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A PROOF OF PROPOSITION 5.2

To demonstrate that the OTD3, dOT (·, ·; cPtO) is a valid metric, it is sufficient to verify that the ground cost function cPtO

used in the optimal transport problem is a metric on X ×Y ×Ω. If cPtO is indeed a metric, then dOT (·, ·; cPtO) corresponds
to the Wasserstein distance Villani [2008]. In Equation 7, dOT (·, ·; cPtO) is defined as a convex combination of dX and dY ,
which are metrics on X and Y respectively, and the decision quality disparity lq. To show that cPtO is a metric, it suffices
to show that lq satisfies the four metric properties: non-negativity, identity of indiscernibles, symmetry, and the triangle
inequality. If lq does not individually satisfy these properties, we must demonstrate that the convex combination of dX , dY ,
and lq satisfies these properties collectively under the assumption that αX , αY , αW > 0.

First, lq is clearly non-negative because it is defined as an absolute value. It is symmetric in the convex combination of cPtO

because it is taken as the absolute difference between two decision qualities with fixed true costs.

lg(z, z
′; y′, y′) =

∣∣q(z; y′)− q(z′; z′)
∣∣

=
∣∣q(z′; y′)− q(z; z′)

∣∣
= lg(z

′, z; y′, y′)

Moreover, lq satisfies triangle inequality due to the triangle inequality property of the absolute value.

lg(z1, z2; y1, y2) + lg(z2, z3; y2, y3)

=
∣∣g(z1; y1)− g(z2; y2)

∣∣+ ∣∣g(z2; y2)− g(z3; y3)
∣∣

≤
∣∣g(z1; y1)− g(z2; y2) + g(z2; y2)− g(z3; y3)

∣∣
=

∣∣g(z1; y1)− g(z3; y3)
∣∣

= lg(z1, z3; y1, y3)

Lastly, while lq might not satisfy the identity of indiscernibles in isolation (specifically, lq(y, y′; z, z) = 0 does not
necessarily imply y = y′; meaning two different decisions can lead to the same objective value), cPtO does satisfy this
property for αX , αY , αW > 0. If (x, y, z) = (x′, y′, z′), then lg(z, z

′; y′, y′) =
∣∣g(z; y) − g(z′; y)

∣∣ = 0 because z = z′

implies g(z; y) = g(z′; y) and hence cPtO((x, y, z), (x
′, y′, z′)) = 0. Conversely, if cPtO((x, y, z), (x

′, y′, z′)) = 0, then
dX (x, x′) = 0, dY(y, y′) = 0, and lq(y, y

′; z, z) = 0 because αX , αY , αW > 0. Since dY(y, y
′) = 0 implies y = y′

(because dY is a metric), it follows that w∗(y) = w∗(y′) and hence z = z′.

Therefore, cPtO satisfies the identity of indiscernibles. Consequently, since lq satisfies non-negativity, symmetry, and the
triangle inequality, and since cPtO satisfies the identity of indiscernibles, dOT (·, ·; cPtO) is indeed a valid metric with cPtO

a valid metric on X × Y × Ω.
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B PREAMBLE FOR THEOREM 5.5

B.1 VALIDITY ASSUMPTION 5.3

Assumption 5.3 imposes a specific structure on the downstream optimization problem by assuming that the decision quality
function has a bounded rate of change with respect to both the predicted and true cost vectors. This is a reasonable assumption
for certain downstream optimization tasks, as highlighted in the following lemmas.

Lemma B.1. If M(·) is a convex program with a strongly convex objective and constraints with independent derivatives
(Linear Independence Constraint Qualification (LICQ)), Assumption 5.3 holds.

The strong convexity of the objective ensures that the gradient is Lipschitz continuous, while the LICQ guarantees that the
optimal solutions depend continuously on the parameters. By the smoothness of the objective and the continuity of the
optimal solutions, the difference in the decision quality function q between two sets of parameters and their corresponding
optimal solutions can be bounded by a linear combination of the distances between the parameters and the distances between
the optimal solutions.

Lemma B.2. If M(·) has a linear optimization objective with a strongly convex feasible region, Assumption 5.3 holds.

When M(·) has a linear optimization objective and a strongly convex feasible region, the decision quality function q satisfies
the k1, k2-Lipschitz property. The linearity of the objective ensures that changes in the parameters lead to proportional
changes in the objective value, while the strong convexity of the feasible region guarantees that the optimal solutions are
unique and vary smoothly with respect to the parameters. This smooth dependence, combined with the linear structure of the
objective, implies that the difference in q between two sets of parameters and their corresponding optimal solutions can be
bounded by a linear combination of the distances between the parameters and the distances between the optimal solutions.

B.2 LIPSCHITZNESS OF THE DECISION QUALITY DISPARITY FUNCTION

To establish the bound presented in Theorem 5.5, we rely on the fact that lg is k1, k2-Lipschitz under Assumption 5.3. The
following proposition demonstrates that lg indeed satisfies the Lipschitz condition given this assumption.

Proposition B.3. If g, the objective function of the downstream optimization problem, is k1, k2-Lipschitz (Assumption 5.3),
then lg is also k1, k2-Lipschitz.

Proof. ∣∣lg(z, z1; y, y1)− lg(z, z2; y, y2)
∣∣

=
∣∣|g(z; y)− g(z1; y1)| − |g(z; y)− g(z2; y2)|

∣∣
≤

∣∣g(z; y)− g(z1; y1)− g(z; y) + g(z2; y2)
∣∣ (9)

=
∣∣g(z2; y2)− g(z1; y1)

∣∣
=

∣∣g(z2; y2)− g(z1; y2) + g(z1; y2)− g(z1; y1)
∣∣

≤
∣∣g(z2; y2)− g(z1; y2)

∣∣+ ∣∣g(z1; y2)− g(z1; y1)
∣∣ (10)

≤ k1∥z1 − z2∥+ k2∥y1 − y2∥ (11)

Inequalities (9) and (10) are a result of the triangle inequality of the absolute value. Inequality (11) is due to the k1 − k2-
lipschitzness of g.

C PROOF OF THEOREM 5.5

Theorem C.1. Suppose Assumption 5.3 holds. For a feature space X , a label space Y , and a decision set Ω, let
W := X × Y × Ω. Let PS and PT be the source and target distributions over X × Y respectively. For any label-
ing function f : X → Y , let Pf

T and P∗
S be distributions over W given by Pf

T := (x, y, w∗(f(x)))(x,y)∼PT
and
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P∗
S := (x, y, w∗(y))(x,y)∼PS

. For a ground cost function of the form

cαPtO((x, y, z), (x
′, y′, z′)) = αXdX (x, x′) + αY dY(y, y

′) + αW lg(z, z
′; y′, y′),

let Π∗ be the coupling that minimizes the OT problem with ground cost cαPtO between Pf
T and P∗

S . Let f̃ be a labeling
function that is ϕ-Lipschitz transferable w.r.t. Π∗. We assume X is bounded by K and f̃ is l-Lipschitz, such that
|f̃(x1)− f̃(x2)| ≤ 2lK = L. Then, for all λ > 0 and αW ∈ (0, 1) such that (λk1 + k2 + 1)αW = 1, and αX = λk1αW

and αY = k2αW , we have with probability at least 1− δ that:

err(f ; qreg,PT ) ≤ err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT ) + k1Lϕ(λ) + (1/αW )dOT (Pf
T ,P

∗
S ; cαPtO)

Proof.

err(f ; qreg,PT )

= E(x,y)∼PT
lg(w

∗(f(x)), w∗(y); y, y)

≤ E(x,y)∼PT
lg(w

∗(f(x)), w∗(f̃(x)); y, y) + E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(y); y, y) (12)

= E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(f(x)); y, y) + E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(y); y, y) (13)

= E(x,y,z)∼Pf
T
lg(w

∗(f̃(x)), z; y, y) + E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(y); y, y) (14)

= E(x,y,z)∼Pf
T
lg(w

∗(f̃(x)), z; y, y)− err(f̃ ; qreg,PS) + err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

= E(x,y,z)∼Pf
T
lg(w

∗(f̃(x)), z; y, y)− E(x,y,z)∼P∗
S
lg(w

∗(f̃(x)), z; y, y) + err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

≤
∣∣E(x,y,z)∼Pf

T
lg(w

∗(f̃(x)), z; y, y)− E(x,y,z)∼P∗
S
lg(w

∗(f̃(x)), z; y, y)
∣∣+ err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

Inequality (12) uses the fact that lg( · ; y, y) satisfies the triangle inequality and line (13) is due to the symmetry of lg( · ; y, y)
for any y ∈ Y . Line (14) comes from the fact that Pf

T := (x, f(x), y)(x,y)∼PT
. We continue by bounding the first term.∣∣E(x,y,z)∼Pf

T
lg(w

∗(f̃(x)), z; y, y)− E(x,y,z)∼P∗
S
lg(w

∗(f̃(x)), z; y, y)
∣∣

=

∣∣∣∣∫
W

lg(w
∗(f̃(x)), z; y, y)(Pf

T (X = x, Y = y, Z = z)− P∗
S(X = x, Y = y, Z = z)) dxdy dz

∣∣∣∣
=

∣∣∣∣∫
W

lg(w
∗(f̃(x)), z; y, y) dΠ∗((xs, ys, zs), (xt, yt, z

f
t ))

∣∣∣∣
≤

∫
W2

∣∣∣lg(z̃t, zft ; yt, yt)− lg(z̃s, zs; ys, ys)
∣∣∣dΠ∗(ws,w

f
t ) (15)

≤
∫
W2

∣∣∣lg(z̃t, zft ; yt, yt)− lg(z̃s, z
f
t ; ys, yt)

∣∣∣+ ∣∣∣lg(z̃s, zft ; ys, yt)− lg(z̃s, zs, ; ys, ys)
∣∣∣dΠ∗(ws,w

f
t ) (16)

≤
∫
W2

k1dY(f̃(xt), f̃(xs)) + k2dY(yt, ys) +
∣∣∣lg(z̃s, zft ; ys, yt)− lg(z̃s, ys; ys, ys)

∣∣∣dΠ∗(ws,w
f
t ) (17)

≤ k1Lϕ(λ) +

∫
W2

λk1dX (xt, xs) + k2dY(yt, ys) +
∣∣∣lg(z̃s, zft ; ys, yt)− lg(z̃s, ys; ys, ys)

∣∣∣ dΠ∗(ws,w
f
t ) (18)

≤ k1Lϕ(λ) +

∫
W2

λk1dX (xt, xs) + k2dY(yt, ys) + lg(z
f
t , zs; ys, ys) dΠ

∗(ws,w
f
t )

From line (15) onwards we take ws := (xs, ys, ys),w
f
t := (xt, y

f
t , yt) and z̃s = w∗(f̃(xs)), z̃t = w∗(f̃(xt)) for ease of

notation. Given a weight αW , we now normalize the last term such that the ground cost function is a convex combination of
dX , dYm and lg .

∫
W2

λk1dX (xt, xs) + k2dY(yt, ys) + lg(z
f
t , zs; ys, ys) dΠ

∗(ws,w
f
t )

=
1

αW

∫
W2

λk1αW dX (xt, xs) + k2αW dY(xt, xs) + αW lg(z
f
t , zs; ys, ys) dΠ

∗(ws,w
f
t )

=
1

αW
dOT (Pf

T ,P
∗
S ; c

α
PtO)

13



D EXPERIMENTAL SETTINGS DETAILS

D.1 LINEAR MODEL TOP-K Shah et al. [2022]

PtO task description. The Linear Model Top-K setting is a learning task designed to evaluate decision-focused learning
approaches in scenarios where the true relationship between features and outcomes is nonlinear, yet the model used for
prediction is constrained to be linear. Specifically, the objective is to train a linear model to perform top–K selection when
the underlying data is generated by a cubic polynomial function. This controlled setup enables an assessment of how well
decision-focused methods handle model misspecification. The predict-then-optimize (PtO) task in this setting is defined as
follows:

Predict: Given the feature xn ∼ PX , where PX = Unif[−1, 1], of a resource n, the prediction tasks consists of using
a linear model to predict the corresponding utility ŷn, where the true utility yn = p(xn) is a cubic polynomial in xn.
The predictions for N resources are aggregated into a vector ŷ = [ŷ1, . . . , ŷN ], where each element corresponds to the
predicted utility of a resource.

Optimize: The optimization task involves selecting the K out of N resources with the highest utility. This corresponds to
solving the optimization problem M(ŷ) = maxz∈[0,1]N {z · σx(ŷ)} such that ||z||0 = K, where σx is the permutation
that orders ŷ in ascending order of x = [x1, . . . , xN ].

Synthetic distribution shift We introduce synthetic distribution shifts to create a scenario for transfer learning. We modify
the original feature-label distribution P = (Id, p)∗U [−1, 1]. Specifically, for various values of γ ∈ [0, 1.3], we define the
feature-label distributions Pγ = (Id, pγ)∗U [−1, 1] where pγ(xn) = 10(x3

n − γxn), using P0.65 as the target distribution.

Training details We use the implementation from Shah et al. [2022]1 to train models by setting loss="DFL". This
implementation uses an entropy regularized Top-K loss function proposed by Xie et al. [2020] that reframes the Top-K
problem with entropy regularization as an optimal transport problem, enabling end-to-end learning.

D.2 WARCRAFT SHORTEST PATH Pogančić et al. [2020]

PtO task description. This setting involves finding the minimum-cost path on d× d RGB grid maps from the Warcraft II
tileset dataset, where each pixel represents terrain with an unknown traversal cost. The task is to first predict these costs
from an input image and then determine the shortest path from the top-left to the bottom-right corner based on the predicted
cost map. This benchmark is particularly notable because it involves image inputs, a modality not widely explored in other
shortest-path learning tasks. Following Pogančić et al. [2020], we use 96× 96 RGB images as input, with the shortest path
being computed on a coarser 12× 12 grid representation of the predicted costs.

Predict: Given the feature xn ∈ Rd×d×3, predict the travel cost grid ŷn ∈ Rp×p.

Optimize: Solve a shortest-path problem over the predicted cost grid. Specifically, find the path z that minimizes the total
traversal cost: M(ŷ) = minz∈[0,1]p{z · ŷ} subject to boundary conditions z0,0 = zp,p = 1 and connectivity constraints
ensuring that z represents a valid path from the top-left to the bottom-right corner.

Synthetic distribution shift. The original distribution P , which we treat as the target distribution, is defined over
Rd×d × Rp×p, where d = 96 and p = 12. Here, Rd×d represents the feature space depicting maps, while Rp×p represents
the traveling costs on these maps. We induce a target shift for Pγ by uniformly sampling the costs for different pixel classes
from the same range as P ([0.8, 9.2] for the Warcraft II tileset dataset). Figure 6 illustrates the costs coming from two
different distributions over one same feature while highlighting the different decisions (shortest path) that these costs yield.

Training details. We use pyepo2 implementation with SPO+ loss function on a truncated ResNet-18 consisting of the
first five layers, followed by a final convolutional layer that reduces the number of output channels to one. Finally, we use an
adaptive max-pooling layer to obtain a fixed p× p spatial resolution, allowing for a structured representation of the extracted
features.

1github.com/sanketkshah/LODLs
2github.com/khalil-research/PyEPO
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Figure 6: Synthetic distribution shift in Warcraft Shortest Path. The white line illustrates the decision, corresponding to the
shortest path, on dataset A (center) and dataset B (right) for a sample with the same features (left map).

D.3 INVENTORY STOCK PROBLEM Donti et al. [2017]

PtO task description. In this problem a company must determine the optimal order quantity z of a product to minimize
costs given a stochastic demand y, which is influenced by observed features x. The cost structure includes both linear and
quadratic costs for the amount of product ordered, as well as different linear and quadratic costs for over-orders [z − y]+

and under-orders [y − z]+. The objective function is:

fstock(y, z) =c0z +
1

2
q0z

2 + cb[y − z]+ +
1

2
qb([y − z]+)

2

+ ch[z − y]+ +
1

2
qh([z − y]+)

2 (19)

where [v]+ ≡ max{v, 0}. In our paper, we use c0 = 30, q0 = 10, cb = 10, qb = 2, ch = 30, qh = 25. For a given probability
model p(y|x; θ), the proxy stochastic programming problem can be formulated as: minimize

z
Ey∼p(y|x;θ) [fstock(y, z)].

To simplify the setting, we assume that the demands are discrete, taking on values d1, . . . , dk with probabilities (conditional
on x) (pθ)i ≡ p (y = di|x; θ). Thus, our stochastic programming problem can be succinctly expressed as a joint quadratic
program:

minimize
z∈R,zb,zh∈Rk

{
c0z +

1

2
q0z

2 +

k∑
i=1

(pθ)i
(
cb(zb)i (10)

+
1

2
qb(zb)

2
i + ch(zh)i +

1

2
qh(zh)

2
i

)}
subject to d− z1 ≤ zb, z1− d ≤ zh, z, zh, zb ≥ 0

Synthetic distribution shift We generate problem instances by randomly sampling x ∈ Rn and then generating p(y|x; θ)
according to p(y|x; θ) ∝ exp

(
(θTx)2

)
. We introduce distribution shifts for both x and y. Specifically, x is sampled from a

Gaussian distribution where the mean is sampled from U [−0.5, 0.5], and θ is also sampled from a Gaussian distribution.

Training details We use the implementation from Donti et al. [2017]3 following their Inventory Stock Problem experi-
ments.

E OTD3 IMPLEMENTATION DETAILS

Our implementation of the OTD3 relies on the POT4 package. The computation of dataset distance involves two main steps:

1. Computing Pairwise Pointwise Distances:
We first compute the pairwise distances between samples in the source and target datasets. This involves calculat-
ing distances separately for features, labels, and decisions, weighted according to the selected component weights
(αX , αY , αW ). Feature and label distances are computed using standard metric spaces (e.g., Euclidean or cosine
distance), while decision distances are computed using decision quality disparity.

3github.com/locuslab/e2e-model-learning
4pythonot.github.io/

15

github.com/locuslab/e2e-model-learning
pythonot.github.io/


2. Solving the Optimal Transport Problem:
Given the computed pairwise distances, we compute the dataset distance using Earth Mover’s Distance (EMD) via
POT’s emd solver. EMD finds the exact optimal transport plan, making it well-suited for capturing true correspondences
between source and target datasets without introducing regularization bias. This approach was computationally feasible
in our experiments due to the relatively small dataset sizes.

Additionally, for experiments involving hyperparameter tuning, we evaluate multiple weight combinations on a predefined
grid and select the setting that maximizes correlation with regret transferability.

F ADDITIONAL RESULTS

F.1 SELECTING SOURCE DATASETS FOR TRANSFER LEARNING

In Section 7.1 we analyzed the correlation between dataset distance and transferability in PtO. The plots presented in Figure
7 show this correlation for the Linear Model TopK setting and the Inventory Stock problem for two weighting profiles: the
best weighting profile where no decisions are included [left] and the best weighting profile with decisions included [right].
For both setting, decisions improve predictability of transferability. This improvement is less pronounced in the Inventory
Stock problem.

Figure 7: Distance vs Adaptation. OT distance for the best feature-label and feature-label-decision weighting against the
regret transferability.

To illustrate the relationship between label space differences dy(y, y
′) and decision space differences lq(y, y

′, z, z′) in
different PtO tasks, we provide the following visualizations. Figure 8b shows this correlation for the Inventory Stock
problem, while Figure 8a presents the same analysis for the Warcraft domain.

(a) Warcraft Shortest Path (b) Inventory Stock

Figure 8: Difference in labels against difference in decisions
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