on one task
invalidates the purpose of the proposed generalization-focused checkpoint generator.

5.3 ABLATION & SENSITIVITY STUDIES

In the Appendix, we present ablation results confirming the effectiveness of delusion suppression,
k-medoids pruning and the effectiveness of spatial abstraction via the local perception field. We also
provide sensitivity study for the number of checkpoints in each proxy problem.

5.4 SUMMARY OF EXPERIMENTS

Within the scope of the experiments, we conclude that Skipper provides benefits for generalization;
And it achieves better generalization when exposed to more training tasks;

From the content presented in the Appendix, we deduce additionally that:

 Spatial abstraction based on the local perception field is crucial for the scalability of the agents;

* Skipper performs well by reliably decomposing the given tasks, and achieving the sub-tasks ro-
bustly. Its performance is bottlenecked by the accuracy of the estimated proxy problems as well as
the checkpoint policies, which correspond to goal generalization and capability generalization, re-
spectively, identified in|Langosco et al.[(2022)). This matches well with our theory. The proposed
delusion suppression technique (in Appendix) is effective in suppressing plans with non-existent
checkpoints as targets, thereby increasing the accuracy of the proxy problems;

* LEAP fails to generalize well within its original form and can generalize better when combined
with the ideas proposed in this paper; Director may generalize better only in domains where long
and informative trajectory collection is possible;

* We verified empirically that, as expected, Skipper is compatible with stochasticity.

6 CONCLUSION & FUTURE WORK

Building on previous work on spatial abstraction (Zhao et al., [2021), we proposed, analyzed and
validated Skipper, which generalizes its learned skills better than the compared methods, due to
its combinned spatio-temporal abstractions. A major unsatisfactory aspect of this work is that we
generated checkpoints at random by sampling the partial description space. Despite the pruning
mechanisms, the generated checkpoints, and thus temporal abstraction, do not prioritize the pre-
dictable, important states that matter to form a meaningful plan (Simsek & Barto, [2004). We would
like to continue investigating the possibilities along this line. Additionally, we would like to explore
other environments where the accuracy assumption (in Thm. [T) can meaningfully hold, i.e. beyond
sparse reward cases.
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7 REPRODUCIBILITY STATEMENT

The results presented in the experiments are fully-reproducible with the open-sourced repository
https://github.com/mila-igia/Skipper.
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A APPENDIX

Please use the following to quickly navigate to your points of interest.

* Weaknesses & Limitations (Sec.

* Skipper Algorithmic Details (Sec. [C): pseudocodes, k-medoids based pruning, delusion sup-
pression

* Theoretical Analyses (Sec. [D.I): detailed proofs, discussions
* Implementation Details (Sec. [E): for Skipper, LEAP and Director

* More Experiments (Sec. [F): experimental results that cannot be presented in the main paper due
to page limit

* Ablation Tests & Sensitivity Analyses (Sec.

B WEAKNESSES & LIMITATIONS

We would like to expand the discussions on the limitations to the current form of Skipper, as well
as the design choices that we seek to improve in the future:

* We generate future checkpoints at random by sampling the partial description space. Despite the
post-processing such as pruning, the generated checkpoints do not prioritize on the predictable,
important states that matter the most to form a meaningful long-term plan.

* The current implementation is intended for pixel input fully-observable tasks with discrete state
and action spaces. Such a minimalistic form is because we wish to isolate the unwanted challenges
from other factors that are not closely related to the idea of this work, as well as to make the agent
as generalist as possible. Skipper is naturally compatible with continuous actions spaces and the
only thing we will need to do is to replace the baseline agent with a compatible one such as TD3
(Fujimoto et al., |2018)); on the other hand, for continuous state spaces, the identification of the
achievement of a checkpoint becomes tricky. This is due to the fact that a strict identity between
the current state and the target checkpoint may be ever established, we either must adopt a distance
measure for approximate state equivalence, or rely on the equivalence of the partial descriptions
(which is adopted in the current implementation). We intentionally designed the partial descrip-
tions to be in the form of bundles of binary variables, so that this comparison could be done fast
and trivially for any forms of the state space; for partial observability, despite that no recurrent
mechanism has been incorporated in the current implementation, the framework is not incompat-
ible. To implement that, we will need to augment the state encoder with recurrent or memory
mechanisms and we need to make the checkpoint generator directly work over the learned state
representations. We acknowledge that future work is needed to verify Skipper’s performance on
the popular partially-observable benchmark suites, which requires the incorporation of compo-
nents to handle partial observability as well as scaling up the architectures for more expressive
power;

* We do not know the precise boundaries of the motivating theory on proxy problems, since it only
indicates performance guarantees on the condition of estimation accuracy, which in turn does not
correspond trivially to a set of well-defined problems. We are eager to explore, outside the scope
of sparse-reward navigation, how this approach can be used to facilitate better generalization, and
at the same time, try to find more powerful theories that guide us better;

C Skipper’s ALGORITHMIC DETAILS

C.1 OVERALL SKkipper FRAMEWORK (PSEUDO-CODE)

The pseudocode of Skipper is provided in Alg. |1} together with the hyperparameters used in our
implementation.
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Algorithm 1: Skipper with Random Checkpoints (implementation choice in purple)

for each episode do
/| — start of the subroutine to construct the proxy problem
generate more than necessary (32) checkpoints by sampling from the partial descriptions
given the extracted context from the initial state;
(k = 12)-medoid pruning upon estimated distances among all checkpoints; // prune vertices
use estimators to annotate the edges between the nodes (including a terminal state estimator
to correct the estimates);
prune edges that are too far-fetched according to distance estimations (threshold set to be 8,
same as replan interval); // prune edges
/I — end of the subroutine to construct the proxy problem
for each agent-environment interaction step until termination of episode do
if decided to explore (DQN-style annealing e-greedy) then
| take a random action;
else
if abstract problem just constructed or a checkpoint / timeout reached (> 8 steps
since last planned) then
[OPTIONAL RE-GENERATION] call the subroutine above for
Skipper-regen;
run value iteration (for 5 iterations) on the proxy problem, select the target
checkpoint;
| follow the action suggested by the checkpoint-achieving policy;

if time to train (every 4 actions) then

sample hindsight transitions and train checkpoint-achieving policy, estimators
(including a teriminal state estimator) and checkpoint generator;

[OPTIONAL DELUSION CONTROL]: train estimators using generated
checkpoints;

| save interaction into the trajectory experience replay;

convert trajectory into HER samples (relabel 4 random states as additional goals);

17



Published as a conference paper at ICLR 2024

C.2 k-MEDOIDS BASED PRUNING

We present the pseudocode of the modified k-medoids algorithm for pruning overcrowded check-
points in Alg. 2] Note that the presented pseudocode is optimized for readers’ understanding, while
the actual implementation is parallelized. The changes upon the original k-medoids algorithm is
marked in purple, which implement a forced preservation of data points: when k-medoids is called
after the unpruned graph is constructed, Sy, is set to be the set containing the goal state only. This is
intended to span more uniformly in the state space with checkpoints, while preserving the goal.

Let the estimated distance matrix be D, where each element d;j represents the estimated trajectory
length it takes for 7 to fulfill the transition from checkpoint ¢ to checkpoint j. Since k-medoids
cannot handle infinite distances (e.g. from a terminal state to another state), the distance matrix D is
truncated, and then we take the elementwise minimum between the truncated D and D7 to preserve
the one-way distances. The matrix containing the elementwise minimums would be the input of the
pruning algorithm.

Algorithm 2: Checkpoint Pruning with k-medoids

Data: X = {x1, 9, ...,2,} (state indices), D (estimated distance matrix), Sy (states that
must be kept), k& (#checkpoints to keep)
Result: Sg = { M1, Mo, ..., My} (checkpoints kept)

Initialize Sg, = {M1, M>, ..., M} randomly from X
make sure Sy C Sg
repeat
Assign each data point x; to the nearest medoid M, forming clusters C, Cs, ..., C;
foreach medoid M; do
Calculate the cost J; of M as the sum of distances between M; and the data points in
Cj;
Find the medoid M; with the lowest cost Jj;
if M; changes then
make sure Sy C Sg
Replace M with the data point in C; that minimizes the total cost;

until Convergence (no cost improvement),

C.3 DELUSION SUPPRESSION

RL agents are prone to blindly optimizing for an intrinsic objective without fully understanding the
consequences of its actions. Particularly in model-based RL or in Hierarchical RL (HRL), there is
a significant risk posed by the agents trying to achieve delusional future states that do not exist or
beyond the safety constraints. With a use of a learned generative model, as in Skipper and other HP
frameworks, such risk is almost inevitable, because of uncontrollable generalization effects.

Generalization abilities of the generative models are a double-edged sword. The agent would take
advantage of its potentials to propose novel checkpoints to improve its behavior, but is also at risk
of wanting to achieve non-existent unknown consequences. In Skipper, checkpoints imagined by
the generative model could correspond to non-existent “states” that would lead to delusional edge
estimates and therefore confuse planning. For instance, arbitrarily sampling partial descriptions may
result in a delusional state where the agent is in a cell that can never be reached from the initial states.
Since such states do not exist in the experience replay, the estimators will have not learned how to
handle them appropriately when encountered in the generated proxy problem during decision time.
We present a resulting failure mode in Fig. [5]

To address such concerns, we propose an optional auxiliary training procedure that makes the agent
stay further away from delusional checkpoints. Due to the favorable properties of the update rules
of D, (in fact, V. as well), all we have to do is to replace the hindsight-sampled target states
with generated checkpoints, which contain non-existent states. Then, the auxiliary rewards will all
converge to the minimum in terms of favorability on the non-existent states. This is implemented
trivially by adding a loss to the original training loss for the distance estimator, which we give a 0.25
scaling for stability.
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Figure 5: Example of Failure
Caused by Delusions: we illustrate
an instance of chasing delusional
checkpoint in one of our experimen-
tal runs by Skipper. The distance
(discount) estimator, probably due to
the ill-generalization, estimates that
the delusional checkpoint (yellow)
is very close to every other state. A
resulting plan was that the agent thought
it could reach any far-away checkpoints
by using the delusional state to form a
shortcut: the goal that was at least 17
steps away would be reached in 2.2.
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Figure 6: Performance of Skipper-once with the proposed Delusion Suppression Technique: each curve
and corresponding error bar (95% CI) are processed from 20 independent seed runs. a) the performance across
training tasks is shown. A more optimal performance can be achieved with Skipper-once in training tasks,
when delusions are suppressed; b) During training interactions, the error in estimated (truncated) distance from
and to delusional targets are significantly reduced with the technique; c) The frequency of selecting a delusional
target is reduced to almost negligible during the whole training process; d) The optimality of target checkpoint
during training can be improved by the suppression. Each agent is trained with 50 environments and each curve
is processed from 20 independent seed runs.

Algorithm 3: Delusion Suppression

/I This whole code block should be injected into the training loop if used

generate using the checkpoint generator, from the sampled batch of encoded states, the target
states (to overwrite those relabelled in the HER) i.e. replace (s, as, m41, S¢o1, 5°) with
(81,4, 11, St+1, 82), where s© are generated from the context of s;

train the distance estimator D as if these are sampled from the HER
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We provide analytic results and related discussion for Skipper-once agents trained with the pro-
posed delusion suppression technique on 50 training tasks in Fig. [6] The delusion suppression
technique is not enabled by default because it was not introduced in the main manuscript due to the
page limits.

The delusion suppression technique can also be used to help us understand the failure modes of
LEAP in Sec.

D THEORETICAL ANALYSES

D.1 UPDATE RULES FOR EDGE ESTIMATION

First, we want to show that the update rules proposed in the main paper indeed estimate the desired
cumulative discount and reward.

The low-level checkpoint-achieving policy 7 is trained with an intrinsic reward to reach target state
s©. The cumulative reward and cumulative discount are estimated by applying policy evaluation
given 7, on the two sets of auxiliary reward signals, respectively.

For the cumulative discounted reward random variable:

Vi(st,at|s®) = R(st, ap, Sev1) + YWV (Stt1, Arsa[s©) (5)
= Z’YT_tR(ST;ArasT-Q—l), (6)
T=t

where Sy 11 ~ p(-|se, at), Agr1 ~ 7(+|Sty1,8), and with Vi (Syi1, App1]s®) = 0if Sy = s©.
We overload the notation as follows: V,(s|s®) = V. (s, A|s®) with A ~ 7(|s, s©).

The cumulative discount random variable denotes the event that the trajectory did not terminate
before reaching the target s©:

Lr(Se, Ars®) = v - Tr(Seg1, Ara]s®), @)
=TSy, = 5%}, (8)

where T’ denotes the timestep when the trajectory terminates, and with ' (Siy1, Aip1]s®) = 1
if Sp11 = s@ and T (Ssy1, Agy1|s®) = 0if Sgy1 # s@ is terminal. We overload the notation as
follows: ' (s¢]|s®) = ' (sy, Ag|s®) with Ay g ~ 7(+|Spy1,8%).

Note that, for the sake of simplicity, we take here the view that the terminality of states is determin-
istic, but this is not reductive as any state with a stochastic terminality can be split into two identical
states: one that is deterministically non-terminal and the other that is deterministically terminal.
Note also that we could adopt the view that the discount factor is the constant probability of the
trajectory to not terminate.

D.2 PERFORMANCE BOUND

We are going to denote the expected cumulative discounted reward, a.k.a. the state-action value
with ¢, = E;[V], and let ¢, be our estimate for it. We are also going to consider the state value
vx(s]s®) = >, m(als, s9)gx(s,als®) and its estimate 9. Similarly, we denote the expected cu-
mulative discount with v, = E[I'] and its estimate with 4.

We are in the presence of a hierarchical policy. The high level policy i consists in (potentially)
stochastically picking a sequence of checkpoints. The low-level policy is implemented by 7 which
is assumed to be given and fixed for the moment. The composite policy p o 7 is non-Markovian:
it depends both on the current state and the current checkpoint goal. So there is no notion of state
value, except when we arrive at a checkpoint, i.e. when a high level action (checkpoint selection)
needs to be chosen.

Proceeding further, we adopt the view where the discounts are a way to represent the hazard of the
environment: 1 — «y is the probability of sudden trajectory termination. In this view, v, denotes
the (undiscounted: there is no more discounting) expected sum of reward before reaching the next
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checkpoint, and more interestingly v, denotes the binomial random variable of non-termination
during the transition to the selected checkpoint.

Making the following assumption that the trajectory terminates almost surely when reaching the
goal, i.e. v (s;, s4) = 0,Vs;, the gain V' can be written:

k—1
V(S$|SY) + T(S§|SP)V = ZV (SP1S0) TTT(S2185), )
1=0

where S11 ~ pu(-|Sk), where V(S7|Sy, ) is the gain obtained during the path between S} and

o
where Sy”, |,

Sl?—&-l' If we consider 1 as a deterministic planning routine over the checkpoints, then the action

and (S| S5 +1) is either O or 1 depending whether the trajectory terminated or reached

space of u boils down to a list of checkpoints {58D = 50,87, ,89 = S4}. Thanks to the Marko-
vian property in checkpoints, we have independence between V and I, therefore for the expected
value of p o 7, we have:

UMOTF(SO) = EMOTF[V‘SO - 50] = va<5g|sg+1) H ’yﬂ'(sz@|88~1) (10)

Having obtained the ground truth value, in the following, we are going to consider the estimates
which may have small error terms:

|U7T(S) - ﬁﬂ(3)| < €pUmax K (]- - P)/)'Umax and |77r(8) - ’3’77(8)| <ey K (1 - 7)2 Vs.
(11)

We are looking for a performance bound, and assume without loss of generality that the reward
function is non-negative, s.z. the values are guaranteed to be non-negative as well. We provide an
upper bound:

Bpuon(s) = Zf’ Sk |Sk+1 H Am(55]5551) (12)
k=0
oo k—1
Z Ur (s, |3k+1 + 6vvmaX) H (7#(51'@|5i®+1> + 67) (13)
k=0 i=0
k—1 (%)
< Vpor(s) + Z €vUmax H ’yw(s |51+1 + 67 + Z vr(sp |s,€+1 + evvmax) keyy +o(ey + €)
i=0 k=0
(14)
< Vpor (3) + € Umax Z ’Yk + €~ Umax Z lﬂk + 0(611 + GV) (15)
k=0 k=0
E'UIUmaX € Umax
< Vpor(s) + T2+ o6y + €4) (16)

-y (-9
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Similarly, we can derive a lower bound:

o0

Dyon(s) = Zﬁ Sk |5k+1 H V(s ‘Serl A7)
k=0
o _
Z v (S |$kJrl — €uUmax H |lerl 67) (18)
k=0 =0
k—1 00
> Uumr Z €0 Umax H ( |51+1 Z Ur Sk: |Sk:+1 €UUmax) kny’}/k + 0(€U + 67)
=0 k=0
(19)
o0 o0
> Vpom (3) — €y Umax Z ’Yk — €yUmax Z k’)/k + 0(611 + 67) (20)
k=0
E'U,Umax € ,Umax
> Vpor(s) — - +o(e, +€) 21

-y (1-9)?

We may therefore conclude that 9, equals v, up to an accuracy of 6“”“‘“ + gf‘%@ +o(ey+€y).
Note that the requirement for the reward function to be positive is only a cheap technical trick to
ensure we bound in the right direction of ¢, errors in the discounting, but that the theorem would
still stand if it were not the case.

D.3 NO ASSUMPTION ON OPTIMALITY

If the low-level policy 7 is perfect, then the best high-level policy p is to choose directly the goal
as targetﬂ Our approach assumes that it would be difficult to learn effectively a = when the target
is too far, and that we would rather use a proxy to construct a path with shorter-distance transitions.
Therefore, we’ll never want to make any optimality assumption on 7, otherwise our approach is
pointless. These theories we have initiated makes no assumption on 7.

The Theorem provides guarantees on the solution to the overall problem. The quality of the solution
depends on both the quality of the estimates (distances/discounts, rewards) and the quality of the
policy, as the theorem guarantees accuracy to the solution of the overall problem given a current
policy, which should evolve towards optimal during training. This means bad policy with good
estimation will lead to an accurate yet bad overall solution. No matter the quality of the policy, with
a bad estimation, it will result in a poor estimate of solutions. Only a near-optimal policy and good
estimation will lead to a near-optimal solution.

E IMPLEMENTATION DETAILS FOR EXPERIMENTS

E.1 Skipper

E.1.1 TRAINING

The agent is based on a distributional prioritized double DQN. All the trainable parameters are
optimized with Adam at a rate of 2.5 x 10~* (Kingma & Bal, [2014), with a gradient clipping by

value (maximum absolute value 1.0). The priorities for experience replay sampling are equal to the
per-sample training loss.

E.1.2 FULL STATE ENCODER

The full-state encoder is a two layered residual block (with kernel size 3 and doubled intermediate
channels) combined with the 16-dimensional bag-of-words embedder of BabyAl (Hui et al., 2020).

3A triangular inequality can be shown that with a perfect 7 and a perfect estimate of v, and ~», the perfor-
mance will always be minimized by selecting 519 = S4.
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E.1.3 PARTIAL STATE SELECTOR (SPATIAL ABSTRACTION)

The selector o is implemented with one-head (not multiheaded, therefore the output linear transfor-
mation of the default multihead attention implementation in PyTorch is disabled.) top-4 attention,
with each local perceptive field of size 8 x 8 cells. Layer normalization (Ba et al.| [2016)) is used
before and after the spatial abstraction.

E.1.4 ESTIMATORS

The estimators, which operate on the partial states, are 3-layered
MLPs with 256 hidden units.

An additional estimator for termination is learned, which instead
of taking a pair of partial states as input, takes only one, and is
learned to classify terminal states with cross-entropy loss. The
estimated distance from terminal states to other states would be
overwritten with oo. The internal ~ for intrinsic reward of 7 is
0.95, while the task v is 0.99 0123 428293031

The estimators use C51 distributional TD learning (Dabney et al.,
2018). That is, the estimators output histograms (softmax over
vector outputs) instead of scalars. We regress the histogram to-
wards the targets, where these targets are skewed histograms of
scalar values, towards which KL-divergence is used to train. At D
the output, there are 16 bins for each histogram estimation (value =~ 0,123 4 ...,28,29,30,31 14
for policy, reward, distance).

E.1.5 RECOVERING DISCOUNTS FROM DISTANCES Figure 7: Estimating Distribu-
tions of Discount and Distance

We recover the distribution of the cumulative discount by replac-  With ]the, San;le Histogram:h Ey
ing the support of the discretized truncated distances with the cor- transplanting the support with the

responding discounts, as illustrated in Fig. [/| This addresses the g?sr:reﬂs)z(t)ir:im(ﬁc ?;Seczl;rrﬁlrlzlt?js dtll;e

problem of E[y”] # ~ELP], as the probability of having a trajec-  ¢ount can be inferred.
tory length of 4 under policy 7 from state s; to s, is the same as

a trajectory having discount y*.

E.1.6 CHECKPOINT GENERATOR

Despite Skipper is designed to have the generator work on state level, that is, it should take learned
state representations as inputs and have state representations as outputs, in our experiments, the
generator actually operates on observation inputs and outputs. This is because of the preferred
compactness of the observations and the equivalence to full states under full observability in our
experiments.

The context extractor &, is a 32-dimensional BabyAI BOW embedder. It encodes an input observa-
tion into a representation of the episodic context.

The partial description extractor £, is made of a 32-dimensional BabyAI BOW embedder, followed
by 3 aforementioned residual blocks with 3 x 3 convolutions (doubling the feature dimension every
time) in between, ended by global maxpool and a final linear projection to the latent weights. The
partial descriptions are bundles of 6 binary latents, which could represent at most 64 “kinds” of
checkpoints. Inspired by VQ-VAE (Van Den Oord et al.l 2017), we use the argmax of the latent
weights as partial descriptions, instead of sampling according to the softmax-ed weights. This en-
ables easy comparison of current state to the checkpoints in the partial description space, because
each state deterministically corresponds to one partial description. We identify reaching a target
checkpoint if the partial description of the current state matches that of the target.

The fusing function first projects linearly the partial descriptions to a 128-dimensional space and
then uses deconvolution to recover an output which shares the same size as the encoded context.
Finally, a residual block is used, followed by a final 121 convolution that downscales the concate-
nation of context together with the deconv’ed partial description into a 2D weight map. The agent’s
location is taken to be the argmax of this weight map.
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The whole checkpoint generator is trained end-to-end with a standard VAE loss. That is the sum of
a KL-divergence for the agent’s location, and the entropy of partial descriptions, weighted by 2.5 x
10—, as suggested in https://github.com/AntixK/PyTorch-VAE, Note that the per-
sample losses in the batches are not weighted for training according to priority from the experience
replay.

We want to mention that if one does not want to generate non-goal terminal states as checkpoints,
we could also seek to train on reversed (S©, S;) pairs. In this case, the checkpoints to reconstruct
will never be terminal.

E.1.7 HER

Each experienced transition is further duplicated into 4 hindsight transitions at the end of each
episode. Each of these transitions is combined with a randomly sampled observation from the same
trajectory as the relabelled “goal”. The size of the hindsight buffer is extended to 4 times that of the
baseline that does not learn from hindsight accordingly, that is, 4 x 10,

E.1.8 PLANNING

As introduced, we use value iteration over options (Sutton et al. [1999) to plan over the proxy
problem represented as an SMDP. We use the matrix form Q = Rgxg + 'V, where R and I are
the estimated edge matrices for cumulative rewards, respectively. Note that this notation is different
from the ones we used in the manuscript. The checkpoint value V, initialized as all-zero, is taken
on the maximum of () along the checkpoint target (the actions for ;) dimension. When planning
is initiated during decision time, the value iteration step is called 5 times. We do not run until
convergence since with low-quality estimates during the early stages of the learning, this would
be a waste of time. The edges from the current state towards other states are always set to be
one-directional, and the self-loops are also removed. This means the first column as well as the
diagonal elements of R and I are all zeros. Besides pruning edges based on the distance threshold,
as introduced in the main paper, the terminal estimator is also used to prune the matrices R and I':
the rows corresponding to the terminal states are all zeros.

The only difference between the two variants, i.e. Skipper-once and Skipper-regen is that the latter
variant would discard the previously constructed proxy problem and construct a new one every time
the planning is triggered. This introduces more computational effort while lowering the chance that
the agent gets “trapped” in a bad proxy problem that cannot form effective plans to achieve the goal.
If such a situation occurs with Skipper-regen, as long as the agent does not terminate the episode
prematurely, a new proxy problem will be generated to hopefully address the issue. Empirically, as
we have demonstrated in the experiments, such variant in the planning behavior results in generally
significant improvements in terms of generalization abilities at the cost of extra computation.

E.1.9 HYPERPARAMETER TUNING

Some hyperparameters introduced by Skipper can be located in the pseudocode in Alg. [T}

Timeout and Pruning Threshold Intuitively, we tied the timeout to be equal to the distance pruning
threshold. The timeout kicks in when the agent thinks a checkpoint can be achieved within e.g. 8
steps, but already spent 8 steps yet still could not achieve it.

This leads to how we tuned the pruning (distance) threshold: we fully used the advantage of our
experiments on DP-solvable tasks: with a snapshot of the agent during its training, we can sample
many ( starting state, target state ) pairs and calculate the ground truth distance between the pair, as
well as the failure rate of reaching from the starting state to the target state given the current policy 7,
then plot them as the x and y values respectively for visualization. We found such curves to evolve
from high failure rate at the beginning, to a monotonically increasing curve, where at small true
distances, the failure rates are near zero. We picked 8 because the curve starts to grow explosively
when the true distances are more than 9.

k for k-medoids We tuned this by running a sensitivity analysis on Skipper agents with different
k’s, whose results are presented previously in this Appendix.
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Additionally, we prune from 32 checkpoints because 32 checkpoints could achieve (visually) a good
coverage of the state space as well as its friendliness to NVIDIA accelerators.

Size of local Perception Field We used a local perception field of size 8 because our baseline model-
free agent would be able to solve and generalize well within 8 x 8 tasks, but not larger. Roughly
speaking, our spatial abstraction breaks down the overall tasks into 8 x 8 sub-tasks, which the policy
could comfortably solve.

Model-free Baseline Architecture The baseline architecture (distributional, Double DQN) was
heavily influenced by the architecture used in the previous work (Zhao et al., [2021), which demon-
strated success on similar but smaller-scale experiments (8 x 8). The difference is that while then
we used computationally heavy components such as transformer layers on a set-based representa-
tion, we replaced them with a simpler and effective local perception component. We validated our
model-free baseline performance on the tasks proposed in|Zhao et al.|(2021).

E.2 LEAP
E.2.1 ADAPTATION FOR DISCRETE ACTION SPACES

The LEAP baseline has been implemented from scratch for our experiments, since the original
open-sourced implementatiorﬂ was not compatible with environments with discrete action spaces.
LEAP’s training involves two pretraining stages, that are, generator pretraining and distance estima-
tor pretraining, which were originally named the VAE and RL pretrainings. Despite our best effort,
that is to be covered in detail, we found that LEAP was unable to get a reasonable performance in
its original form after rebasing it on a discrete model-free RL baseline.

E.2.2 REPLACING THE MODEL

We tried to identify the reasons why the generalization performance of the adapted LEAP was unsat-
isfactory: we found that the original VAE used in LEAP is not capable to handle even few training
tasks, let alone generalize well to the evaluation tasks. Even by combining the idea of the context
/ partial description split (still with continuous latents), during decision time, the planning results
given by the evolutionary algorithm (Cross Entropy Method, CEM, Rubinstein| (1997al)) almost al-
ways produce delusional plans that are catastrophic in terms of performance. This was why we
switched into LEAP the same conditional generator we proposed in the paper, and adapted CEM
accordingly, due to the change from continuous latents to discrete.

We also did not find that using the pretrained VAE representation as the state representation during
the second stage helped the agent’s performance, as the paper claimed. In fact, the adapted LEAP
variant could only achieve decent performance after learning a state representation from scratch in
the RL pretraining phase. Adopting Skipper’s splitting generator also disables such choice.

E.2.3 REPLACING TDM

The original distance estimator based on Temporal Difference Models (TDM) also does not show
capable performance in estimating the length of trajectories, even with the help of a ground truth
distance function (calculated with DP). Therefore, we switched to learning the distance estimates
with our proposed method. Our distance estimator is not sensitive to the sub-goal time budget as
TDM and is hence more versatile in environments like that was used in the main paper, where the
trajectory length of each checkpoint transition could highly vary. Like for Skipper, an additional
terminal estimator has been learned to make LEAP planning compatible with the terminal lava states.
Note that this LEAP variant was trained on the same sampling scheme with HER as in Skipper.

The introduced distance estimator, as well as the accompanying full-state encoder, are of the same
architecture, hyperparameters, and training method as those used in Skipper. The number of in-
termediate subgoals for LEAP planning is tuned to be 3, which close to how many intermediate
checkpoints Skipper typically needs to reach before finishing the tasks. The CEM is called with 5
iterations for each plan construction, with a population size of 128 and an elite population of size
16. We found no significant improvement in enlarging the search budget other than additional wall

*nttps://github.com/snasiriany/leap
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time. The new initialization of the new population is by sampling a e-mean of the elite population
(the binary partial descriptions), where ¢ = 0.01 to prevent the loss of diversity. Because of the
very expensive cost of using CEM at decision time and its low return of investment in terms of gen-
eralization performance, during the RL pretraining phase, the agent performs random walks over
uniformly random initial states to collect experience.

E.2.4 FAILURE MODE: DELUSIONAL PLANS

Interestingly, we find that a major reason why LEAP does not generalize well is that it often gen-
erates delusional plans that lead to catastrophic subgoal transitions. This is likely because of its
blind optimization in the latent space towards shorter path plans: any paths with delusional shorter
distances would be preferred. We present the results with LEAP combined with our proposed delu-
sion suppression technique in Fig. 8| We find that the adapted LEAP agent, with our generator, our
distance estimator, and the delusion suppression technique, is actually able to achieve significantly
better generalization performance.

success rate

" /‘_’\'\‘
0.2

= LEAP LEAP-suppress /—/\A/\ /\J‘\_/
0.0 -

00 05 1.0 15 00 05 1.0 15 00 05 1.0 15 00 05 1.0 15 00 05 1.0 15
training steps training steps 106 training steps 106 training steps 1e6 training steps 1e6

(a) training, diff 0.4 (b) OOD, diff 0.25 (c) OOD, diff 0.35 (d) OOD, diff 0.45 (e) OOD, diff 0.55

Figure 8: Comparative Results of LEAP with and without the delusion suppression technique: the results
are obtained with 50 training tasks. The results are obtained from 20 independent seed runs.

E.3 DIRECTOR
E.3.1 ADAPTATION

We based our experiments of Director (Hafner et all [2022) on
the publicly available code (https://github.com/danijar/
director) released by the authors. Except for a few changes in the
parameters, which are depicted in Tab. [T} we have used the default con-
figuration provided for Atari environments. Note that as the Director
version in which the worker receives no task rewards performed worse in
our tasks, we have used the version in which the worker receives scaled
task rewards (referred to as “Director (worker task reward)” in [Hafner
et al.| (2022)). This agent has also been shown to perform better across
various domains in |[Hafner et al.| (2022).

Encoder. Unlike Skipper and LEAP agents, the Director agent receives
as input a simplified RGB image of the current state of the environment
(see Fig. [0). This is because we found that Director performed better
with its original architecture, which was designed for image-based ob-
servations. We removed all textures to simplify the RGB observations.

Figure 9: An exam-
ple for simplified observa-
tions for Director.

E.3.2 FAILURE MODES: BAD GENERALIZATION, SENSITIVE TO
SHORT TRAJECTORIES

Training Performance. We investigated why Director is unable to achieve good training perfor-
mance(Fig. [3). As Director was designed to be trained solely on environments where it is able to
collect long trajectories to train a good enough recurrent world model (Hafner et al., [2022), we
hypothesized that Director may perform better in domains where it is able to interact with the envi-
ronment through longer trajectories by having better recurrent world models (i.e., the agent does not
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Table 1: The changed parameters and their values in the config file of the Director agent.

Parameter Value

replay_size M

replay_chunk 12

imag_horizon 8

env_skill_duration 4

train_skill_duration 4

worker_rews {extr: 0.5, expl: 0.0, goal: 1.0}
sticky False

gray False

immediately die as a result of interacting with specific objects in the environment). To test this, we
experimented with variants of the used tasks, where the lava cells are replaced with wall cells, so the
agent does not die upon trying to move towards them (we refer to this environment as the “walled”
environment). The corresponding results on 50 training tasks are depicted in Fig. [I0] As can be
seen, the Director agent indeed performs better within the training tasks than in the environments
with lava.

Generalization Performance. We also investigated why Director is unable to achieve good gener-
alization (Fig.[3). As Director trains its policies solely from the imagined trajectories predicted by
its learned world model, we believe that the low generalization performance is due to Director being
unable to learn a good enough world model that generalizes to the evaluation tasks. The generaliza-
tion performances in both the “walled” and regular environments, depicted in Fig.|10} indeed support
this argument. Similar to what we did in the main paper, we also present experimental results for
how the generalization performance changes with the number of training environments. Results in
Fig.|11| show that the number of training environments has little effect on its poor generalization
performance.
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Figure 10: Comparative Results of Director on Environments with Lavas and on those with Walls: the
results are obtained with 50 training tasks. The results for Director-lava (same as in the main paper) are obtained
from 20 independent seed runs.
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Figure 11: Generalization Performance of Agents on Different Numbers of Training Tasks (while Direc-
tor runs on the walled environments): besides Director, each data point and corresponding error bar (95%
confidence interval) are processed from the final performance from 20 independent seed runs. Director-wall’s
results are obtained from 20 runs.
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F EXPERIMENTAL RESULTS (CONT.)

We present the experimental results that the main paper could not hold due to the page limit.

F.1

Skipper-ONCE SCALABILITY

We present the performance of Skipper-once on different numbers of training tasks in Fig.

success rate
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Figure 12: Generalization Performance of Skipper-once on different numbers of training tasks: each
error bar (95% confidence interval) is obtained from 20 independent seed runs.

F.2 Skipper-REGEN SCALABILITY

We present the performance of Skipper-regen on different numbers of training tasks in Fig.
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Figure 13: Performance of Skipper-regen on different numbers of training tasks: each error bar (95%
confidence interval) is obtained from 20 independent seed runs.

F.3 MODELFREE BASELINE SCALABILITY

We present the performance of the modelfree baseline on different numbers of training tasks in Fig.
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Figure 14: Generalization Performance of the modelfree baseline on different numbers of training tasks:
each error bar (95% confidence interval) is obtained from 20 independent seed runs.
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F.4 LEAP SCALABILITY

We present the performance of the adapted LEAP baseline on different numbers of training tasks in

Fig.[13]
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Figure 15: Generalization Performance of the LEAP baseline on different numbers of training tasks:
each error bar (95% confidence interval) is obtained from 20 independent seed runs.

F.5 DIRECTOR SCALABILITY

We present the performance of the adapted Director baseline on different numbers of training tasks

in Fig. [T
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Figure 16: Generalization Performance of the Director baseline on different numbers of training tasks:
each error bar (95% confidence interval) is obtained from 20 independent seed runs.

F.6 GENERALIZATION PERFORMANCE ON DIFFERENT NUMBERS OF TRAINING TASKS

The performance of all agents on all training configurations, i.e. different numbers of training tasks,

are presented in Fig. [I7} Fig. [I8] Fig.[I9] Fig. 20| Fig. 2T]and Fig.
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Figure 17: Generalization Performance of the Agents when trained with 1 training task: each error bar
(95% confidence interval) is obtained from 20 independent seed runs.
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Figure 18: Generalization Performance of the Agents when trained with 5 training tasks: each error bar

(95% confidence interval) is obtained from 20 independent seed runs.
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Figure 19: Generalization Performance of the Agents when trained with 25 training tasks: each error bar

(95% confidence interval) is obtained from 20 independent seed runs.
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Figure 20: Generalization Performance of the Agents when trained with 50 training tasks (same as in
the main paper): each error bar (95% confidence interval) is obtained from 20 independent seed runs.
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Figure 21: Generalization Performance of the Agents when trained with 100 training tasks: each error
bar (95% confidence interval) is obtained from 20 independent seed runs.
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Figure 22: Generalization Performance of the Agents when trained with co training tasks (a new task
each training episode): each error bar (95% confidence interval) is obtained from 20 independent seed runs.

F.6.1 STATISTICAL SIGNIFICANCE & POWER ANALYSES

Besides visually observing generally non-overlapping confidence intervals, we present the pairwise
t-test results of Skipper-once and Skipper-regen against the compared methods. In addition, if
the advantage is significant, we perform power analyses to determine if the number of seed runs
(20) was enough to make the significance claim. These results are shown in Tab. [ and Tab. [3]
respectively.

Table 2: Skipper-once v.s. others: significance & power
| method \task difficulty | 0.25 | 0.35 | 0.45 | 0.55

leap 22 NO | NO | NO
1 train envs director 15 11 22 11
baseline NO 38 36 NO
leap 28 NO | NO | NO
5 train envs director NO | NO | NO 22
baseline 11 8 10 12
leap 15 13 11 7
25 train envs director 2 2 2 2
baseline 2 2 2 2
leap 17 16 11 11
50 train envs director 2 2 2 2
baseline 2 2 2 2
leap 15 10 7 9
100 train envs director 2 2 2 2
baseline 2 2 2 2
leap 32 5 7 3
inf train envs director 2 2 2 2
baseline NO | NO | NO | NO

t threshold: 0.05.
Effect size set to be the difference of the means of the compared pairs (Colas et al.}[2018).
Cells are bold if results NOT significant or insufficient seeds for statistical power.
For significant cases, the minimum number of seeds for statistical power 0.2 is provided.

As we can observe from the tables, generally there is significant evidence of generalization advan-
tage in Skipper variants compared to the other methods, especially when the number of training
environments are between 25 to 100. Additionally, as expected, Skipper-regen displays more dom-
inating performance compared to that of Skipper-once.
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Table 3: Skipper-regen v.s. others: significance & power
| method \task difficulty | 0.25 | 0.35 | 0.45 | 0.55

leap 32 NO | NO | NO
1 train envs director 16 13 23 10
baseline NO | NO | NO | NO
leap NO | NO | NO | NO
5 train envs director 33 NO | NO | NO
baseline 6 8 4 5
leap 10 7 5 4
25 train envs director 2 2 2 2
baseline 2 2 2 2
leap 6 4 3 3
50 train envs director 2 2 2 2
baseline 2 2 2 2
leap 7 3 3 2
100 train envs director 2 2 2 2
baseline 2 2 2 2
leap 15 3 2 2
inf train envs director 2 2 2 2
baseline NO | NO 35 5

t threshold: 0.05.
Effect size set to be the difference of the means of the compared pairs (Colas et al.}[2018).
Cells are bold if results NOT significant or insufficient seeds for statistical power.

For significant cases, the minimum number of seeds for statistical power 0.2 is provided.

G ABLATION & SENSITIVITY

G.1 VALIDATION OF EFFECTIVENESS ON STOCHASTIC ENVIRONMENTS

We present the performance of the agents in stochastic variants of the used environment. Specifi-
cally, with probability 0.1, each action is changed into a random action. We present the 50-training
tasks performance evolution in Fig. 23] The results validate the compatibility of our agents with
stochasticity in environmental dynamics. Notably, the performance of the baseline deteriorated
to worse than even Director with the injected stochasticity. The compatibility of Hierarchical RL
frameworks to stochasticity has been investigated in|Hogg et al.| (2009).
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Figure 23: Generalization Performance of agents in stochastic environments: e-greedy style randomness
is added to each primitive action with e = 0.1. Each agent is trained with 50 environments and each curve is
processed from 20 independent seed runs.

G.2 ABLATION FOR SPATIAL ABSTRACTION
We present in Fig. 24] the ablation results on the spatial abstraction component with Skipper-once

agent, trained with 50 tasks. The alternative component of the attention-based bottleneck, which is
without the spatial abstraction, is an MLP on a flattened full state. The results confirm significant
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advantage in terms of generalization performance as well as sample efficiency in training, introduced
by spatial abstraction.
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training steps

Figure 24: Ablation for Spatial Abstraction on Skipper-once agent: each agent is trained with 50 environ-
ments and each curve is processed from 20 independent seed runs.

G.3 ACCURACY OF PROXY PROBLEMS & CHECKPOINT POLICIES

We present in Fig. 23] the ablation results on the accuracy of proxy problems as well as the check-
point policies of the Skipper-once agents, trained with 50 tasks. The ground truths are computed
via DP on the optimal policies, which are also suggested by DP. Concurring with our theoretical
analyses, the results indicate that the performance of Skipper is determined (bottlenecked) by the
accuracy of the proxy problem estimation on the high-level and the optimality of the checkpoint
policy on the lower level. Specifically, the curves for the generalization performance across training
tasks, as in (a) of 23] indicate that the lower than expected performance is a composite outcome
of errors in the two levels. In the next part, we address a major misbehavior of inaccurate proxy
problem estimation - chasing delusional targets.
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Figure 25: Skipper-once Empirical Performance v.s. ground truths: both the optimal policy and optimal
plan variants are assisted by DP. The default deterministic setting induces the fact that combining optimal policy
and optimal plan results in 1.0 success rate. The figures suggest that the learned agent is limited by errors both
in the proxy problem estimation and the checkpoint policy 7. Each agent is trained with 50 environments and
each curve is processed from 20 independent seed runs.

G.4 TRAINING INITIALIZATION: UNIFORM V.S. SAME AS EVALUATION

We compare the agents’ performance with and without uniform initial state distribution. The non-
uniform starting state distributions introduce additional difficulties in terms of exploration. In Pre-
sented in Fig. 2] these results are obtained from training on 50 tasks. We conclude that given
similar computational budget, using non-uniform initialization only slows down the learning curves
without introducing significant changes to our conclusions, and thus we use the ones with uniform
initialization for presentation in the main paper.

G.5 ABLATION: VERTEX PRUNING

As mentioned previously, each proxy problem in the experiments are reduced from 32 vertices to
12 with such techniques. We compare the performance curves of the used configuration against
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Figure 26: Comparative Results on 50 training tasks without uniform initial state distribution: each
curve is processed from 20 independent seed runs.

a baseline that generates 12-vertex proxy problems without pruning. We present in Fig. 27 these
ablation results on the component of k-medoids checkpoint pruning. We observe that the pruning
not only increases the generalization but also the stability of performance.
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Figure 27: Ablation Results on 50 training tasks for k-medoids pruning: each curve is processed from 20
independent seed runs.

G.6 SENSITIVITY: NUMBER OF VERTICES

We provide a sensitivity analysis to the number of checkpoints (number of vertices) in each proxy
problem. We present the results of Skipper-once on 50 training tasks with different numbers of
post-pruning checkpoints (all reduced from 32 by pruning), in Fig. 28 From the results, we can
see that as long as the number of checkpoints is above 6, Skipper exhibits good performance. We
therefore chose 12, the one with a rather small computation cost, as the default hyperparameter.
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Figure 28: Sensitivity of Skipper-once on the number of checkpoints in each proxy problem: each agent
is trained with 50 environments. All curves are processed from 20 independent seed runs.

G.7 ABLATION: PLANNING OVER PROXY PROBLEMS

We provide additional results for the readers to intuitively understand the effectiveness of plan-
ning over proxy problems. This is done by comparing the results of Skipper-once with a baseline
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Skipper-goal that blindly selects the task goal as its target all the time. We present the results based
on 50 training tasks in Fig. 29} Concurring with our vision on temporal abstraction, we can see
that solving more manageable sub-problems leads to faster convergence. The Skipper-goal variant
catches up later when the policy slowly improves to be capable of solving longer distance navigation.
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Figure 29: Effectiveness of Proxy Problem based Planning: each agent is trained with 50 environments and
each curve is processed from 20 independent seed runs.
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