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MAXIMUM LIKELIHOOD ESTIMATION IS ALL YOU
NEED FOR WELL-SPECIFIED COVARIATE SHIFT

Jiawei Ge∗† Shange Tang ∗† Jianqing Fan† Cong Ma‡ Chi Jin§

ABSTRACT

A key challenge of modern machine learning systems is to achieve Out-of-
Distribution (OOD) generalization—generalizing to target data whose distribu-
tion differs from that of source data. Despite its significant importance, the fun-
damental question of “what are the most effective algorithms for OOD general-
ization” remains open even under the standard setting of covariate shift. This
paper addresses this fundamental question by proving that, surprisingly, classical
Maximum Likelihood Estimation (MLE) purely using source data (without any
modification) achieves the minimax optimality for covariate shift under the well-
specified setting. That is, no algorithm performs better than MLE in this setting
(up to a constant factor), justifying MLE is all you need. Our result holds for a
very rich class of parametric models, and does not require any boundedness con-
dition on the density ratio. We illustrate the wide applicability of our framework
by instantiating it to three concrete examples—linear regression, logistic regres-
sion, and phase retrieval. This paper further complement the study by proving
that, under the misspecified setting, MLE is no longer the optimal choice, whereas
Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal
in certain scenarios.

1 INTRODUCTION

Distribution shift, where the distribution of test data (target data) significantly differs from the dis-
tribution of training data (source data), is commonly encountered in practical machine learning
scenarios (Zou et al., 2018; Ramponi & Plank, 2020; Guan & Liu, 2021). A central challenge of
modern machine learning is to achieve Out-of-Distribution (OOD) generalization, where learned
models maintain good performance in the target domain despite the presence of distribution shifts.
To address this challenge, a variety of algorithms and techniques have been proposed, including
vanilla empirical risk minimization (ERM) (Vapnik, 1999; Gulrajani & Lopez-Paz, 2020), impor-
tance weighting (Shimodaira, 2000; Huang et al., 2006; Cortes et al., 2010b; Cortes & Mohri, 2014),
learning invariant representations (Ganin et al., 2016; Arjovsky et al., 2019; Wu et al., 2019; Rosen-
feld et al., 2020), distributionally robust optimization (DRO) (Sagawa et al., 2019), etc. See the
recent survey (Shen et al., 2021) for more details. These results claim the effectiveness of the corre-
sponding proposed algorithms in different regimes. This leads to a natural fundamental question:

What are the most effective algorithms for OOD generalization?

This paper consider a widely-studied formulation of OOD-generalization—covariate shift. Under
covariate shift, the marginal distributions of the input covariates X vary between the source and
target domains, while the conditional distribution of output given covariates Y | X remains the
same across domains. We consider learning a model from a known parametric model class under
well-specified setting, where well-specification refers to the problems where the true conditional
distribution of Y | X lies in the given parametric model class. We argue that well-specified setting
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becomes increasingly more relevant in modern learning applications, because these applications typ-
ically use large-scale models with an enormous number of parameters, which are highly expressive
and thus make the settings “approximately” well-specified.

Unfortunately, even under the basic setup of well-specified covariate shift, the aforementioned high-
lighted problem remains elusive — while the seminar work Shimodaira (2000) provides the first
asymptotic guarantees for classical Maximum Likelihood Estimation (MLE) algorithm under this
setup, and proves its optimality among a specific class of weighted likelihood estimators, his results
leave two critical questions open: (1) Does MLE remain effective in the practical non-asymptotic
scenario when the number of data is limited? (2) Do there exist smart algorithms beyond the class of
weighted likelihood estimators that outperform MLE? This paper precisely addresses both critical
questions and thus resolving the highlighted problem under well-specified covariate shift.

Our contributions. Concretely, this paper makes following contributions:

1. We prove that, for a large set of well-specified covariate shift problems, the classical Maximum
Likelihood Estimation (MLE) — which is computed purely based on source data without using
any target data — finds the optimal predictor on the target domain with prediction loss decreases
as Õ(Tr(ITI−1

S )/n). Here Tr(·) standards for trace, IS , IT are the fisher information under
source and target data distribution respectively, and n is the number of source data. Our result
does not require any boundedness condition on the density ratio, and is, to our best knowledge,
the first general, non-asymptotic, sharp result for MLE on a rich class of covariate shift problems.

2. We provide the first minimax lower bound under well-specified covariate shift for any algorithm,
matching the error rate of MLE. This implies that MLE is minimax optimal, and no algorithm is
better than MLE in this setting (up to a constant factor), justifying “MLE is all you need”.

3. We instantiate our generic results by considering three representative examples with distinct prob-
lem structures: linear regression, logistic regression and phase retrieval. We verify preconditions,
compute key quantities, and directly give covariate shift guarantees for these applications.

4. We further complement the study of this paper by considering the mis-specfied setting where
MLE ceases to work. We establish the first general, non-asymptotic upper bound for the Maxi-
mum Weighted Likelihood Estimator (MWLE) provided bounded likelihood ratio. We prove that
MWLE is minimax optimal under certain worst-case mis-specification.

MLE versus MWLE. This paper shows that importance weighting should not always be the go-to
algorithm for covariate shift problems. Despite MWLE works under more general mis-specified
setting given bounded density ratio, in the well-specified regime, MLE does not require bounded
density ratio, and is provably more efficient than MWLE in terms of sample complexity. MLE is all
you need for well-specified covariate shift problem.

1.1 RELATED WORK

Parametric covariate shift. The statistical study of covariate shift under parametric models can
be dated back to Shimodaira (2000), which established the asymptotic normality of MWLE and
pointed out that vanilla MLE is asymptotically optimal among all the weighted likelihood estimators
when the model is well-specified. However, no finite sample guarantees were provided, and the
optimality of MLE is only proved within the restricted class of weighted likelihood estimators. In
contrast, this paper establishes non-asymptotic results and proves the optimality of MLE among
all possible estimators under well-specified models. Cortes et al. (2010a) studied the importance
weighting under the statistical learning framework and gave a non-asymptotic upper bound for the
generalization error of the weighted estimator. However, their rate scales as O(1/

√
n) compared

to our rate O(1/n), where n is the sample size. A recent line of work also provide non-asymptotic
analyses for covariate shift under well-specified setting, however they focus on linear regression
or a few specific models which are more restrictive than our setting: Mousavi Kalan et al. (2020)
introduces a statistical minimax framework and provides lower bounds for OOD generalization in
the context of linear and one-hidden layer neural network regression models. When applied to
covariate shift, their lower bounds are loose and no longer minimax optimal. Lei et al. (2021)
considers the minimax optimal estimator for linear regression under fixed design, the estimator they
proposed is not MLE and is much more complicated in certain regimes. Finally, Zhang et al. (2022)
considers covariate shift in linear regression where the learner can have access to a small number of
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target labels, this is beyond the scope of this paper, where we focus on the classical covariate shift
setup in which target labels are not known.

Nonparametric covariate shift. Another line of work focuses on well-specified nonparametric
models under covariate shift. Kpotufe & Martinet (2018) presented minimax results for nonpara-
metric classification problem, which was controlled by a transfer-exponent that measures the dis-
crepancy between source and target. Hanneke & Kpotufe (2019) delves deeper into the advantages
of unlabeled target data and demonstrates that typical importance sampling methods do not offer
any improvements over the minimax rate already achieved by ERM. Inspired by the aforementioned
work, Pathak et al. (2022) studied nonparametric regression problem over the class of Hölder contin-
uous functions with a more fine-grained similarity measure. When considering reproducing kernel
Hilbert space (RKHS), Ma et al. (2023) showed kernel ridge regression (KRR) estimator with a
properly chosen penalty is minimax optimal for a large family of RKHS when the likelihood ratio
is uniformly bounded, and a reweighted KRR using truncated likelihood ratios is minimax opti-
mal when the likelihood ratio has a finite second moment. Later, Wang (2023) proposed a learning
strategy based on pseudo-labels. When the likelihood ratio is bounded, their estimator enjoyed the
optimality guarantees without prior knowledge about the amount of covariate shift. Although these
works focused on covariate shift problems, they considered nonparametric setting, and hence are
not directly comparable to our work. As an example, Ma et al. (2023) showed that MLE (empiri-
cal risk minimization in their language) is provably suboptimal for addressing covariate shift under
nonparametric RKHS assumptions. In contrast, we show that MLE is optimal for covariate shift for
a well-specified parametric model. We also highlight that our lower bound is instance dependent
in the sense that it depends on the source and target distributions. This is in contrast to prior work
(e.g. Ma et al. (2023); Kpotufe & Martinet (2018); Hanneke & Kpotufe (2019)) that consider the
worst-case scenario over certain classes of source-target pairs (e.g., bounded density ratios).

Maximum likelihood estimation. A crucial part of this work is analyzing MLE, which is a domi-
nant approach in statistical inference. There exists a variety of work studying the behavior of MLE
under the standard no-distribution-shift setting. It is well known that MLE is asymptotically normal
(Casella & Berger, 2021) with the inverse of Fisher information as the asymptotic variance. Cramér
(1946); Rao (1992) established the famous Cramer-Rao bound for unbiased estimators, which also
showed that no consistent estimator has lower asymptotic mean squared error than the MLE. White
(1982) gave the asymptotic distribution of MLE under the mis-specified setting. More recently,
non-asymptotic behaviours of MLE are studied under certain models. Bach (2010); Ostrovskii &
Bach (2021) established the non-asymptotic error bound for MLE in logistic regression using self-
concordance. This line of work does not consider covariate shift, which is an indispensable part of
this paper.

Importance reweighting algorithms. Lastly, importance reweighting (or importance sampling)
is a classical method to use independent samples from a proposal distribution to approximate ex-
pectations w.r.t. a target measure (Agapiou et al., 2017). Chatterjee & Diaconis (2018) studied the
sample size (depending on the KL divergence between two distributions) required for importance
sampling to approximate a single function. Sanz-Alonso (2018) extended analysis to the case with
general f -divergences. Zhai et al. (2022) studied overparametrized linear models and showed that
Generalized Reweighting (GRW) algorithms, upon achieving zero training error, yield the same
results as ERM, thus offering no advantage over it. In addition to correcting covariate shift, impor-
tance reweighting has been central in offline reinforcement learning. For instance, Ma et al. (2022)
showed a truncated version of importance reweighting is minimax optimal for estimation the value
of a target policy using data from a behavior policy. For learning the optimal policy from the be-
havior data, Swaminathan & Joachims (2015) presented upper bounds of an importance-reweighted
estimator. This spurs a long line of work of using importance weighting in offline RL. See the recent
work Gabbianelli et al. (2023) and the references therein.

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we provide background on the problem of learning under covariate shift. We also
review two widely adopted estimators: maximum likelihood estimator and maximum weighted like-
lihood estimator.
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Notations. Throughout the paper, we use c to denote universal constants, which may vary from line
to line.

2.1 COVARIATE SHIFT AND EXCESS RISK

LetX ∈ X be the covariates and Y ∈ Y be the response variable that we aim to predict. In a general
out-of-distribution (OOD) generalization problem, we have two domains of interest, namely a source
domain S and a target domain T . Each domain is associated with a data generating distribution over
(X,Y ): PS(X,Y ) for the source domain and PT (X,Y ) for the target domain. Given n i.i.d. labeled
samples {(xi, yi)}ni=1 ∼ PS(X,Y ) from the source domain, the goal of OOD generalization is to
learn a prediction rule X → Y that performs well in the target domain. In this paper, we focus on
the covariate shift version of the OOD generalization problem, in which the marginal distributions
PS(X) and PT (X) of the covariates could differ between the source and target domains, while the
conditional distribution Y |X is assumed to be the same on both domains.

More precisely, we adopt the notion of excess risk to measure of the performance of an estimator
under covariate shift. Let F := {f(y |x;β) | β ∈ Rd} be a parameterized function class to
model the conditional density function p(y |x) of Y |X . A typical loss function is defined using the
negative log-likelihood function ℓ(x, y, β) := − log f(y |x;β). The excess risk at β is then defined
as

R(β) := ET [ℓ(x, y, β)]− infβ ET [ℓ(x, y, β)] , (1)

where the expectation ET is taken over PT (X,Y ). When the model is well-specified, i.e., when the
true density p(y |x) = f(y |x;β⋆) for some β⋆, we have infβ ET [ℓ(x, y, β)] = ET [ℓ(x, y, β

⋆)]. As
a result, we evaluate the loss at β against the loss at the true parameter β⋆. In contrast, in the case of
mis-specification, i.e., when p(y |x) /∈ F , the loss at β is compared against the loss of the best fit in
the model class.

2.2 MAXIMUM LIKELIHOOD ESTIMATION AND ITS WEIGHTED VERSION

In the no-covariate-shift case, maximum likelihood estimation (MLE) is arguably the most popular
approach. Let

ℓn(β) :=
1
n

∑n
i=1 ℓ(xi, yi, β) (2)

be the empirical negative log-likelihood using the samples {(xi, yi)}ni=1 from the source domain.
The vanilla MLE is defined as βMLE := argminβ∈Rdℓn(β).

One potential “criticism” against MLE in the covariate shift setting is that the empirical nega-
tive log-likelihood is not a faithful estimate of the out-of-distribution generalization performance,
i.e., ET [ℓ(x, y, β)]. In light of this, a weighted version of MLE is proposed. Let w(x) :=
dPT (x)/dPS(x) be the density ratio function and

ℓwn (β) :=
1
n

∑n
i=1 w(xi)ℓ(xi, yi, β). (3)

be the weighed loss. Then the maximum weighted likelihood estimator is defined as βMWLE :=
argminβ∈Rdℓwn (β). It is easy to see that the weighted loss is an unbiased estimate of ET [ℓ(x, y, β)].

To ease presentations later, we would also recall the classical notion of Fisher information—an im-
portant quantity to measure the difficulty of parameter estimation. The Fisher information evaluated
at β on source and target is defined as

IS(β) := Ex∼PS(X),y | x∼f(y | x;β)
[
∇2ℓ(x, y, β)

]
, IT (β) := Ex∼PT (X),y | x∼f(y | x;β)

[
∇2ℓ(x, y, β)

]
.

Here, the gradient and Hessian are taken with respect to the parameter β.

3 WELL-SPECIFIED PARAMETRIC MODEL UNDER COVARIATE SHIFT

In this section, we focus on covariate shift with a well-specified model, that is, the true conditional
distribution falls in our parametric function class. This setting aligns with the practice, since in
modern machine learning we often deploy large models whose representation ability are so strong
that every possible true data distribution almost falls in the function class. We assume there exists
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some β⋆ such that p(y |x) = f(y |x;β⋆), and denote the excess risk evaluated at β under true model
parameter β⋆ as Rβ⋆(β), i.e.,

Rβ⋆(β) := E x∼PT (X)
y|x∼f(y|x;β⋆)

[ℓ(x, y, β)]− E x∼PT (X)
y|x∼f(y|x;β⋆)

[ℓ(x, y, β⋆)] . (4)

While the objective of MLE is not an unbiased estimate of the risk under the target domain, we will
show in this section that MLE is in fact optimal for addressing covariate shift under well-specified
models.

More specifically, in Section 3.1, we provide the performance upper bound for MLE under generic
assumptions on the parametric model. Then in Section 3.2, we characterize the performance limit
of any estimator in the presence of covariate shift. As we will see, MLE is minimax optimal as it
matches the performance limit.

3.1 UPPER BOUND FOR MLE

In this subsection, we establish a non-asymptotic upper bound for MLE under generic assumptions
on the model class.
Assumption A. We make the following assumptions on the model class F:

A.1 There existB1, B2,N(δ), and absolute constants c, γ such that for any fixed matrixA ∈ Rd×d,
any δ ∈ (0, 1), and any n > N(δ), with probability at least 1− δ:

∥A (∇ℓn(β⋆)− E[∇ℓn(β⋆)])∥2 ≤ c

√
V log d

δ

n
+B1∥A∥2 logγ

(
B1∥A∥2√

V

)
log d

δ

n
, (5)

∥∥∇2ℓn(β
⋆)− E[∇2ℓn(β

⋆)]
∥∥
2
≤ B2

√
log d

δ

n
, (6)

where V = n · E∥A(∇ℓn(β⋆)− E[∇ℓn(β⋆)])∥22 is the variance.
A.2 There exists some constant B3 ≥ 0 such that ∥∇3ℓ(x, y, β)∥2 ≤ B3 for all x ∈ XS ∪ XT , y ∈

Y, β ∈ Rd, where XS (resp. XT ) is the support of PS(X) (resp. PT (X)).
A.3 The empirical loss ℓn(·) defined in (2) has a unique local minimum in Rd, which is also the

global minimum.

Several remarks on Assumption A are in order. Assumption A.1 is a general version of Bernstein
inequality (when γ = 0 it reduces to classical Bernstein inequality), which gives concentration
on gradient and Hessian. This assumption is naturally satisfied when the gradient and Hessian are
bounded (see Proposition D.2 for details). Assumption A.2 requires the third order derivative of log-
likelihood to be bounded, which is easy to satisfy (e.g., linear regression satisfies this assumption
with B3 = 0). Assumption A.3 ensures the MLE is unique, which is standard in the study of the
behaviour of MLE. We can see that it naturally applies to traditional convex losses. It is worth noting
that our general theorem can also be applied under a relaxed version of Assumption A.3, which will
be shown in Theorem 4.5. In Section 4, we will see that Assumption A is mild and easily satisfied
for a wide range of models.

Now we are ready to present the performance upper bound for MLE under covariate shift.
Theorem 3.1. Suppose that the model class F satisfies Assumption A. Let IT := IT (β⋆) and
IS := IS(β⋆). For any δ ∈ (0, 1), if n ≥ cmax{N⋆ log(d/δ), N(δ)}, then with probability at

least 1 − 2δ, we have Rβ⋆(βMLE) ≤ c
Tr(IT I−1

S ) log d
δ

n for an absolute constant c. Here N⋆ :=

Poly(d,B1, B2, B3, ∥I−1
S ∥2, ∥I

1
2

T I
−1
S I

1
2

T ∥
−1
2 ).

For an exact characterization of the threshold N⋆, one can refer to Theorem A.1 in the appendix.

Theorem 3.1 gives a non-asymptotic upper bound for the excess risk of MLE: when the sample size
exceeds a certain threshold of max{N⋆ log(d/δ), N(δ)}, MLE achieves an instance dependent risk
bound Tr(ITI−1

S )/n. It is worth noting that our analysis does not require boundedness on the den-
sity ratios between the target and source distributions (as have been assumed in prior art (Ma et al.,
2023)), which yields broader applicability. In Section 4, we will instantiate our generic analysis on
three different examples: linear regression, logistric regression and phase retrieval.
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3.2 MINIMAX LOWER BOUND

In the previous section, we have established the upper bound for the vanilla MLE. Now we turn to
the complementary question regarding the fundamental limit of covariate shift under well-specified
models. To establish the lower bound, we will need the following Assumption B that is a slight vari-
ant of Assumption A. Different from the upper bound, the lower bound is algorithm independent and
involve a model class rather than a fixed ground truth. Hence, Assumption B focuses on population
properties of our model as opposed to Assumption A, which is on the sample level.
Assumption B. Let β0 ∈ Rd andB > 0. We make the following assumptions on the model class F:

B.1 Assumption A.2 holds.
B.2 There exist some constants LS , LT ≥ 0 such that for any β1, β2 ∈ Bβ0

(B):

∥IS(β1)− IS(β2)∥2 ≤ LS∥β1 − β2∥2, ∥IT (β1)− IT (β2)∥2 ≤ LT ∥β1 − β2∥2.

B.3 For any β⋆ ∈ Bβ0
(B), the excess risk Rβ⋆(β) defined in (4) is convex in β ∈ Rd.

B.4 We assume IS(β) and IT (β) are positive definite for all β ∈ Bβ0
(B).

Assumption B.2 essentially requires the Fisher information will not vary drastically in a small neigh-
bourhood of β0. This assumption is easy to hold when the fisher information has certain smoothness
(e.g., in linear regression, the fisher information does not change when β varies). Since Assumption
B is a slight variant of Assumption A, both assumptions are often satisfied simultaneously for a wide
range of models, as we will show in Section 4.
Theorem 3.2. Suppose the model class F satisfies Assumption B. As long as n ≥ N0, we have

inf
β̂

sup
β⋆∈Bβ0

(B)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ 1

50n
,

where N0 := Poly(d,B−1, B3, LS , LT , ∥IS(β0)∥2, ∥IT (β0)∥2, ∥IS(β0)−1∥2, ∥IT (β0)−1∥2).

For an exact characterization of the threshold N0, one can refer to Theorem A.4 in the appendix.

Comparing Theorem 3.1 and 3.2, we can see that, under1 Assumptions A and B, then for large
enough sample size n, Tr

(
IT (β⋆)I−1

S (β⋆)
)
/n exactly characterizes the fundamental hardness of

covariate shift under well-specified parametric models. It also reveals that vanilla MLE is minimax
optimal under this scenario. To gain some intuitions, I−1

S captures the variance of the parameter
estimation, and IT measures how the excess risk on the target depends on the estimation accuracy of
the parameter. Therefore what really affects the excess risk (on target) is the accuracy of estimating
the parameter, and vanilla MLE is naturally the most efficient choice.

4 APPLICATIONS

In this section, we illustrate the broad applicability of our framework by delving into three distinct
statistical models, namely linear regression, logistic regression and phase retrieval. For each model,
we will demonstrate the validity of the assumptions, and give the explicit non-asymptotic upper
bound on the vanilla MLE obtained by our framework as well as the threshold of sample size needed
to obtain the upper bound.

4.1 LINEAR REGRESSION

In linear regression, we have Y = XTβ⋆ + ε, where ε ∼ N (0, 1) and ε ⊥⊥ X . The corresponding
negative log-likelihood function (i.e. the loss function) is given by ℓ(x, y, β) := 1

2 (y − xTβ)2. We
assume X ∼ N (0, Id) on the source domain and X ∼ N (α, σ2Id) on the target domain.
Proposition 4.1. The aforementioned linear regression model satisfies Assumption A and B with
γ = 1, N(δ) = d log(1/δ), B1 = c

√
d, B2 = c

√
d, B3 = 0 and LS = LT = 0. Moreover, we have

Tr(ITI−1
S ) = ∥α∥22 + σ2d.

1It is worthy to point out that, it is not hard for Assumptions A and B to be satisfied simultaneously. These
assumptions will hold naturally when the domain is bounded and the log-likelihood is of certain convexity and
smoothness, as we will show in the next section by several concrete examples.
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By Theorem 3.1 and Theorem 3.2, since Assumption A and B are satisfied, we immediately demon-
strate the optimality of MLE under linear regression. The following theorem gives the explicit form
of excess risk bound by applying Theorem 3.1:
Theorem 4.2. For any δ ∈ (0, 1), if n ≥ O(N log d

δ ), then with probability at least 1− 2δ, we have

Rβ⋆(βMLE) ≤ c
(∥α∥2

2+σ2d) log d
δ

n , where N := d
(
1 +

∥α∥2
2d+σ2d

∥α∥2
2+σ2d

)2
.

Remark (Excess risk). Regarding the upper bound of the excess risk, we categorize it into two
scenarios: large shift and small shift. In the small shift scenarios (i.e., ∥α∥22 ≤ σ2d), the result is the
same as that in scenarios without any mean shift, with a rate of σ2d/n. On the other hand, in the
large shift scenarios (i.e., ∥α∥22 ≥ σ2d), the upper bound of the excess risk increases with the mean
shift at a rate of ∥α∥22/n.
Remark (Threshold N ). For a minor mean shift, specifically when ∥α∥2 = cσ for a given constant
c, the threshold is N = d. This aligns with the results from linear regression without any covariate
shift. On the other hand, as the mean shift increases (i.e., |α|2 = σdk for some 0 < k < 1/2), the
threshold becomes N = d4k+1, increasing with the growth of k. In scenarios where the mean shift
significantly surpasses the scaling shift, denoted as α ≥ σ

√
d, the threshold reaches N = d3.

4.2 LOGISTIC REGRESSION

In the logistic regression, the response variable Y ∈ {0, 1} obeys P(Y = 1 |X = x) =

1/(1 + ex
T β⋆

), P(Y = 0 |X = x) = 1/(1 + e−xT β⋆

). The corresponding negative log-likelihood
function (i.e. the loss function) is given by ℓ(x, y, β) := log(1 + ex

T β) − y(xTβ). We assume
X ∼ Uniform(Sd−1(

√
d)) on the source domain and X ∼ Uniform(Sd−1(

√
d)) + v on the target

domain, where Sd−1(
√
d) := {x ∈ Rd | ∥x∥2 =

√
d}. In the following, we will give the upper

bound of the excess risk for MLE when v = rβ⋆
⊥, where β⋆

⊥ represents a vector perpendicular to β⋆

(i.e., β⋆T
⊥ β⋆=0). Without loss of generality, we assume ∥β⋆∥2 = ∥β⋆

⊥∥2 = 1.
Proposition 4.3. The aforementioned logistic regression model satisfies Assumption A and B with
γ = 0, N(δ) = 0, B1 = c

√
d, B2 = cd, B3 = (

√
d + r)3, LS = d1.5 and LT = (

√
d + r)3.

Moreover, we have Tr(ITI−1
S ) ≍ d+ r2.

By Theorem 3.1 and Theorem 3.2, since Assumption A and B are satisfied, we immediately demon-
strate the optimality of MLE under logistic regression. The following theorem gives the explicit
form of excess risk bound by applying Theorem 3.1:
Theorem 4.4. For any δ ∈ (0, 1), if n ≥ O(N log d

δ ), then with probability at least 1− 2δ, we have

Rβ⋆(βMLE) ≤ c
(d+r2) log d

δ

n , where N := d4(1 + r6).

Remark (Excess risk). The bound on the excess risk incorporates a r2 term, which is a measurement
of the mean shift. This is due to the fact that the MLE does not utilize the information that vTβ⋆ = 0.
Therefore, vTβMLE is not necessarily zero, which will lead to an additional bias. Similar to linear
regression, we can categorize the upper bound of the excess risk into two scenarios: large shift
(r ≥

√
d) and small shift (r ≤

√
d).

Remark (Threshold N ). We admit that the N here may not be tight, as we lean on a general frame-
work designed for a variety of models rather than a specific one.

4.3 PHASE RETRIEVAL

As we have mentioned, our generic framework can also be applied to the scenarios where some of
the assumptions are relaxed. In this subsection, we will further illustrate this point by delving into
the phase retrieval model. In the phase retrieval, the response variable Y = (XTβ⋆)2 + ε, where
ε ∼ N (0, 1) and ε ⊥⊥ X . We assume PS(X) and PT (X) follow the same distribution as that in
the logistic regression model (i.e., Section 4.2). Note that both the phase retrieval model and the
logistic regression model belong to generalized linear model (GLM), thus they are expected to have
similar properties. However, given the loss function ℓ(x, y, β) := 1

2

(
y − (xTβ)2

)2
, it is obvious

that Assumption A.3 is not satisfied, since if β is a global minimum of ℓn, −β is also a global
minimum. The following theorem shows that we can still obtain results similar to logistic regression
though Assumption A.3 fails to hold.
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Theorem 4.5. For any δ ∈ (0, 1), if n ≥ O(N log d
δ ), then with probability at least 1− 2δ, we have

Rβ⋆(βMLE) ≤ c
(d+r2) log d

δ

n , where N := d8(1 + r8).

5 MIS-SPECIFIED PARAMETRIC MODEL UNDER COVARIATE SHIFT

In the case of model mis-specification, we still employ a parameterized function class F :=
{f(y |x;β) |β ∈ Rd} to model the conditional density function of Y |X . However, the true density
p(y |x) might not be in F . As we previously showed, under a well-specified parametric model, the
vanilla MLE is minimax optimal up to constants. However, when the model is mis-specified, the
classical MLE may not necessarily provide a good estimator.
Proposition 5.1. There exist certain mis-specified scenarios such that classical MLE is not consis-
tent, whereas MWLE is.

Proposition 5.1 illustrates the necessity of adaptation under model mis-specification since the clas-
sical MLE asymptotically gives the wrong estimator. In this section, we study the non-asymptotic
property of MWLE. Let M be the model class of the ground truth Y |X , andM ∈ M be the ground
truth model for Y |X .

We denote the optimal fit on target as β⋆(M) := argminβEx∼PT (X)
y|x∼M

[ℓ(x, y, β)]. The excess risk

evaluated at β is then given by RM (β) = Ex∼PT (X)
y|x∼M

[ℓ(x, y, β)]− Ex∼PT (X)
y|x∼M

[ℓ(x, y, β⋆(M))] .

5.1 UPPER BOUND FOR MWLE

In this subsection, we establish the non-asymptotic upper bound for MWLE, as an analog to Theo-
rem 3.1. We make the following assumption which is a modification of Assumption A.
Assumption C. We assume the function class F satisfies the follows:

C.1 There exists some constant W > 1 such that the density ratio w(x) ≤W for all x ∈ XS ∪XT .
C.2 There exist B1, B2 and N(δ), and absolute constants c, γ such that for any fixed matrix A ∈

Rd×d, any δ ∈ (0, 1), and any n > N(δ), with probability at least 1− δ:

∥A (∇ℓwn (β⋆(M))− E[∇ℓwn (β⋆(M))])∥2 ≤ c

√
V log d

δ

n
+WB1∥A∥2 logγ

(
WB1∥A∥2√

V

)
log d

δ

n
,

∥∥∇2ℓwn (β
⋆(M))− E[∇2ℓwn (β

⋆(M))]
∥∥
2
≤WB2

√
log d

δ

n
,

where V = n · E∥A(∇ℓwn (β⋆(M))− E[∇ℓwn (β⋆(M))])∥22 is the variance.
C.3 Assumption A.2 holds.
C.4 There exists N ′(δ) such that for any δ ∈ (0, 1) and any n ≥ N ′(δ), with probability at least

1− δ, the empirical loss ℓwn (·) defined in (3) has a unique local minimum in Rd, which is also
the global minimum.

Assumption C.1 is a density ratio upper bound (not required for analyzing MLE), which is essential
for the analysis of MWLE. Assumption C.2 is an analog of Assumption A.1, in the sense that
the empirical loss ℓn is replaced by its weighted version ℓwn . Assumption C.4 is a weaker version
of Assumption A.3 in the sense that it only requires ℓwn has a unique local minimum with high
probability. This is due to the nature of reweighting: when applying MWLE, w(xi) can sometimes
be zero, which lead to the degeneration of ℓwn (with a small probability). Therefore we only require
the uniqueness of local minimum holds with high probability.

To state our non-asymptotic upper bound for MWLE, we define the following “weighted version”
of Fisher information:

Gw(M) := Ex∼PS(X)
y|x∼M

[
w(x)2∇ℓ(x, y, β⋆(M))∇ℓ(x, y, β⋆(M))T

]
,

Hw(M) := Ex∼PS(X)
y|x∼M

[
w(x)∇2ℓ(x, y, β⋆(M))

]
= Ex∼PT (X)

y|x∼M

[
∇2ℓ(x, y, β⋆(M))

]
.
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Theorem 5.2. Suppose the function class F satisfies Assumption C. LetGw := Gw(M) andHw :=
Hw(M). For any δ ∈ (0, 1), if n ≥ cmax{N⋆ log(d/δ), N(δ), N ′(δ)}, then with probability at

least 1 − 3δ, we have RM (βMWLE) ≤ c
Tr(GwH−1

w ) log d
δ

n for an absolute constant c. Here N⋆ :=

Poly(W,B1, B2, B3, ∥H−1
w ∥2,Tr(GwH

−2
w ),Tr(GwH

−2
w )−1).

For an exact characterization of the threshold N⋆, one can refer to Theorem C.1 in the appendix.

Compared with Theorem 3.1, Theorem 5.2 does not require well-specification of the model, demon-
strating the wide applicability of MWLE. The excess risk upper bound can be explained as fol-
lows: note that Tr(GwH

−1
w ) can be expanded as Tr(HwH

−1
w GwH

−1
w ). As shown by Shimodaira

(2000), the term
√
n(βMWLE − β⋆) converges asymptotically to a normal distribution, denoted as

N (0, H−1
w GwH

−1
w ). Thus, the componentH−1

w GwH
−1
w characterizes the variance of the estimator,

corresponding to the I−1
S term in Theorem 3.1. Additionally, the excess risk’s dependence on the

parameter estimation is captured by Hw as a counterpart of IT in Theorem 3.1.

However, to establish Theorem 5.2, it is necessary to assume the bounded density ratio, which
does not appear in Theorem 3.1. Moreover, when the model is well-specified, by Cauchy-Schwarz
ineqaulity, we have Tr(GwH

−1
w ) ≥ Tr(ITI−1

S ), which implies the upper bound for MWLE is larger
than the vanilla MLE. This observation aligns with the results presented in Shimodaira (2000), which
point out that when the model is well specified, MLE is more efficient than MWLE in terms of the
asymptotic variance.

5.2 OPTIMALITY OF MWLE

To understand the optimality of MWLE, it is necessary to establish a matching lower bound. How-
ever, deriving a lower bound similar to Theorem 3.2, which holds for any model classes that satisfies
certain mild conditions, is challenging due to hardness of capturing the difference between M and
F . As a solution, we present a lower bound tailored for certain model classes and data distributions
in the following.
Theorem 5.3. There exist PS(X) ̸= PT (X), a model class M and a prediction class F satisfying
Assumption C such that when n is sufficiently large, we have

inf β̂ supM∈M Tr
(
Gw(M)H−1

w (M)
)−1 Exi∼PS(X)

yi|xi∼M

[
RM (β̂)

]
≳ 1

n . (7)

By Theorem 5.2, the excess risk of MWLE is upper bounded by Tr(GwH
−1
w )/n. Therefore, Theo-

rem 5.3 shows that there exists a non-trivial scenario where MWLE is minimax optimal.

Notice that Theorem 5.3 presents a weaker lower bound compared to Theorem 3.2. The lower
bound presented in Theorem 5.3 holds only for certain meticulously chosen PS(X),PT (X), model
class M and prediction class F . In contrast, the lower bound in Theorem 3.2 applies to any
PS(X),PT (X), and class F that meet the required assumptions.

6 CONCLUSION AND DISCUSSION

To conclude, we prove that MLE achieves the minimax optimality for covariate shift under a well-
specified parametric model. Along the way, we demonstrate that the term Tr(ITI−1

S ) characterizes
the foundamental hardness of covariate shift, where IS and IT are the Fisher information on the
source domain and the target domain, respectively. To complement the study, we also consider the
misspecified setting and show that Maximum Weighted Likelihood Estimator (MWLE) emerges as
minimax optimal in specific scenarios, outperforming MLE.

Our work opens up several interesting avenues for future study. First, it is of great interest to extend
our analysis to other types of OOD generalization problems, e.g., imbalanced data, posterior shift,
etc. Second, our analyses relies on standard regularity assumptions, such as the positive definiteness
of the Fisher information (which implies certain identifiability of the parameter) and the uniqueness
of the minimum of the loss function. Addressing covariate shift without these assumptions is also
important future directions.
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A PROOFS FOR SECTION 3

A.1 PROOFS FOR THEOREM 3.1

The detailed version of Theorem 3.1 is stated as the following.
Theorem A.1. Suppose that the model class F satisfies Assumption A. Let IT := IT (β⋆) and
IS := IS(β⋆). For any δ ∈ (0, 1), if n ≥ cmax{N⋆ log(d/δ), N(δ)}, then with probability at least
1− 2δ, we have

Rβ⋆(βMLE) ≤ c
Tr
(
ITI−1

S

)
log d

δ

n
for an absolute constant c. Here

N⋆ := (1 + κ̃/κ)2 ·max
{
κ̃−1α2

1 log
2γ
(
(1 + κ̃/κ)κ̃−1α2

1

)
, α2

2, κ̃(1 + ∥I
1
2

T I
−1
S I

1
2

T ∥
−2
2 )α2

3

}
,

where α1 := B1∥I−1
S ∥1/22 , α2 := B2∥I−1

S ∥2, α3 := B3∥I−1
S ∥3/22 ,

κ :=
Tr(ITI−1

S )

∥I
1
2

T I
−1
S I

1
2

T ∥2
, κ̃ :=

Tr(I−1
S )

∥I−1
S ∥2

.

For proving Theorem A.1, we first state two main lemmas. Informally speaking, Lemma A.2 and
Lemma A.3 capture the distance between βMLE and β⋆ under different measurements.
Lemma A.2. Suppose Assumption A holds. For any δ ∈ (0, 1) and any n ≥

cmax{N1 log(d/δ), N(δ)}, with probability at least 1− δ, we have βMLE ∈ Bβ⋆(c

√
Tr(I−1

S ) log d
δ

n )
for some absolute constant c. Here

N1 := max

{
B2

2∥I−1
S ∥22, B2

3∥I−1
S ∥22Tr(I−1

S ),

(
B2

1B2∥I−1
S ∥32 log

2γ(κ̃−1/2α1)

Tr(I−1
S )

) 2
3

,

(
B3

1B3∥I−1
S ∥42 log

3γ(κ̃−1/2α1)

Tr(I−1
S )

) 1
2

,
B2

1∥I−1
S ∥22 log

2γ(κ̃−1/2α1)

Tr(I−1
S )

}
.

Lemma A.3. Suppose Assumption A holds. For any δ ∈ (0, 1) and any n ≥
cmax{N1 log(d/δ), N2 log(d/δ), N(δ)}, with probability at least 1− 2δ, we have

∥I
1
2

T (βMLE − β⋆)∥22 ≤ c
Tr(ITI−1

S ) log d
δ

n
for some absolute constant c. Here N1 is defined in Lemma A.2 and

N2 := max

{(
B2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )

Tr(ITI−1
S )

)2

,

(
B3∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5

Tr(ITI−1
S )

)2

,

(
B2

1B2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log

2γ(κ̃−1/2α1)

Tr(ITI−1
S )

) 2
3

,

(
B3

1B3∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥32 log

3γ(κ̃−1/2α1)

Tr(ITI−1
S )

) 1
2

,

B2
1∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log2γ(κ−1/2α1)

Tr(ITI−1
S )

}
.

The proofs for Lemma A.2 and A.3 are delayed to the end of this subsection. With these two lemmas,
we can now state the proof for Theorem A.1.

Proof of Theorem A.1. By Assumption A.2, we can do Taylor expansion w.r.t. β as the following:
Rβ⋆(βMLE) = E x∼PT (X)

y|x∼f(y|x;β⋆)

[ℓ(x, y, βMLE)− ℓ(x, y, β⋆)]

≤ E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇ℓ(x, y, β⋆)]T (βMLE − β⋆)

+
1

2
(βMLE − β⋆)TIT (βMLE − β⋆) +

B3

6
∥βMLE − β⋆∥32.
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Applying Lemma A.2 and A.3, we know for any δ and any n ≥
cmax{N1 log(d/δ), N2 log(d/δ), N(δ)}, with probability at least 1− 2δ, we have

(βMLE − β⋆)TIT (βMLE − β⋆) ≤ c
Tr(ITI−1

S ) log d
δ

n
and

∥βMLE − β⋆∥2 ≤ c

√
Tr(I−1

S ) log d
δ

n
.

Also notice that, E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇ℓ(x, y, β⋆)] = 0. Therefore, with probability at least 1 − 2δ, we

have

Rβ⋆(βMLE) ≤
c

2

Tr(ITI−1
S ) log d

δ

n
+
c3

6
B3Tr(I−1

S )1.5(
log d

δ

n
)1.5

for any δ and any n ≥ cmax{N1 log(d/δ), N2 log(d/δ), N(δ)}. If we further assume n ≥
c(

B3Tr(I−1
S )1.5

Tr(IT I−1
S )

)2 log(d/δ), it then holds that

Rβ⋆(βMLE) ≤ c
Tr(ITI−1

S ) log d
δ

n
.

Note that

max

{
N1, N2,

(
B3Tr(I−1

S )1.5

Tr(ITI−1
S )

)2}

= max

{
B2

2∥I−1
S ∥22, B2

3∥I−1
S ∥22Tr(I−1

S ),

(
B2

1B2∥I−1
S ∥32 log

2γ(κ̃−1/2α1)

Tr(I−1
S )

) 2
3

,

(
B3

1B3∥I−1
S ∥42 log

3γ(κ̃−1/2α1)

Tr(I−1
S )

) 1
2

,

B2
1∥I−1

S ∥22 log
2γ(κ̃−1/2α1)

Tr(I−1
S )

,

(
B2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )

Tr(ITI−1
S )

)2

,

(
B3∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5

Tr(ITI−1
S )

)2

,

(
B2

1B2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log

2γ(κ̃−1/2α1)

Tr(ITI−1
S )

) 2
3

,

(
B3

1B3∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥32 log

3γ(κ̃−1/2α1)

Tr(ITI−1
S )

) 1
2

,

B2
1∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log2γ(κ−1/2α1)

Tr(ITI−1
S )

,

(
B3Tr(I−1

S )1.5

Tr(ITI−1
S )

)2}
= max

{
α2
2, κ̃α

2
3, α

4/3
1 α

2/3
2 κ̃−2/3 log4γ/3(κ̃−1/2α1), α

3/2
1 α

1/2
3 κ̃−1/2 log3γ/2(κ̃−1/2α1), α

2
1κ̃

−1 log2γ(κ̃−1/2α1),

α2
2(κ̃/κ)

2, α2
3κ̃

3/κ2, α
4/3
1 α

2/3
2 κ−2/3 log4γ/3(κ̃−1/2α1), α

3/2
1 α

1/2
3 κ−1/2 log3γ/2(κ̃−1/2α1),

α2
1κ

−1 log2γ(κ−1/2α1), α
2
3κ̃

3κ−2∥I
1
2

T I
−1
S I

1
2

T ∥
−2
2

}
≤ max

{
κ̃−1α2

1 log
2γ
(
(1 + κ̃/κ)κ̃−1α2

1

)
, κ−1α2

1 log
2γ
(
(1 + κ̃/κ)κ̃−1α2

1

)
, α2

2, (κ̃/κ)
2α2

2,

κ̃α2
3, (κ̃

3/κ2)α2
3, κ̃

3κ−2∥I
1
2

T I
−1
S I

1
2

T ∥
−2
2 α2

3

}
≤ (1 + κ̃/κ)2 ·max{κ̃−1α2

1 log
2γ
(
(1 + κ̃/κ)κ̃−1α2

1

)
, α2

2, κ̃(1 + ∥I
1
2

T I
−1
S I

1
2

T ∥
−2
2 )α2

3}
=: N⋆.

To summarize, for any δ, any n ≥ cmax{N⋆ log(d/δ), N(δ)}, with probability at least 1− 2δ, we
have

Rβ⋆(βMLE) ≤ c
Tr(ITI−1

S ) log d
δ

n
.

In the following, we prove Lemma A.2 and A.3.
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Proof of Lemma A.2

Proof of Lemma A.2. For notation simplicity, we denote g := ∇ℓn(β⋆)− E[∇ℓn(β⋆)]. Note that

V = n · E[∥A(∇ℓn(β⋆)− E[∇ℓn(β⋆)])∥22]
= n · E[∇ℓn(β⋆)TATA∇ℓn(β⋆)]

= n · E[Tr(A∇ℓn(β⋆)∇ℓn(β⋆)TAT )]

= Tr(AISAT ).

By taking A = I−1
S in Assumption A.1, for any δ, any n > N(δ), we have with probability at least

1− δ:

∥I−1
S g∥2 ≤ c

√
Tr(I−1

S ) log d
δ

n
+B1∥I−1

S ∥2 logγ
B1∥I−1

S ∥2√
Tr(I−1

S )

 log d
δ

n

= c

√
Tr(I−1

S ) log d
δ

n
+B1∥I−1

S ∥2 logγ(κ̃−1/2α1)
log d

δ

n
, (8)

∥∥∇2ℓn(β
⋆)− E[∇2ℓn(β

⋆)]
∥∥
2
≤ B2

√
log d

δ

n
. (9)

Let event A := {(8), (9) holds}. Under the event A, we have the following Taylor expansion:

ℓn(β)− ℓn(β
⋆)

by Assumption A.2
≤ (β − β⋆)T∇ℓn(β⋆) +

1

2
(β − β⋆)T∇2ℓn(β

⋆)(β − β⋆) +
B3

6
∥β − β⋆∥32

∇ℓ(β⋆)=0
= (β − β⋆)T g +

1

2
(β − β⋆)T∇2ℓn(β

⋆)(β − β⋆) +
B3

6
∥β − β⋆∥32

by (9)
≤ (β − β⋆)T g +

1

2
(β − β⋆)TIS(β − β⋆) +B2

√
log d

δ

n
∥β − β⋆∥22 +

B3

6
∥β − β⋆∥32

∆β :=β−β⋆

= ∆T
β g +

1

2
∆T

β IS∆β +B2

√
log d

δ

n
∥∆β∥22 +

B3

6
∥∆β∥32

=
1

2
(∆β − z)TIS(∆β − z)− 1

2
zTISz +B2

√
log d

δ

n
∥∆β∥22 +

B3

6
∥∆β∥32 (10)

where z := −I−1
S g. Similarly

ℓn(β)− ℓn(β
⋆) ≥ 1

2
(∆β − z)TIS(∆β − z)− 1

2
zTISz −B2

√
log d

δ

n
∥∆β∥22 −

B3

6
∥∆β∥32.

(11)

Notice that ∆β⋆+z = z, by (8) and (10), we have

ℓn(β
⋆ + z)− ℓn(β

⋆) ≤ −1

2
zTISz +B2

√
log d

δ

n

c
√

Tr(I−1
S ) log d

δ

n
+B1∥I−1

S ∥2 logγ(κ̃−1/2α1)
log d

δ

n

2

+
B3

6

c
√

Tr(I−1
S ) log d

δ

n
+B1∥I−1

S ∥2 logγ(κ̃−1/2α1)
log d

δ

n

3

≤ −1

2
zTISz + 2c2B2Tr(I−1

S )(
log d

δ

n
)1.5 + 2B2

1B2∥I−1
S ∥22 log

2γ(κ̃−1/2α1)(
log d

δ

n
)2.5

+
2

3
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5 +

2

3
B3

1B3∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3,

(12)
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where we use the fact that (a + b)n ≤ 2n−1(an + bn) in the last inequality. For any β ∈

Bβ⋆(3c

√
Tr(I−1

S ) log d
δ

n ), by (11), we have

ℓn(β)− ℓn(β
⋆) ≥ 1

2
(∆β − z)TIS(∆β − z)− 1

2
zTISz

− 9c2B2Tr(I−1
S )(

log d
δ

n
)1.5 − 9

2
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5. (13)

(13) - (12) gives

ℓn(β)− ℓn(β
⋆ + z) ≥ 1

2
(∆β − z)TIS(∆β − z)

−
(
9c2B2Tr(I−1

S )(
log d

δ

n
)1.5 +

9

2
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5

+ 2c2B2Tr(I−1
S )(

log d
δ

n
)1.5 + 2B2

1B2∥I−1
S ∥22 log

2γ(κ̃−1/2α1)(
log d

δ

n
)2.5

+
2

3
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5 +

2

3
B3

1B3∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3
)

=
1

2
(∆β − z)TIS(∆β − z)

−
(
11c2B2Tr(I−1

S )(
log d

δ

n
)1.5 +

31

6
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5

+ 2B2
1B2∥I−1

S ∥22 log
2γ(κ̃−1/2α1)(

log d
δ

n
)2.5 +

2

3
B3

1B3∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3
)

(14)

Consider the ellipsoid

D :=

{
β ∈ Rd

∣∣∣∣ 12(∆β − z)TIS(∆β − z)

≤ 11c2B2Tr(I−1
S )(

log d
δ

n
)1.5 +

31

6
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5

+ 2B2
1B2∥I−1

S ∥22 log
2γ(κ̃−1/2α1)(

log d
δ

n
)2.5 +

2

3
B3

1B3∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3
}
.

Then by (14), for any β ∈ Bβ⋆(3c

√
Tr(I−1

S ) log d
δ

n ) ∩ DC ,

ℓn(β)− ℓn(β
⋆ + z) > 0. (15)

Notice that by the definition of D, using λ−1
min(IS) = ∥I−1

S ∥2, we have for any β ∈ D,

∥∆β − z∥22 ≤ 22c2B2∥I−1
S ∥2Tr(I−1

S )(
log d

δ

n
)1.5 +

31

3
c3B3∥I−1

S ∥2Tr(I−1
S )1.5(

log d
δ

n
)1.5

+ 4B2
1B2∥I−1

S ∥32 log
2γ(κ̃−1/2α1)(

log d
δ

n
)2.5 +

4

3
B3

1B3∥I−1
S ∥42 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3.

Thus for any β ∈ D, we have

∥∆β∥22 ≤ 2(∥∆β − z∥22 + ∥z∥22)
by(8)
≤ 44c2B2∥I−1

S ∥2Tr(I−1
S )(

log d
δ

n
)1.5 +

62

3
c3B3∥I−1

S ∥2Tr(I−1
S )1.5(

log d
δ

n
)1.5

+ 8B2
1B2∥I−1

S ∥32 log
2γ(κ̃−1/2α1)(

log d
δ

n
)2.5 +

8

3
B3

1B3∥I−1
S ∥42 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3

+ 4c2
Tr(I−1

S ) log d
δ

n
+ 4B2

1∥I−1
S ∥22 log

2γ(κ̃−1/2α1)(
log d

δ

n
)2.
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To guarantee Tr(I−1
S ) log d

δ

n is the leading term, we only need Tr(I−1
S ) log d

δ

n to dominate the rest of the
terms. Hence, if we further have n ≥ cN1 log(d/δ), it then holds that

∥∆β∥22 ≤ 9c2
Tr(I−1

S ) log d
δ

n
,

i.e., β ∈ Bβ⋆(3c

√
Tr(I−1

S ) log d
δ

n ). Here

N1 := max

{
B2

2∥I−1
S ∥22, B2

3∥I−1
S ∥22Tr(I−1

S ),

(
B2

1B2∥I−1
S ∥32 log

2γ(κ̃−1/2α1)

Tr(I−1
S )

) 2
3

,

(
B3

1B3∥I−1
S ∥42 log

3γ(κ̃−1/2α1)

Tr(I−1
S )

) 1
2

,
B2

1∥I−1
S ∥22 log

2γ(κ̃−1/2α1)

Tr(I−1
S )

}
.

In other words, we show that D ⊂ Bβ⋆(3c

√
Tr(I−1

S ) log d
δ

n ) when n ≥ cmax{N1 log(d/δ), N(δ)}.

Recall that by (15), we know that for any β ∈ Bβ⋆(3c

√
Tr(I−1

S ) log d
δ

n ) ∩ DC ,

ℓn(β)− ℓn(β
⋆ + z) > 0.

Note that β⋆ + z ∈ D. Hence there is a local minimum of ℓn(β) in D. By Assumption A.3, we
know that the global minimum of ℓn(β) is in D, i.e.,

βMLE ∈ D ⊂ Bβ⋆(3c

√
Tr(I−1

S ) log d
δ

n
).

Proof of Lemma A.3

Proof of Lemma A.3. Let E := {βMLE ∈ D ⊂ Bβ⋆(c

√
Tr(I−1

S ) log d
δ

n )}. For any δ and any n ≥
cmax{N1 log(d/δ), N(δ)}, by the proof of Lemma A.2, we have P(E) ≥ 1− δ.

By taking A = I
1
2

T I
−1
S in Assumption A.1, for any δ, any n > N(δ), we have with probability at

least 1− δ:

∥I
1
2

T I
−1
S g∥2 ≤ c

√
Tr(I−1

S IT ) log d
δ

n
+B1∥I

1
2

T I
−1
S ∥2 logγ

B1∥I
1
2

T I
−1
S ∥2√

Tr(I−1
S IT )

 log d
δ

n

≤ c

√
Tr(I−1

S IT ) log d
δ

n
+B1∥I

1
2

T I
−1
S ∥2 logγ(κ−1/2α1)

log d
δ

n
. (16)

We denote E′ := {(16) holds}. For any δ and any n ≥ cmax{N1 log(d/δ), N(δ)}, we have
P(E ∩ E′) ≥ 1− 2δ.

Under E ∩ E′, βMLE ∈ D, i.e.,
1

2
(∆βMLE

− z)TIS(∆βMLE
− z)

≤ 11c2B2Tr(I−1
S )(

log d
δ

n
)1.5 +

31

6
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5

+ 2B2
1B2∥I−1

S ∥22 log
2γ(κ̃−1/2α1)(

log d
δ

n
)2.5 +

2

3
B3

1B3∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3.

In other words,

∥I
1
2

S (∆βMLE
− z)∥22

≤ 22c2B2Tr(I−1
S )(

log d
δ

n
)1.5 +

31

3
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5

+ 4B2
1B2∥I−1

S ∥22 log
2γ(κ̃−1/2α1)(

log d
δ

n
)2.5 +

4

3
B3

1B3∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3 (17)
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Thus we have

∥I
1
2

T (βMLE − β⋆)∥22
= ∥I

1
2

T ∆βMLE
∥22

= ∥I
1
2

T (∆βMLE
− z) + I

1
2

T z∥
2
2

≤ 2∥I
1
2

T (∆βMLE
− z)∥22 + 2∥I

1
2

T z∥
2
2

= 2∥I
1
2

T I
− 1

2

S (I
1
2

S (∆βMLE
− z))∥22 + 2∥I

1
2

T I
−1
S g∥22

≤ 2∥I
1
2

T I
− 1

2

S ∥22∥I
1
2

S (∆βMLE
− z)∥22 + 2∥I

1
2

T I
−1
S g∥22

by(17)and(16)
≤ 4c2

Tr(ITI−1
S ) log d

δ

n

+ 44c2B2∥I
1
2

T I
− 1

2

S ∥22Tr(I−1
S )(

log d
δ

n
)1.5 +

62

3
c3B3∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5(

log d
δ

n
)1.5

+ 8B2
1B2∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log

2γ(κ̃−1/2α1)(
log d

δ

n
)2.5 +

8

3
B3

1B3∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥32 log

3γ(κ̃−1/2α1)(
log d

δ

n
)3

+ 4B2
1∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log2γ(κ−1/2α1)(

log d
δ

n
)2

To guarantee Tr(IT I−1
S ) log d

δ

n is the leading term, we only need Tr(IT I−1
S ) log d

δ

n to dominate the rest
of the terms. Hence, if we further have n ≥ cN2 log(d/δ), we have

∥I
1
2

T (βMLE − β⋆)∥22 ≤ 9c2
Tr(ITI−1

S ) log d
δ

n
.

Here

N2 := max

{(
B2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )

Tr(ITI−1
S )

)2

,

(
B3∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5

Tr(ITI−1
S )

)2

,

(
B2

1B2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log

2γ(κ̃−1/2α1)

Tr(ITI−1
S )

) 2
3

,

(
B3

1B3∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥32 log

3γ(κ̃−1/2α1)

Tr(ITI−1
S )

) 1
2

,

B2
1∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log2γ(κ−1/2α1)

Tr(ITI−1
S )

}
.

To summarize, we show that for any δ ∈ (0, 1) and any n ≥
cmax{N1 log(d/δ), N2 log(d/δ), N(δ)}, with probability at least 1− 2δ, we have

∥I
1
2

T (βMLE − β⋆)∥22 ≤ 9c2
Tr(ITI−1

S ) log d
δ

n
.

A.2 PROOFS FOR THEOREM 3.2

The detailed version of Theorem 3.2 is stated as the following.
Theorem A.4. Suppose the model class F satisfies Assumption B. Then we have

inf
β̂

sup
β⋆∈Bβ0

(B)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ 1

16
· 1

2n+ π2d
R2

1
Tr
(
IT (β0)I−2

S (β0)
)
Tr
(
IT (β0)I−1

S (β0)
)−1 ,

where

R1 :=
1

4

√
λmin(IT (β0))
λmax(IT (β0))

·min

{
λ2min(IS(β0))

4LSλmax(IS(β0))
,
λmin(IT (β0))
4B3 + 2LT

, B

}
.
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We first present some useful lemmas that will be used in the proof of Theorem A.4.
Lemma A.5. Under Assumptions A.2, B.2 and B.3, we can choose R0 ≤ B such that for any
β, β⋆ ∈ Bβ0(R0):

1

2
· I−1

S (β0) ⪯ I−1
S (β) ⪯ 2 · I−1

S (β0), (18)

1

2
· IT (β0) ⪯ E x∼PT (X)

y|x∼f(y|x;β⋆)

[
∇2ℓ(x, y, β)

]
⪯ 2 · IT (β0). (19)

We can further choose R1 ≤ R0 such that for any β⋆ ∈ Bβ0
(R1), β /∈ Bβ0

(R0): Rβ⋆(β) ≥
Rβ⋆(β0).

Taking β⋆ = β, Lemma A.5 (19) implies for any β ∈ Bβ0
(R0):

1

2
· IT (β0) ⪯ IT (β) ⪯ 2 · IT (β0). (20)

Lemma A.6. LetCβ0(B) := {β ∈ Rd |β−β0 ∈ [−B,B]d} be a cube around β0. For any β0 ∈ Rd

and B > 0, there exists a prior density λ(β) supported on Cβ0(B) such that for any estimator β̂,
we have

Eβ⋆∼λ(β)E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥

Tr
(
IT (β0)I−1

S (β0)
)2

nEβ⋆∼λ(β)

[
Tr
(
I−1
S (β0)IS(β⋆)I−1

S (β0)IT (β0)
)]

+ π2

B2Tr
(
IT (β0)I−2

S (β0)
)

The proofs for the above lemmas are delivered to the end of this subsection. With Lemma A.5 and
Lemma A.6 in hand, we are now ready to prove Theorem A.4.

Proof of Theorem A.4. For any estimator β̂, we define

β̂p :=

{
β̂ β̂ ∈ Bβ0

(R0)

β0 β̂ /∈ Bβ0(R0).

By Lemma A.5, for any β⋆ ∈ Bβ0
(R1), we have Rβ⋆(β̂) ≥ Rβ⋆(β̂p). We then have

inf
β̂

sup
β⋆∈Bβ0

(B)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ inf

β̂
sup

β⋆∈Bβ0
(R1)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ inf

β̂p

sup
β⋆∈Bβ0

(R1)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂p)

]
≥ inf

β̂∈Bβ0
(R0)

sup
β⋆∈Bβ0

(R1)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
, (21)

where the first inequality follows from the fact that R1 ≤ R0 ≤ B, the second inequality follows
from Rβ⋆(β̂) ≥ Rβ⋆(β̂p), and the third inequality follows from β̂p ∈ Bβ0(R0). For any β⋆ ∈
Bβ0(R1) ⊆ Bβ0(R0), by (18) and (20), we have

IT (β⋆) ⪯ 2IT (β0), I−1
S (β⋆) ⪯ 2I−1

S (β0),

which implies

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 ≥ 1

4
Tr
(
IT (β0)I−1

S (β0)
)−1

. (22)

Combine (21) and (22), we have

inf
β̂

sup
β⋆∈Bβ0

(B)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ 1

4
Tr
(
IT (β0)I−1

S (β0)
)−1

inf
β̂∈Bβ0

(R0)
sup

β⋆∈Bβ0
(R1)

E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
. (23)
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By Taylor expansion, for any β̂ ∈ Bβ0
(R0), β

⋆ ∈ Bβ0
(R1), we have

Rβ⋆(β̂) = Rβ⋆(β⋆) + (β̂ − β⋆)TE x∼PT (X)
y|x∼f(y|x;β⋆)

[∇ℓ(x, y, β⋆)]

+
1

2
(β̂ − β⋆)TE x∼PT (X)

y|x∼f(y|x;β⋆)

[
∇2ℓ(x, y, β̃)

]
(β̂ − β⋆)

=
1

2
(β̂ − β⋆)TE x∼PT (X)

y|x∼f(y|x;β⋆)

[
∇2ℓ(x, y, β̃)

]
(β̂ − β⋆)

for some β̃ ∈ Bβ0
(R0). By Lemma A.5 (19), it then holds that

Rβ⋆(β̂) ≥ 1

4
(β̂ − β⋆)TIT (β0)(β̂ − β⋆). (24)

By (23) and (24), we then have

inf
β̂

sup
β⋆∈Bβ0

(B)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ 1

16
Tr
(
IT (β0)I−1

S (β0)
)−1

inf
β̂∈Bβ0

(R0)
sup

β⋆∈Bβ0
(R1)

E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥ 1

16
Tr
(
IT (β0)I−1

S (β0)
)−1

inf
β̂∈Bβ0

(R0)
sup

β⋆∈Cβ0
(
R1√

d
)

E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
,

(25)

where the last inequality follows from the fact that Cβ0(
R1√
d
) ⊆ Bβ0(R1). By Lemma A.6, there

exists a prior density λ(β) supported on Cβ0
(R1√

d
) such that for any estimator β̂, we have

Eβ⋆∼λ(β)E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥

Tr
(
IT (β0)I−1

S (β0)
)2

nEβ⋆∼λ(β)

[
Tr
(
I−1
S (β0)IS(β⋆)I−1

S (β0)IT (β0)
)]

+ π2d
R2

1
Tr
(
IT (β0)I−2

S (β0)
)

≥
Tr
(
IT (β0)I−1

S (β0)
)2

2nTr
(
IT (β0)I−1

S (β0)
)
+ π2d

R2
1
Tr
(
IT (β0)I−2

S (β0)
) .

Here the last inequality uses the fact that for any β⋆ ∈ Cβ0
(R1√

d
) ⊆ Bβ0

(R0), by Lemma A.5 (18),

we have I−1
S (β0) ⪯ 2I−1

S (β⋆), which implies

Eβ⋆∼λ(β)

[
Tr
(
I−1
S (β0)IS(β⋆)I−1

S (β0)IT (β0)
)]

≤ Eβ⋆∼λ(β)

[
Tr
(
2I−1

S (β⋆)IS(β⋆)I−1
S (β0)IT (β0)

)]
= 2Tr

(
IT (β0)I−1

S (β0)
)
.

We then conclude for any estimator β̂

sup
β⋆∈Cβ0

(
R1√

d
)

E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥ Eβ⋆∼λ(β)E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥

Tr
(
IT (β0)I−1

S (β0)
)2

2nTr
(
IT (β0)I−1

S (β0)
)
+ π2d

R2
1
Tr
(
IT (β0)I−2

S (β0)
) . (26)
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Combine (25) and (26), we have

inf
β̂

sup
β⋆∈Bβ0

(B)

Tr
(
IT (β⋆)I−1

S (β⋆)
)−1 E xi∼PS(X)

yi|xi∼f(y|x;β⋆)

[
Rβ⋆(β̂)

]
≥ 1

16
Tr
(
IT (β0)I−1

S (β0)
)−1 ·

Tr
(
IT (β0)I−1

S (β0)
)2

2nTr
(
IT (β0)I−1

S (β0)
)
+ π2d

R2
1
Tr
(
IT (β0)I−2

S (β0)
)

=
1

16
· 1

2n+ π2d
R2

1
Tr
(
IT (β0)I−2

S (β0)
)
Tr
(
IT (β0)I−1

S (β0)
)−1 .

Thus we prove Theorem A.4.

In the following, we prove Lemma A.5 and Lemma A.6.

Proofs for Lemma A.5

Proof of Lemma A.5. We choose

R0 := min

{
λ2min(IS(β0))

4LSλmax(IS(β0))
,
λmin(IT (β0))
4B3 + 2LT

, B

}
, R1 :=

1

4

√
λmin(IT (β0))
λmax(IT (β0))

·R0.

In the sequel, we will show the aforementioned choices of R0 and R1 satisfy the conditions outlined
in Lemma A.5.

First of all, we show (18) holds. Fix any β ∈ Bβ0
(R0). By Assumption B.2, we have

∥IS(β)− IS(β0)∥2 ≤ LS∥β − β0∥2 ≤ LSR0,

which implies

∥I−1
S (β)− I−1

S (β0)∥2 ≤ ∥I−1
S (β0)∥2 · ∥IS(β)− IS(β0)∥2 · ∥I−1

S (β)∥2 ≤ LSR0

λmin(IS(β0))λmin(IS(β))
.

By Weyl’s inequality (Lemma 2.2 in Chen et al. (2021)), we have

|λmin(IS(β))− λmin(IS(β0))| ≤ ∥IS(β)− IS(β0)∥2 ≤ LSR0.

Note that

R0 ≤ λ2min(IS(β0))
4LSλmax(IS(β0))

≤ λmin(IS(β0))
2LS

.

Thus we have

λmin(IS(β)) ≥ λmin(IS(β0))− LSR0 ≥ 1

2
λmin(IS(β0)),

which implies

∥I−1
S (β)− I−1

S (β0)∥2 ≤ LSR0

λmin(IS(β0))λmin(IS(β))
≤ 2LSR0

λ2min(IS(β0))
≤ 1

2λmax(IS(β0))
.

(27)

Then for any x ∈ Rd, we have

xT
(
I−1
S (β)− 1

2
I−1
S (β0)

)
x =

1

2
xTI−1

S (β0)x+ xT
(
I−1
S (β)− I−1

S (β0)
)
x

≥ ∥x∥22
2λmax(IS(β0))

− ∥x∥22 · ∥I−1
S (β)− I−1

S (β0)∥2

= ∥x∥22
(

1

2λmax(IS(β0))
− ∥I−1

S (β)− I−1
S (β0)∥2

)
≥ 0,
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where the last inequality follows from (27). Thus we conclude I−1
S (β) ⪰ 1

2I
−1
S (β0). Similarly, we

can show that I−1
S (β) ⪯ 2I−1

S (β0). As a result, we show that (18) holds.

Next, we show (19) holds. Fix any β⋆, β ∈ Bβ0(R0). By Assumption A.2, for any x ∈ X , y ∈ Y ,
we have

∥∇2ℓ(x, y, β)−∇2ℓ(x, y, β⋆)∥2 ≤ B3∥β − β⋆∥2 ≤ 2B3R0,

which implies ∥∥∥∥∥E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)]− E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β⋆)]

∥∥∥∥∥
2

≤ E x∼PT (X)
y|x∼f(y|x;β⋆)

[∥∇2ℓ(x, y, β)−∇2ℓ(x, y, β⋆)∥2] ≤ 2B3R0. (28)

By Assumption B.2, we have

∥IT (β⋆)− IT (β0)∥2 ≤ LT ∥β⋆ − β0∥2 ≤ LTR0 (29)

Thus, by (28) and (29), we have∥∥∥∥∥E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)]− IT (β0)

∥∥∥∥∥
2

≤

∥∥∥∥∥E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)]− E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β⋆)]

∥∥∥∥∥
2

+ ∥IT (β⋆)− IT (β0)∥2

≤ (2B3 + LT )R0

≤ 1

2
λmin(IT (β0)),

where the last inequality follows from the choice of R0. Consequently, for any x ∈ Rd, we have

xT

(
E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)]− 1

2
IT (β0)

)
x

=
1

2
xTIT (β0)x+ xT

(
E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)]− IT (β0)

)
x

≥ 1

2
∥x∥22λmin(IT (β0))− ∥x∥22

∥∥∥∥∥E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)]− IT (β0)

∥∥∥∥∥
2

≥ 1

2
∥x∥22λmin(IT (β0))−

1

2
∥x∥22λmin(IT (β0)) = 0.

We then conclude E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)] ⪰ 1
2IT (β0). Similarly, we can show that

E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β)] ⪯ 2IT (β0). Thus we show that (19) holds.

Finally, we need to show that for any β⋆ ∈ Bβ0
(R1), β /∈ Bβ0

(R0): Rβ⋆(β) ≥ Rβ⋆(β0). Fix any
β⋆ ∈ Bβ0

(R1), β /∈ Bβ0
(R0). We denote

β′ := {λβ + (1− λ)β⋆ |λ ∈ [0, 1]} ∩ {β′ | ∥β′ − β0∥2 = R0} .

By the choice of R1, we know that R1 ≤ R0/2, which implies

∥β′ − β⋆∥2 ≥ ∥β′ − β0∥2 − ∥β0 − β⋆∥2 ≥ R0 −R1 ≥ R0

2
. (30)
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By convexity of Rβ⋆(·) assumed in Assumption B.3 and Rβ⋆(β) ≥ Rβ⋆(β⋆), we have Rβ⋆(β) ≥
Rβ⋆(β′). Thus, we obtain

Rβ⋆(β)−Rβ⋆(β⋆) ≥ Rβ⋆(β′)−Rβ⋆(β⋆)

Taylor
=

1

2
(β′ − β⋆)TE x∼PT (X)

y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β̃)](β′ − β⋆)

by (19)
≥ 1

4
(β′ − β⋆)TIT (β0)(β′ − β⋆)

≥ 1

4
λmin(IT (β0))∥β′ − β⋆∥22

by (30)
≥ R2

0

16
λmin(IT (β0)). (31)

Note that

Rβ⋆(β0)−Rβ⋆(β⋆)
Taylor
=

1

2
(β0 − β⋆)TE x∼PT (X)

y|x∼f(y|x;β⋆)

[∇2ℓ(x, y, β̃)](β0 − β⋆)

by (19)
≤ (β0 − β⋆)TIT (β0)(β0 − β⋆)

≤ λmax(IT (β0))∥β0 − β⋆∥22
≤ R2

1λmax(IT (β0))

=
R2

0

16
λmin(IT (β0)), (32)

where the last equation follows from the choice of R1. By (31) and (32), we obtain Rβ⋆(β) ≥
Rβ⋆(β0). Thus, we finish the proof of Lemma A.5.

Proofs for Lemma A.6

Proof of Lemma A.6. Let β0 = [β0,1, . . . , β0,d]
T , β = [β1, . . . , βd]

T and

fi(x) :=
π

4B
cos
( π

2B
(x− β0,i)

)
, i = 1, . . . , d.

We define the prior density as

λ(β) :=

{
Πd

i=1fi(βi) β ∈ Cβ0
(B)

0 β /∈ Cβ0
(B)

,

which is supported on Cβ0
(B). In the sequel, we will show this prior density satisfies the condition

outlined in Lemma A.6.

For notation simplicity, we denote

A = (Aij) := I−1
T (β0), C = (Cij) := IT (β0)I−1

S (β0).

By multivariate van Trees inequality (Theorem 1 in Gill & Levit (1995)), for any estimator β̂, we
have

Eβ⋆∼λ(β)E xi∼PS(X)
yi|xi∼f(y|x;β⋆)

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥

Tr
(
IT (β0)I−1

S (β0)
)2

nEβ⋆∼λ(β)

[
Tr
(
I−1
S (β0)IS(β⋆)I−1

S (β0)IT (β0)
)]

+ Ĩ(λ)
, (33)

where

Ĩ(λ) =
∫
Cβ0

(B)

∑
i,j,k,ℓ

AijCikCjℓ
∂

∂βk
λ(β)

∂

∂βℓ
λ(β)

 1

λ(β)
dβ.
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By the choice of λ(β), we have

∫
Cβ0

(B)

∑
i,j,k,ℓ
k ̸=ℓ

AijCikCjℓ
∂

∂βk
λ(β)

∂

∂βℓ
λ(β)

 1

λ(β)
dβ

=

∫
Cβ0

(B)

∑
i,j,k,ℓ
k ̸=ℓ

AijCikCjℓf
′
k(βk)f

′
ℓ(βℓ)Πi ̸=k,ℓfi(βi)dβ

=
∑
i,j,k,ℓ
k ̸=ℓ

AijCikCjℓ

∫
Cβ0

(B)

f ′k(βk)f
′
ℓ(βℓ)Πi̸=k,ℓfi(βi)dβ

= 0.

Here the last equation follows from the fact∫ β0,k+B

β0,k−B

f ′k(βk)dβk =

∫ β0,ℓ+B

β0,ℓ−B

f ′ℓ(βℓ)dβℓ = 0.

Note that

∫
Cβ0

(B)

∑
i,j,k,ℓ
k=ℓ

AijCikCjℓ
∂

∂βk
λ(β)

∂

∂βℓ
λ(β)

 1

λ(β)
dβ

=
∑
i,j,k

AijCikCjk

∫
Cβ0

(B)

(f ′k(βk))
2

fk(βk)
Πi ̸=kfi(βi)dβ

=
∑
i,j,k

AijCikCjk

∫ β0,k+B

β0,k−B

(f ′k(βk))
2

fk(βk)
dβk

=
π2

B2

∑
i,j,k

AijCikCjk

=
π2

B2
Tr(ACCT ).

Thus, we have

Ĩ(λ) =
∫
Cβ0

(B)

∑
i,j,k,ℓ
k ̸=ℓ

AijCikCjℓ
∂

∂βk
λ(β)

∂

∂βℓ
λ(β)

 1

λ(β)
dβ

+

∫
Cβ0

(B)

∑
i,j,k,ℓ
k=ℓ

AijCikCjℓ
∂

∂βk
λ(β)

∂

∂βℓ
λ(β)

 1

λ(β)
dβ

=
π2

B2
Tr(ACCT )

=
π2

B2
Tr
(
IT (β0)I−2

S (β0)
)
. (34)

Combine (33) and (34), we prove Lemma A.6.
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B PROOFS FOR SECTION 4

B.1 PROOFS FOR PROPOSITION 4.1 AND THEOREM 4.2

Proof. For our linear regression model,

ℓ(x, y, β) =
1

2
log(2π) +

1

2
(y − xTβ)2.

The convexity of ℓ in β immediately implies Assumption B.3. We then have

∇ℓ(x, y, β) = −x(y − xTβ),

∇2ℓ(x, y, β) = xxT ,

∇3ℓ(x, y, β) = 0,

IS = Ex∼PS(X)[xx
T ] = Id,

IT = Ex∼PT (X)[xx
T ] = ααT + σ2Id.

Therefore Assumption B.2 is satisfied with LS = LT = 0 and Assumption B.4 trivially holds.
Note that ∇ℓ(xi, yi, β⋆) = −xiεi. Since ∥xi∥2 is

√
d-subgaussian and |εi| is 1-subgaussian, by

Lemma 2.7.7 in Vershynin (2018), it holds that ∥xi∥2|εi| is
√
d-subexponential random variable.

Thus ∥A∇ℓ(xi, yi, β⋆)∥2 is ∥A∥2
√
d-subexponential random variable.

Then, by Lemma D.1 with ui = A(∇ℓ(xi, yi, β⋆) − E[∇ℓ(xi, yi, β⋆)]) = A∇ℓ(xi, yi, β⋆), V =

E[∥ui∥22] = n · E∥A(∇ℓn(β⋆) − E[∇ℓn(β⋆)])∥22, α = 1 and B(α)
u = c

√
d∥A∥2, we have for any

matrix A ∈ Rd×d, and any δ ∈ (0, 1), with probability at least 1− δ:

∥A (∇ℓn(β⋆)− E[∇ℓn(β⋆)])∥2 ≤ c

√V log d
δ

n
+
√
d∥A∥2 log(

√
d∥A∥2√
V

)
log d

δ

n

 ,

which satisfies the gradient concentration in Assumption A.1 with B1 = c
√
d and γ = 1.

Note that xi ∼ N (0, Id). Thus, by Theorem 13.3 in Rinaldo (2018), for any δ ∈ (0, 1), with
probability at least 1− δ, we have

∥∇2ℓn(β
⋆)− E[∇2ℓn(β

⋆]∥2 =

∥∥∥∥∥ 1n
n∑

i=1

xix
T
i − Id

∥∥∥∥∥
2

≤ c

(√
d log(1/δ)

n
+
d log(1/δ)

n

)

≤ 2c

√
d log(1/δ)

n
,

where the last inequality holds if n ≥ O(d log 1
δ ). Hence linear regression model satisfies the

matrix concentration in Assumption A.1 with B2 = c
√
d, N(δ) = d log 1

δ . Since ∇3ℓ ≡ 0, we
know Assumption A.2 holds with B3 = 0.

Note that

∇2ℓn(β) =
1

n

n∑
i=1

xix
T
i =

1

n
XTX,

where X := [x1, . . . , xn]
T . Given that {xi}ni=1 are i.i.d N (0, Id), it follows that X is almost surely

full rank when n ≥ d. Hence, when n ≥ d, we have

∇2ℓn(β) =
1

n

n∑
i=1

xix
T
i =

1

n
XTX ≻ 0.

Consequently, ℓn(·) is strictly convex and thus satisfies Assumption A.3. Finally, Theorem 4.2
follows directly from Theorem 3.1 with γ = 1, B1 = c

√
d,B2 = c

√
d,B3 = 0, N(δ) = d log 1

δ ,
IS = Id and IT = ααT + σ2Id.
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B.2 PROOFS FOR PROPOSITION 4.3 AND THEOREM 4.4

Proof. In the following, we will show the logistic regression model satisfies Assumptions A and B.
For logistic regression, the loss function is defined as

ℓ(x, y, β) = log(1 + ex
T β)− y(xTβ).

We then have

∇ℓ(x, y, β) = x

1 + e−xT β
− xy,

∇2ℓ(x, y, β) =
xxT

2 + e−xT β + exT β
,

∇3ℓ(x, y, β) =
e−xT β − ex

T β

(2 + e−xT β + exT β)2
· x⊗ x⊗ x.

Here ⊗ represents the tensor product and x⊗ x⊗ x ∈ Rd×d×d with (x⊗ x⊗ x)ijk = xixjxk. The
convexity of ℓ in β immediately implies Assumption B.3; Assumption B.4 trivially holds. Note that
on source domain ∥x∥2 =

√
d and |y| ≤ 1. Hence we have for any (x, y) on source domain:

∥∇ℓ(x, y, β⋆)∥2 =

∥∥∥∥ x

1 + e−xT β⋆ − xy

∥∥∥∥
2

≤
∥∥∥∥ x

1 + e−xT β⋆

∥∥∥∥
2

+ ∥xy∥2 ≤ ∥x∥2 + ∥x∥2 = 2
√
d,

∥∇2ℓ(x, y, β⋆)∥2 =

∥∥∥∥ xxT

2 + e−xT β⋆ + exT β⋆

∥∥∥∥
2

≤ ∥xxT ∥2 ≤ ∥x∥22 ≤ d.

By Lemma D.1 with ui = A(∇ℓ(xi, yi, β⋆)−E[∇ℓ(xi, yi, β⋆)]) = A∇ℓ(xi, yi, β⋆), V = E[∥ui∥22],
α = +∞, B(α)

u = 2
√
d∥A∥2, we have for any matrix A ∈ Rd×d, and any δ ∈ (0, 1), with

probability at least 1− δ:

∥A (∇ℓn(β⋆)− E[∇ℓn(β⋆)])∥2 ≤ c

√V log d
δ

n
+

√
d∥A∥2 log d

δ

n

 ,

which satisfies the gradient concentration in Assumption A.1 with B1 = c
√
d and γ = 0. By matrix

Hoeffding inequality, logistic regression model satisfies the matrix concentration in Assumption A.1
withB2 = cd. We conclude that logistic regression model satisfies Assumption A.1 withN(δ) = 0,
B1 = c

√
d, γ = 0, B2 = cd.

Note that for x on source domain, we have ∥x∥2 ≤
√
d; for x on target domain, we have ∥x∥2 ≤√

d+ r. Thus, it holds that

∥∇3ℓ(x, y, β)∥2 =

∥∥∥∥∥ e−xT β − ex
T β

(2 + e−xT β + exT β)2
· x⊗ x⊗ x

∥∥∥∥∥
2

≤(i) ∥x⊗ x⊗ x∥2 ≤ ∥x∥32 ≤ (
√
d+ r)3.

Here (i) uses the fact that∣∣∣∣∣ e−xT β − ex
T β

(2 + e−xT β + exT β)2

∣∣∣∣∣ ≤ e−xT β + ex
T β

(2 + e−xT β + exT β)2
≤ 1

2 + e−xT β + exT β
≤ 1.

Hence logistic regression satisfies Assumptions A.2 with B3 = (
√
d + r)3. Notice that this also

implies Assumption B.2: By definition,

IS(β) := Ex∼PS(X)[∇2ℓ(x, y, β)],

therefore

∥IS(β1)− IS(β2)∥ = ∥Ex∼PS(X)[∇2ℓ(x, y, β1)−∇2ℓ(x, y, β2)]∥
≤ Ex∼PS(X)[∥∇2ℓ(x, y, β1)−∇2ℓ(x, y, β2)∥]

≤ (
√
d)3∥β1 − β2∥.
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Similarly

∥IT (β1)− IT (β2)∥ ≤ (
√
d+ r)3∥β1 − β2∥.

These inequlities shows that logistic regression model satisfies Assumption B.2 with LS = d1.5 and
LT = (

√
d+ r)3. Note that

∇2ℓn(β) =
1

n

n∑
i=1

∇2ℓ(xi, yi, β) =
1

n

n∑
i=1

xix
T
i

2 + e−xT
i β + ex

T
i β

=
1

n
XTAX,

whereX := [x1, . . . , xn]
T ∈ Rn×d andA := diag(1/(2+e−xT

i β+ex
T
i β)) ≻ 0. When n ≥ d, X is

full rank (i.e., rank(X) = d) almost surely, consequently, ℓn(·) is strictly convex and thus satisfies
Assumption A.3.

By Theorem 3.1, we have when n ≥ O(N⋆ log d
δ ),

Rβ⋆(βMLE) ≲
Tr
(
ITI−1

S

)
log d

δ

n
.

Here

N⋆ := (1 + κ̃/κ)2 ·max
{
κ̃−1α2

1 log
2γ
(
(1 + κ̃/κ)κ̃−1α2

1

)
, α2

2, κ̃(1 + ∥I
1
2

T I
−1
S I

1
2

T ∥
−2
2 )α2

3

}
,

where α1 := B1∥I−1
S ∥0.52 , α2 := B2∥I−1

S ∥2, α3 := B3∥I−1
S ∥1.52 ,

κ :=
Tr(ITI−1

S )

∥I
1
2

T I
−1
S I

1
2

T ∥2
, κ̃ :=

Tr(I−1
S )

∥I−1
S ∥2

.

Now it remains to calculate the quantities N⋆ and Tr
(
ITI−1

S

)
for this instance, where the crucial

part is to identify what are IS and IT . The following two lemmas give the characterization of IS
and IT .

Lemma B.1. Under the conditions of Theorem 4.4, we have IS = Udiag(λ1, λ2, . . . , λ2)U
T and

IT = Udiag(λ1, λ2 + r2λ3, λ2, . . . , λ2)U
T for an orthonormal matrix U . Where

λ1 := Ex∼Uniform(Sd−1(
√
d))[

(β⋆Tx)2

2 + exp(β⋆Tx) + exp(−β⋆Tx)
],

λ2 := Ex∼Uniform(Sd−1(
√
d))[

(β⋆T
⊥ x)2

2 + exp(β⋆Tx) + exp(−β⋆Tx)
],

λ3 := Ex∼Uniform(Sd−1(
√
d))[

1

2 + exp(β⋆Tx) + exp(−β⋆Tx)
].

Lemma B.2. Under the conditions of Theorem 4.4, there exist absolute constants c, C, c′ > 0 such
that c < λ1, λ2, λ3 < C, for d ≥ c′.

The proofs for these two lemmas are in the next section. With Lemma B.1, we have ITI−1
S =

Udiag(1, 1 + r2 λ3

λ2
, . . . , 1)UT , I−1

S = Udiag( 1
λ1
, 1
λ2
, . . . , 1

λ2
)UT . By Lemma B.2, since

λ1, λ2, λ3 = O(1), we have Tr(ITI−1
S ) = d + r2 λ3

λ2
≍ d + r2, ∥ITI−1

S ∥2 = 1 + r2 λ3

λ2
≍ 1 + r2.

Similarly Tr(I−1
S ) = λ−1

1 + (d − 1)λ−1
2 ≍ d, ∥I−1

S ∥2 = max{λ−1
1 , λ−1

2 } ≍ 1. Also recall that

B1 =
√
d,B2 = d,B3 = (

√
d + r)3, plug in all those quantities we have κ =

Tr(IT I−1
S )

∥IT I−1
S ∥2

≍ d+r2

1+r2 ,

κ̃ =
Tr(I−1

S )

∥I−1
S ∥2

≍ d, α1 = B1∥I−1
S ∥0.52 ≍

√
d, α2 = B2∥I−1

S ∥2 ≍ d, α3 = B3∥I−1
S ∥1.52 ≍ (

√
d+r)3.

Therefore we have when n ≥ O(N⋆ log d
δ ),

Rβ⋆(βMLE) ≲
Tr
(
ITI−1

S

)
log d

δ

n
≍

(d+ r2) log d
δ

n
,
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where

N⋆ = (1 + κ̃/κ)2 ·max
{
κ̃−1α2

1 log
2γ
(
(1 + κ̃/κ)κ̃−1α2

1

)
, α2

2, κ̃(1 + ∥I
1
2

T I
−1
S I

1
2

T ∥
−2
2 )α2

3

}
≍
(
1 +

d+ r2d

d+ r2

)2

·max
{
1, d2, d(1 + (1 + r2)−2)(

√
d+ r)6

}
=

(
1 +

d+ r2d

d+ r2

)2

· d(
√
d+ r)6.

When r ≲ 1, N⋆ ≍ d4. When 1 ≲ r ≲
√
d, N⋆ ≍ r4d4. When

√
d ≲ r, N⋆ ≍ r6d3.

B.2.1 PROOFS FOR LEMMA B.1 AND B.2

The intuition of proving Lemma B.1 and B.2 is that, when d is large, distribution
Uniform(Sd−1(

√
d)) behaves similar to distribution N (0, Id) which has good properties (isotropic,

independence of each entry, etc.)

Proof of Lemma B.1. By definition,

IS := Ex∼Uniform(Sd−1(
√
d))[

xxT

2 + exp(β⋆Tx) + exp(−β⋆Tx)
]

Let z ∼ N (0, Id), then x and z
√
d

∥z∥2
have the same distribution. Therefore

IS = Ex∼Uniform(Sd−1(
√
d))[

xxT

2 + exp(β⋆Tx) + exp(−β⋆Tx)
]

= Ez∼N (0,Id)[
zzT d

∥z∥2
2

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= Ez∼N (0,Id)[
(β⋆β⋆T + U⊥U

T
⊥)zzT d

∥z∥2
2

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

where [β⋆, U⊥] ∈ Rd×d is a orthogonal basis.

With this expression, we first prove β⋆ is an eigenvector of IS with corresponding eigenvalue λ1.

ISβ⋆ = Ez∼N (0,Id)[
(β⋆β⋆T + U⊥U

T
⊥)zzT d

∥z∥2
2

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]β⋆

= Ez∼N (0,Id)[
β⋆β⋆T zzT d

∥z∥2
2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

+ Ez∼N (0,Id)[
U⊥U

T
⊥zz

T d
∥z∥2

2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= Ez∼N (0,Id)[
(β⋆T z)2 d

∥z∥2
2

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]β⋆

+ Ez∼N (0,Id)[
U⊥U

T
⊥zz

T d
∥z∥2

2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= λ1β
⋆ + Ez∼N (0,Id)[

U⊥U
T
⊥zz

T d
∥z∥2

2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
].
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Therefore we only need to prove

Ez∼N (0,Id)[
U⊥U

T
⊥zz

T d
∥z∥2

2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
] = 0.

In fact,

Ez∼N (0,Id)[
UT
⊥zz

T d
∥z∥2

2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= Ez∼N (0,Id)[

d
∥z∥2

2
(UT

⊥z)(z
Tβ⋆)

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= Ez∼N (0,Id)[

d
|A|2+∥B∥2AB

2 + exp(A ·
√
d√

|A|2+∥B∥2
) + exp(−A ·

√
d

|A|2+∥B∥2 )
]

where we let A := zTβ⋆, B := UT
⊥z. Notice that by the property of z ∼ N (0, Id), A and B are

independent. Also, B is symmetric, i.e., B and −B have the same distribution. Therefore

Ez∼N (0,Id)[

d
|A|2+∥B∥2AB

2 + exp(A ·
√
d√

|A|2+∥B∥2
) + exp(−A ·

√
d

|A|2+∥B∥2 )
]

replace B by −B
= Ez∼N (0,Id)[

− d
|A|2+∥B∥2AB

2 + exp(A ·
√
d√

|A|2+∥B∥2
) + exp(−A ·

√
d

|A|2+∥B∥2 )
]

= −Ez∼N (0,Id)[

d
|A|2+∥B∥2AB

2 + exp(A ·
√
d√

|A|2+∥B∥2
) + exp(−A ·

√
d

|A|2+∥B∥2 )
],

which implies

Ez∼N (0,Id)[
U⊥U

T
⊥zz

T d
∥z∥2

2
β⋆

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
] = 0.

Next we will prove that for any β⊥ such that ∥β⊥∥2 = 1, β⋆Tβ⊥ = 0, β⊥ is an eigenvector of IS
with corresponding eigenvalue λ2. Let [β⊥, U ] be an orthogonal basis (β⋆ is the first column of U ).

ISβ⊥ = Ez∼N (0,Id)[
(β⊥β

T
⊥ + UUT )zzT d

∥z∥2
2

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]β⊥

= Ez∼N (0,Id)[
β⊥β

T
⊥zz

T d
∥z∥2

2
β⊥

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

+ Ez∼N (0,Id)[
UUT zzT d

∥z∥2
2
β⊥

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= Ez∼N (0,Id)[
(βT

⊥z)
2 d
∥z∥2

2

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]β⊥

+ Ez∼N (0,Id)[
UUT zzT d

∥z∥2
2
β⊥

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
]

= λ2β⊥ + 0

= λ2β⊥
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Here

Ez∼N (0,Id)[
UUT zzT d

∥z∥2
2
β⊥

2 + exp(β⋆T z ·
√
d

∥z∥2
) + exp(−β⋆T z ·

√
d

∥z∥2
)
] = 0

because of a similar reason as in the previous part.

For IT , the proving strategy is similar. For x ∼ Uniform(Sd−1(
√
d)) + v on the target domain,

where v = rβ⋆
⊥, let w = x− v = x− rβ⋆

⊥, then w ∼ Uniform(Sd−1(
√
d)). Let z ∼ N (0, Id), then

w and z
√
d

∥z∥2
have the same distribution. We have

IT = Ex∼Uniform(Sd−1(
√
d))+v[

xxT

2 + exp(β⋆Tx) + exp(−β⋆Tx)
]

= Ew∼Uniform(Sd−1(
√
d))[

(w + v)(w + v)T

2 + exp(β⋆T (w + v)) + exp(−β⋆T (w + v))
]

vT β⋆=0
= Ew∼Uniform(Sd−1(

√
d))[

wwT + wvT + vwT + vvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]

Therefore

ITβ⋆ = Ew∼Uniform(Sd−1(
√
d))[

wwT + wvT + vwT + vvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

vT β⋆=0
= Ew∼Uniform(Sd−1(

√
d))[

wwT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

= ISβ⋆

= λ1β
⋆,

where the last line follows from the previous proofs. Similarly, for any β̃⊥ such that ∥β̃⊥∥2 = 1,
β⋆T
⊥ β̃⊥ = 0,

IT β̃⊥ = Ew∼Uniform(Sd−1(
√
d))[

wwT + wvT + vwT + vvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β̃⊥

vT β̃⊥=0
= Ew∼Uniform(Sd−1(

√
d))[

wwT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β̃⊥

= IS β̃⊥
= λ2β̃⊥.

For β⋆
⊥,

ITβ⋆
⊥ = Ew∼Uniform(Sd−1(

√
d))[

wwT + wvT + vwT + vvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

= Ew∼Uniform(Sd−1(
√
d))[

wwT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

+ Ew∼Uniform(Sd−1(
√
d))[

wvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

+ Ew∼Uniform(Sd−1(
√
d))[

vwT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

+ Ew∼Uniform(Sd−1(
√
d))[

vvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

:= I1 + I2 + I3 + I4.

As in the previous proofs,

I1 = ISβ⋆
⊥ = λ2β

⋆
⊥.
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I2 = Ew∼Uniform(Sd−1(
√
d))[

wvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

v=rβ⋆
⊥= rEw∼Uniform(Sd−1(

√
d))[

wβ⋆T
⊥ β⋆

⊥
2 + exp(β⋆Tw) + exp(−β⋆Tw)

]

∥β⋆
⊥∥=1
= rEw∼Uniform(Sd−1(

√
d))[

w

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]

= 0.

where the last lines follows from w is symmetric and w
2+exp(β⋆Tw)+exp(−β⋆Tw)

is a odd function of
w.

I3 = Ew∼Uniform(Sd−1(
√
d))[

vwT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

v=rβ⋆
⊥= rEw∼Uniform(Sd−1(

√
d))[

β⋆
⊥w

Tβ⋆
⊥

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]

= rEw∼Uniform(Sd−1(
√
d))[

wTβ⋆
⊥

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

= 0.

where the last lines follows from w is symmetric and wT β⋆
⊥

2+exp(β⋆Tw)+exp(−β⋆Tw)
is a odd function of

w.

I4 = Ew∼Uniform(Sd−1(
√
d))[

vvT

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

v=rβ⋆
⊥= r2Ew∼Uniform(Sd−1(

√
d))[

β⋆
⊥β

⋆T
⊥ β⋆

⊥
2 + exp(β⋆Tw) + exp(−β⋆Tw)

]

∥β⋆
⊥∥=1
= r2Ew∼Uniform(Sd−1(

√
d))[

1

2 + exp(β⋆Tw) + exp(−β⋆Tw)
]β⋆

⊥

= r2λ3β
⋆
⊥.

Combine the calculations of I1, I2, I3, I4, we have

ITβ⋆
⊥ = I1 + I2 + I3 + I4

= λ2β
⋆
⊥ + r2λ3β

⋆
⊥

= (λ2 + r2λ3)β
⋆
⊥.

In conclusion, we have IS = Udiag(λ1, λ2, . . . , λ2)U
T and IT = Udiag(λ1, λ2 +

r2λ3, λ2, . . . , λ2)U
T for an orthonormal matrix U , where U = [β⋆, β⋆

⊥, · · · ].

Proof of Lemma B.2. Recall the definition of λ1, λ2, λ3:

λ1 := Ex∼Uniform(Sd−1(
√
d))[

(β⋆Tx)2

2 + exp(β⋆Tx) + exp(−β⋆Tx)
] = Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

],

λ2 := Ex∼Uniform(Sd−1(
√
d))[

(β⋆T
⊥ x)2

2 + exp(β⋆Tx) + exp(−β⋆Tx)
] = Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T

⊥ z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

],

λ3 := Ex∼Uniform(Sd−1(
√
d))[

1

2 + exp(β⋆Tx) + exp(−β⋆Tx)
] = Ez∼N (0,Id)[

1

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

].

Next we will show that there exists constants c, C, c′ > 0 such that when d ≥ c′, we have c ≤ λ1 ≤
C. The proofs for λ2 and λ3 are similar. Notice that, when d is large, d

∥z∥2
2

concentrates around 1. If

we replace d
∥z∥2

2
by 1 in the above expressions, we have

λ1 ≈ Ez∼N (0,Id)[
(β⋆T z)2

2 + exp(β⋆T z) + exp(−β⋆T z)
]
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Since β⋆T z ∼ N (0, 1) when z ∼ N (0, Id) and ∥β⋆∥ = 1, we have

Ez∼N (0,Id)[
(β⋆T z)2

2 + exp(β⋆T z) + exp(−β⋆T z)
] = Ey∼N (0,1)[

y2

2 + exp(y) + exp(−y)
]

which is a absolute constant greater than zero and not related to d. Following this intuition, we can
bound λ1 as the following. We first state the concentration of the norm of N (0, Id). By Vershynin
(2018) (3.7),

P(|∥z∥ −
√
d| ≥ t) ≤ 2e−4ct2 (35)

for some absolute constant c > 0. Take t =
√
d
2 , we have

P(
∥z∥√
d
/∈ [

1

2
,
3

2
]) ≤ 2e−cd.

With this concentration, we do the following truncation:

λ1 = Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

]

= Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

I ∥z∥√
d
∈[ 12 ,

3
2 ]
]

+ Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

I ∥z∥√
d
/∈[ 12 ,

3
2 ]
]

:= J1 + J2.

For J2, it is obvious that

0 ≤ J2 ≤ d

4
P(

∥z∥√
d
/∈ [

1

2
,
3

2
]) ≤ d

2
e−cd. (36)

For upper bound of J1,

J1 = Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

I ∥z∥√
d
∈[ 12 ,

3
2 ]
]

≤ Ez∼N (0,Id)[
4(β⋆T z)2

4
] = 1.

Therefore

λ1 = J1 + J2

≤ 1 +
d

2
e−cd.

It’s obvious that there exists an absolute constant c′ such that when d ≥ c′, λ1 ≤ 2.
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For lower bound of J1, we have

J1 = Ez∼N (0,Id)[

d
∥z∥2

2
(β⋆T z)2

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

I ∥z∥√
d
∈[ 12 ,

3
2 ]
]

≥ Ez∼N (0,Id)[
4
9 (β

⋆T z)2

2 + exp(2β⋆T z) + exp(−2β⋆T z)
I ∥z∥√

d
∈[ 12 ,

3
2 ]
]

= Ez∼N (0,Id)[
4
9 (β

⋆T z)2

2 + exp(2β⋆T z) + exp(−2β⋆T z)
]− Ez∼N (0,Id)[

4
9 (β

⋆T z)2

2 + exp(2β⋆T z) + exp(−2β⋆T z)
I ∥z∥√

d
/∈[ 12 ,

3
2 ]
]

≥ Ez∼N (0,Id)[
4
9 (β

⋆T z)2

2 + exp(2β⋆T z) + exp(−2β⋆T z)
]− Ez∼N (0,Id)[

4
9 (β

⋆T z)2

4
I ∥z∥√

d
/∈[ 12 ,

3
2 ]
]

≥ Ez∼N (0,Id)[
4
9 (β

⋆T z)2

2 + exp(2β⋆T z) + exp(−2β⋆T z)
]− Ez∼N (0,Id)[

∥z∥22
9

I ∥z∥√
d
/∈[ 12 ,

3
2 ]
]

= Ey∼N (0,1)[
4
9y

2

2 + exp(2y) + exp(−2y)
]− Ez∼N (0,Id)[

∥z∥22
9

I ∥z∥√
d
/∈[ 12 ,

3
2 ]
]

:= c1 − Ez∼N (0,Id)[
∥z∥22
9

I ∥z∥√
d
/∈[ 12 ,

3
2 ]
]

Notice that here c1 is a positive constant not related to d. For the second term,

Ez∼N (0,Id)[
∥z∥22
9

I ∥z∥√
d
/∈[ 12 ,

3
2 ]
]

= Ez∼N (0,Id)[
∥z∥22
9

I ∥z∥√
d
≤ 1

2
] + Ez∼N (0,Id)[

∥z∥22
9

I ∥z∥√
d
≥ 3

2
]

≤ d

36
P(

∥z∥√
d
≤ 1

2
) +

1

9

∫ ∞

9
4d

P(∥z∥22 ≥ t)dt+
1

9
· 9
4
dP(∥z∥22 ≥ 9

4
d)

by (35)
≤ d

36
2e−cd +

1

9

∫ ∞

9
4d

P(∥z∥22 ≥ t)dt+
d

4
2e−cd

t=d(y+1)2

≤ de−cd +
1

9

∫ ∞

1
2

2d(y + 1)P(∥z∥2 ≥
√
d+

√
dy)dy

by (35)
≤ de−cd +

1

9

∫ ∞

1
2

2d(y + 1)2e−4cdy2

dy

≤ de−cd + 2d

∫ ∞

1
2

ye−4cdy2

dy

≤ de−cd +
1

4c
e−cd

Combine this inequality and previous inequalities of J1 and J2, we have

λ1 = J1 + J2

≥ c1 − de−cd − 1

4c
e−cd

Therefore it’s obvious that there exists an absolute constant c′ such that when d ≥ c′, λ1 ≥ c1
2 .

The proof for λ2 is almost the same, the only difference is that in the numerator, we replace β⋆T z
by β⋆T

⊥ z. The proof for λ3 is even simpler. For upper bound,

λ3 = Ez∼N (0,Id)[
1

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

] ≤ 1

4
.
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For lower bound,

λ3 = Ez∼N (0,Id)[
1

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

]

≥ Ez∼N (0,Id)[
1

2 + exp(
√
d

∥z∥2
β⋆T z) + exp(−

√
d

∥z∥2
β⋆T z)

I ∥z∥√
d
∈[ 12 ,

3
2 ]
]

≥ Ez∼N (0,Id)[
1

2 + exp(2β⋆T z) + exp(−2β⋆T z)
I ∥z∥√

d
∈[ 12 ,

3
2 ]
]

= Ez∼N (0,Id)[
1

2 + exp(2β⋆T z) + exp(−2β⋆T z)
]− Ez∼N (0,Id)[

1

2 + exp(2β⋆T z) + exp(−2β⋆T z)
I ∥z∥√

d
/∈[ 12 ,

3
2 ]
]

= c2 −
1

4
P(

∥z∥√
d
/∈ [

1

2
,
3

2
])

≥ c2 −
1

2
e−cd.

Therefore there exists constant c′ such that when d ≥ c′, λ3 ≤ c2
2 .

B.3 PROOFS FOR THEOREM 4.5

In this section, our objective is to establish the upper bound of MLE for the phase retrieval model.
A direct application of Theorem 3.1 is impractical, as Assumption A.3 is not met; notably, both
β⋆,−β⋆ serve as global minimums of population loss. To circumvent the issue of non-unique global
minimums, we employ a methodology similar to that used in proving Theorem 3.1, though with a
slightly refined analysis.

Proof of Theorem 4.5. In the sequel, we will use the same notations as in the proof of Theorem
3.1. Even though the global minimum of population loss for the phase retrieval model isn’t unique,
meaning it could be either β⋆ or −β⋆, we can still show that the MLE falls into a small ball around
either β⋆ or −β⋆.

Lemma B.3. Under the settings of Theorem 4.5, if n ≥ O(d4 log d
δ ), then with probability at least

1− δ, we have

min{∥βMLE − β⋆∥2, ∥βMLE + β⋆∥2} ≲

√
d2 log d

δ

n
.

Without loss of generality, in the sequel, we consider n ≥ O(d4 log d
δ ) and assume

∥βMLE − β⋆∥2 ≲

√
d2 log d

δ

n
, (37)

which implies βMLE ∈ Bβ⋆(1).

Recall that for the phase retrieval model,

ℓ(x, y, β) =
1

2
log(2π) +

1

2

(
y − (xTβ)2

)2
.

It then holds that
∇ℓ(x, y, β) = 2(xTβ)3x− 2(xTβ)yx,

∇2ℓ(x, y, β) = 6(xTβ)2xxT − 2yxxT ,

∇3ℓ(x, y, β) = 12(xTβ)x⊗ x⊗ x.

Note that for Y = (XTβ⋆)2 + ε, we have ∇ℓ(X,Y, β⋆) = −2(XTβ⋆)Xε. Therefore (recall that
∥β⋆∥ = 1) ∥∇ℓ(xi, yi, β⋆)∥ is 2d-subgaussian, by Lemma D.1, we have for any δ, with probability
at least 1− δ,

∥I−1
S g∥2 ≲

√
Tr(I−1

S ) log d
δ

n
+ d∥I−1

S ∥

√
log

d2∥I−1
S ∥2

Tr(I−1
S )

log d
δ

n
. (38)
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Which can be viewed as settingB1 = d and γ = 1
2 in Assumption A.1. Hence β⋆+z = β⋆−I−1

S g ∈

Bβ⋆(1) when n ≥ O(max{Tr(I−1
S ) log d

δ , d∥I
−1
S ∥2

√
log

d2∥I−1
S ∥2

Tr(I−1
S )

log d
δ }).

We then show the concentration inequality for the Hessian matrix. Note that

∇2ℓn(β
⋆) =

1

n

n∑
i=1

∇2ℓ(xi, yi, β
⋆) =

4

n

n∑
i=1

(xTi β
⋆)2xix

T
i − 2

n

n∑
i=1

εixix
T
i .

Since ∥(xTβ⋆)2xxT ∥ ≤ d2, by matrix Hoeffding, with probability at least 1− δ, we have

EPS
[(xTβ⋆)2xxT ]− d2

√
8 log d

δ

n
Id ⪯ 1

n

n∑
i=1

(xTi β
⋆)2xix

T
i ⪯ EPS

[(xTβ⋆)2xxT ] + d2

√
8 log d

δ

n
Id

(39)

Moreover, by matrix Chernoff bound, with probability at least 1− δ, we have

−d

√
8 log d

δ

n
Id ⪯ − 1

n

n∑
i=1

εixix
T
i ⪯ d

√
8 log d

δ

n
Id. (40)

Combine (39) and (40), we obtain

∇2ℓ(β⋆)− 6d2

√
8 log d

δ

n
Id ⪯ ∇2ℓn(β

⋆) ⪯ ∇2ℓ(β⋆) + 6d2

√
8 log d

δ

n
Id, (41)

which can be viewed as setting B2 = d2 in (9).

For any β ∈ Bβ⋆(1), we have

∥∇3ℓ(x, y, β)∥2 = 12∥(xTβ)x⊗ x⊗ x∥ ≤ 24(
√
d+ r)4.

Thus, we can view as if this model satisfies B3 = (
√
d+ r)4 in Assumption A.2.

Then same as (12) we have with probability 1− δ,

ℓn(β
⋆ + z)− ℓn(β

⋆) ≤ −1

2
zTISz + 2c2B2Tr(I−1

S )(
log d

δ

n
)1.5 + 2B2

1B2∥I−1
S ∥22 log(κ̃−1/2α1)(

log d
δ

n
)2.5

+
2

3
c3B3Tr(I−1

S )1.5(
log d

δ

n
)1.5 +

2

3
B3

1B3∥I−1
S ∥32 log

1.5(κ̃−1/2α1)(
log d

δ

n
)3,

(42)

By Lemma B.3, we have (37). Then same as (13) we have with probability at least 1− δ,

ℓn(βMLE)− ℓn(β
⋆) ≥ 1

2
(∆βMLE

− z)TIS(∆βMLE
− z)− 1

2
zTISz

−O(B2d
2(
log d

δ

n
)1.5 +B3d

3(
log d

δ

n
)1.5). (43)

Consequently, by (42), (43) and the fact that ℓn(βMLE)− ℓn(β
⋆ + z) ≤ 0, we have

(∆βMLE
− z)TIS(∆βMLE

− z) ≤ O
(
B2Tr(I−1

S )(
log d

δ

n
)1.5 +B2

1B2∥I−1
S ∥22 log(κ̃−1/2α1)(

log d
δ

n
)2.5

+B3Tr(I−1
S )1.5(

log d
δ

n
)1.5 +B3

1B3∥I−1
S ∥32(log(κ̃−1/2α1))

1.5(
log d

δ

n
)3

+B2d
2(
log d

δ

n
)1.5 +B3d

3(
log d

δ

n
)1.5
)
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Then, same as the proof of Lemma A.3, we further have for any δ, with probability at least 1− 2δ,

(βMLE − β⋆)TIT (βMLE − β⋆)

≲
Tr(ITI−1

S ) log d
δ

n

+O
(
B2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )(

log d
δ

n
)1.5 +B2

1B2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log(κ̃−1/2α1)(

log d
δ

n
)2.5

+B3∥I
1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5(

log d
δ

n
)1.5 +B3

1B3∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥32(log(κ̃−1/2α1))

1.5(
log d

δ

n
)3

+B2∥I
1
2

T I
− 1

2

S ∥22d2(
log d

δ

n
)1.5 +B3∥I

1
2

T I
− 1

2

S ∥22d3(
log d

δ

n
)1.5

+B2
1∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log(κ−1/2α1)(

log d
δ

n
)2
)

=
Tr(ITI−1

S ) log d
δ

n

+O
(
d2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )(

log d
δ

n
)1.5 + d4∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log(κ̃−1/2α1)(

log d
δ

n
)2.5

+ (
√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5(

log d
δ

n
)1.5 + d3(

√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥32(log(κ̃−1/2α1))

1.5(
log d

δ

n
)3

+ d4∥I
1
2

T I
− 1

2

S ∥22(
log d

δ

n
)1.5 + d3(

√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22(
log d

δ

n
)1.5

+ d2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log(κ−1/2α1)(

log d
δ

n
)2
)

(44)

To guarantee Tr(IT I−1
S ) log d

δ

n is the leading term, we only need n ≥ O(N1 log
d
δ ), where

N1 := max

{(
d2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )

Tr(ITI−1
S )

)2

,

(
d4∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log(κ̃−1/2α1)

Tr(ITI−1
S )

) 2
3

,

(
(
√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5

Tr(ITI−1
S )

)2

,

(
d3(

√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥32(log(κ̃−1/2α1))

1.5

Tr(ITI−1
S )

) 1
2

,

(
d4∥I

1
2

T I
− 1

2

S ∥22
Tr(ITI−1

S )

)2

,

(
d3(

√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22
Tr(ITI−1

S )

)2

,

d2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log(κ−1/2α1)

Tr(ITI−1
S )

}
.

That is, for any δ, when n ≥ O(max{d4,Tr(I−1
S ), d∥I−1

S ∥2 log0.5(κ̃−
1
2α1), N1} log d

δ ), with prob-
ability 1− 2δ,

(βMLE − β⋆)TIT (βMLE − β⋆) ≲
Tr(ITI−1

S ) log d
δ

n
.

Then following the proof of Theorem 3.1, do Taylor expansion w.r.t. β as the following:

Rβ⋆(βMLE) = E x∼PT (X)
y|x∼f(y|x;β⋆)

[ℓ(x, y, βMLE)− ℓ(x, y, β⋆)]

≤ E x∼PT (X)
y|x∼f(y|x;β⋆)

[∇ℓ(x, y, β⋆)]T (βMLE − β⋆)

+
1

2
(βMLE − β⋆)TIT (βMLE − β⋆) +

B3

6
∥βMLE − β⋆∥32.

≤ c

2

Tr(ITI−1
S ) log d

δ

n
+
c3

6
d3(

√
d+ r)4(

log d
δ

n
)1.5.
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with probability at least 1− 2δ. If we further assume n ≥ O((d
3(

√
d+r)4

Tr(IT I−1
S )

)2 log d
δ ), it then holds that

Rβ⋆(βMLE) ≤ c
Tr(ITI−1

S ) log d
δ

n
.

Therefore we conclude that for any δ, when n ≥ O(N log d
δ ), with probability at least 1− 2δ,

Rβ⋆(βMLE) ≤ c
Tr(ITI−1

S ) log d
δ

n
,

where

N := max{d4,Tr(I−1
S ), d∥I−1

S ∥2 log0.5(κ̃−
1
2α1), N1, (

d3(
√
d+ r)4

Tr(ITI−1
S )

)2}

= max

{(
d2∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )

Tr(ITI−1
S )

)2

,

(
d4∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥22 log(κ̃−1/2α1)

Tr(ITI−1
S )

) 2
3

,

(
(
√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22Tr(I−1
S )1.5

Tr(ITI−1
S )

)2

,

(
d3(

√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22∥I−1
S ∥32(log(κ̃−1/2α1))

1.5

Tr(ITI−1
S )

) 1
2

,

(
d4∥I

1
2

T I
− 1

2

S ∥22
Tr(ITI−1

S )

)2

,

(
d3(

√
d+ r)4∥I

1
2

T I
− 1

2

S ∥22
Tr(ITI−1

S )

)2

,

d2∥I
1
2

T I
− 1

2

S ∥22∥I−1
S ∥2 log(κ−1/2α1)

Tr(ITI−1
S )

, d4,Tr(I−1
S ), d∥I−1

S ∥2 log0.5(κ̃−
1
2α1), (

d3(
√
d+ r)4

Tr(ITI−1
S )

)2
}
.

Now it remains to calculate N and Tr(ITI−1
S ). Similar to logistic regression (see Lemma B.1 and

B.2), we have the following two lemmas that characterize IS and IT .

Lemma B.4. Under the conditions of Theorem 4.5, we have IS = Udiag(λ1, λ2, . . . , λ2)U
T and

IT = Udiag(λ1, λ2 + r2λ3, λ2, . . . , λ2)U
T for an orthonormal matrix U . Where

λ1 := 4Ex∼Uniform(Sd−1(
√
d))[(β

⋆Tx)4],

λ2 := 4Ex∼Uniform(Sd−1(
√
d))[(β

⋆Tx)2(β⋆T
⊥ x)2],

λ3 := 4Ex∼Uniform(Sd−1(
√
d))[(β

⋆Tx)2].

Lemma B.5. Under the conditions of Theorem 4.5, there exist absolute constants c, C, c′ > 0 such
that c < λ1, λ2, λ3 < C, for d ≥ c′.

The proofs for these two lemmas are in the next section. With Lemma B.4, we have ITI−1
S =

Udiag(1, 1 + r2 λ3

λ2
, . . . , 1)UT , I−1

S = Udiag( 1
λ1
, 1
λ2
, . . . , 1

λ2
)UT . By Lemma B.5, since

λ1, λ2, λ3 = O(1), we have Tr(ITI−1
S ) = d+r2 λ3

λ2
≍ d+r2, ∥ITI−1

S ∥2 = 1+r2 λ3

λ2
≍ 1+r2. Sim-

ilarly Tr(I−1
S ) = λ−1

1 + (d− 1)λ−1
2 ≍ d, ∥I−1

S ∥2 = max{λ−1
1 , λ−1

2 } ≍ 1, α1 = B1∥I−1
S ∥

1
2
2 ≍ d.

Plug in these quantities, recall

κ :=
Tr(ITI−1

S )

∥I
1
2

T I
−1
S I

1
2

T ∥2
≍ d+ r2

1 + r2

we have

N = max

{
d6κ−2, d

8
3κ−

2
3 log

2
3 (κ̃−1/2α1), d

3(
√
d+ r)8κ−2, d

3
2 (
√
d+ r)2κ−

1
2 log

3
4 (κ̃−1/2α1), d

8κ−2, d6(
√
d+ r)8κ−2,

d2κ−1 log(κ−1/2α1), d
4, d, d log

1
2 (κ̃−1/2α1), d

6(
√
d+ r)8κ−2∥ITI−1

S ∥−2

}
1≤κ≤d
= max

{
d6(

√
d+ r)8κ−2, d6(

√
d+ r)8κ−2∥ITI−1

S ∥−2

}
∥IT I−1

S ∥≍1+r2≥1
= d6(

√
d+ r)8κ−2

≍ d6(
√
d+ r)8(1 + r2)2

(d+ r2)2
≍ d6(d+ r2)2(1 + r2)2

We can see that when r ≤ 1, N ≍ d8. When 1 ≤ r ≤
√
d, N ≍ d8r4. When r ≥

√
d, N ≍ d6r8.
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B.3.1 PROOF OF LEMMA B.3

In the following, we prove Lemma B.3. The intuition is that, although ℓ is not convex in β, ℓ is
quadratic in M := ββT .

Proof of Lemma B.3. With a little bit abuse of notation, for matrix M ∈ Rd×d, we denote

ℓ(x, y,M) :=
1

2
(y − ⟨xxT ,M⟩)2.

Under the case where M = ββT , we have

ℓ(x, y,M) :=
1

2
(y − ⟨xxT , ββT ⟩)2 =

1

2
(y − (xTβ)2)2 = ℓ(x, y, β).

We further denote

ℓn(M) :=
1

n

n∑
i=1

ℓ(xi, yi,M) =
1

2n

n∑
i=1

(yi − ⟨xixTi ,M⟩)2.

and M⋆ := β⋆β⋆T .

It then holds that

∇ℓn(M⋆) = − 1

n

n∑
i=1

vec(xix
T
i )εi, ∇2ℓn(M

⋆) =
1

n

n∑
i=1

vec(xix
T
i )vec(xix

T
i )

T , ∇3ℓn(M) = 0.

Denote ΣS := Ex∼PS(X)[vec(xx
T )vec(xxT )T ], then by Lemma D.1 with V = Tr(ΣS), α = 2,

Bα
u = cd for some absolute constants c, c′, we have with probability at least 1− δ,

∥∇ℓn(M⋆)∥2 ≤ c′

√Tr(ΣS) log
d
δ

n
+ d(log

c2d2

Tr(ΣS)
)

1
2
log d

δ

n

 . (45)

By matrix Hoeffding, we have with probability at least 1− δ,

ΣS − d2

√
8 log d

δ

n
Id ⪯ ∇2ℓn(M

⋆) ⪯ ΣS + d2

√
8 log d

δ

n
Id. (46)

Before conducting further analysis, we need some characterizations of ΣS . By the definition of ΣS ,
we can see that the ((i, j), (k, l)) entry of ΣS is EX∼PS(X)[XiXjXkXl]. Since X is symmetric and
isotropic, we have

EX∼PS(X)[XiXjXkXl] =


EX∼PS(X)[X

2
iX

2
k ] if i = j, k = l and i ̸= k

EX∼PS(X)[X
2
iX

2
j ] if {i, j} = {k, l} and i ̸= j

EX∼PS(X)[X
4
i ] if i = j = k = l

0 Otherwise

For the calculation of moments, using (3a) in Cao (2020) with a = (1, 0, · · · , 0)T and ϵ = 1√
d
X ,

we have EX∼PS(X)[X
4
1 ] =

3d
d+2 , EX∼PS(X)[X

2
1X

2
2 ] =

d
d+2 . Since X is isotropic, we have

(ΣS)((i,j),(k,l)) =


d

d+2 if i = j, k = l and i ̸= k
d

d+2 if {i, j} = {k, l} and i ̸= j
3d
d+2 if i = j = k = l

0 Otherwise

(47)

Therefore

Tr(ΣS) =
∑
i,j

E[X2
iX

2
j ] = d(d− 1)

d

d+ 2
+ d

3d

d+ 2
= d2. (48)

The following lemma characterizes the ”minimum eigenvalue” of ΣS on a special subspace, which
will be useful in our analysis.
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Lemma B.6. For any vector a = (aij)(i,j)∈[d]×[d] ∈ Rd2

satisfies aij = aji,

aTΣSa ≥ 2d

d+ 2
∥a∥22.

Proof.

aTΣSa =
∑
i,j,k,l

aijakl(ΣS)((i,j),(k,l))

by (47)
=

d

d+ 2
(
∑
i ̸=j

a2ij +
∑
i ̸=j

aijaji +
∑
i ̸=j

aiiajj + 3
∑
i

a2ii)

aij=aji
=

d

d+ 2
(2
∑
i ̸=j

a2ij +
∑
i ̸=j

aiiajj + 3
∑
i

a2ii)

=
d

d+ 2
(2(
∑
i̸=j

a2ij +
∑
i

a2ii) + (
∑
i̸=j

aiiajj +
∑
i

a2ii))

=
d

d+ 2
(2∥a∥22 + (

∑
i

aii)
2)

≥ 2d

d+ 2
∥a∥22.

With Lemma B.6 and (48), we are now able to prove Lemma B.3. By Taylor expansion, we have for
M = ββT , M⋆ = β⋆β⋆T , with probability at least 1− δ,

ℓn(M)− ℓn(M
⋆)

∇3ℓn≡0
= vec(M −M⋆)T∇ℓn(M⋆) +

1

2
vec(M −M⋆)T∇2ℓn(M

⋆)vec(M −M⋆)

by (45),(46)
≥ −c′∥M −M⋆∥F

√Tr(ΣS) log
d
δ

n
+ d(log

c2d2

Tr(ΣS)
)

1
2
log d

δ

n


+

1

2
vec(M −M⋆)TΣSvec(M −M⋆)− ∥M −M⋆∥2F d2

√
8 log d

δ

n

by Lemma B.6 and (48)
≥

 d

d+ 2
− d2

√
8 log d

δ

n

 ∥M −M⋆∥2F − c′′

√d2 log d
δ

n
+ d

log d
δ

n

 ∥M −M⋆∥F

≥ 1

2
∥M −M⋆∥2F − c′′

√d2 log d
δ

n
+ d

log d
δ

n

 ∥M −M⋆∥F

when n ≥ O(d4 log d
δ ).

We denote MMLE := βMLEβ
T
MLE. Note that ℓn(MMLE)− ℓn(M

⋆) = ℓn(βMLE)− ℓn(β
⋆) ≤ 0. Thus

we have

1

2
∥MMLE −M⋆∥2F − c′′

√d2 log d
δ

n
+ d

log d
δ

n

 ∥MMLE −M⋆∥F ≤ 0,

which implies

∥MMLE −M⋆∥F ≲

√d2 log d
δ

n
+ d

log d
δ

n

 ≲

√
d2 log d

δ

n
.
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Thus so far we have shown, if n ≥ O(d4 log d
δ ), then with probability at least 1− δ, we have

∥MMLE −M⋆∥F ≲

√
d2 log d

δ

n
.

By Lemma 6 in Ge et al. (2017), we further have

min{∥βMLE − β⋆∥2, ∥βMLE + β⋆∥2} ≲
1

∥β⋆∥2
∥MMLE −M⋆∥F ≲

√
d2 log d

δ

n
.

B.3.2 PROOFS FOR LEMMA B.4 AND B.5

The proofs for Lemma B.4 and B.5 are similar to proofs for Lemma B.1 and B.2.

Proof of Lemma B.4. By definition,

IS := 4Ex∼Uniform(Sd−1(
√
d))[xx

T (xTβ⋆)2]

Let z ∼ N (0, Id), then x and z
√
d

∥z∥2
have the same distribution. Therefore

IS = 4Ex∼Uniform(Sd−1(
√
d))[xx

T (xTβ⋆)2]

= 4Ez∼N (0,Id)[zz
T d

∥z∥22
(β⋆T z ·

√
d

∥z∥2
)2]

= 4Ez∼N (0,Id)[(β
⋆β⋆T + U⊥U

T
⊥)zzT (β⋆T z)2

d2

∥z∥42
]

where [β⋆, U⊥] ∈ Rd×d is a orthogonal basis.

With this expression, we first prove β⋆ is an eigenvector of IS with corresponding eigenvalue λ1.

ISβ⋆ = 4Ez∼N (0,Id)[(β
⋆β⋆T + U⊥U

T
⊥)zzT (β⋆T z)2

d2

∥z∥42
]β⋆

= 4Ez∼N (0,Id)[β
⋆β⋆T zzT (β⋆T z)2

d2

∥z∥42
β⋆]

+ 4Ez∼N (0,Id)[U⊥U
T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⋆]

= 4Ez∼N (0,Id)[(β
⋆T z)4

d2

∥z∥42
]β⋆

+ 4Ez∼N (0,Id)[U⊥U
T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⋆]

= λ1β
⋆ + 4Ez∼N (0,Id)[U⊥U

T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⋆].

Therefore we only need to prove

Ez∼N (0,Id)[U⊥U
T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⋆] = 0.

In fact,

Ez∼N (0,Id)[U
T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⋆]

= Ez∼N (0,Id)[(U
T
⊥z)(β

⋆T z)3
d2

∥z∥42
]

= Ez∼N (0,Id)[(
d

|A|2 + ∥B∥2
)2A3B]
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where we let A := zTβ⋆, B := UT
⊥z. Notice that by the property of z ∼ N (0, Id), A and B are

independent. Also, B is symmetric, i.e., B and −B have the same distribution. Therefore

Ez∼N (0,Id)[U⊥U
T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⋆] = Ez∼N (0,Id)[(

d

|A|2 + ∥B∥2
)2A3B] = 0.

Next we will prove that for any β⊥ such that ∥β⊥∥2 = 1, β⋆Tβ⊥ = 0, β⊥ is an eigenvector of IS
with corresponding eigenvalue λ2. Let [β⊥, U ] be an orthogonal basis (β⋆ is the first column of U ).

ISβ⊥ = 4Ez∼N (0,Id)[(β⊥β
T
⊥ + UUT )zzT (β⋆T z)2

d2

∥z∥42
]β⊥

= 4Ez∼N (0,Id)[β⊥β
T
⊥zz

T (β⋆T z)2
d2

∥z∥42
β⊥]

+ 4Ez∼N (0,Id)[UU
T zzT (β⋆T z)2

d2

∥z∥42
β⊥]

= 4Ez∼N (0,Id)[(β
T
⊥z)

2(β⋆T z)2
d2

∥z∥42
]β⊥

+ 4Ez∼N (0,Id)[UU
T zzT (β⋆T z)2

d2

∥z∥42
β⊥]

= λ2β⊥ + 0

= λ2β⊥

Here

4Ez∼N (0,Id)[UU
T zzT (β⋆T z)2

d2

∥z∥42
β⊥] = 0

because of a similar reason as in the previous part.

For IT , the proving strategy is similar. For x ∼ Uniform(Sd−1(
√
d)) + v on the target domain,

where v = rβ⋆
⊥, let w = x− v = x− rβ⋆

⊥, then w ∼ Uniform(Sd−1(
√
d)). Let z ∼ N (0, Id), then

w and z
√
d

∥z∥2
have the same distribution. We have

IT = 4Ex∼Uniform(Sd−1(
√
d))+v[xx

T (xTβ⋆)2]

= 4Ew∼Uniform(Sd−1(
√
d))[(w + v)(w + v)T ((w + v)Tβ⋆)2]

vT β⋆=0
= 4Ew∼Uniform(Sd−1(

√
d))[(ww

T + wvT + vwT + vvT )(wTβ⋆)2]

Therefore

ITβ⋆ = 4Ew∼Uniform(Sd−1(
√
d))[(ww

T + wvT + vwT + vvT )(wTβ⋆)2]β⋆

vT β⋆=0
= 4Ew∼Uniform(Sd−1(

√
d))[ww

T (wTβ⋆)2]β⋆

= ISβ⋆

= λ1β
⋆,

where the last line follows from the previous proofs. Similarly, for any β̃⊥ such that ∥β̃⊥∥2 = 1,
β⋆T
⊥ β̃⊥ = 0,

IT β̃⊥ = 4Ew∼Uniform(Sd−1(
√
d))[(ww

T + wvT + vwT + vvT )(wTβ⋆)2]β̃⊥

vT β̃⊥=0
= 4Ew∼Uniform(Sd−1(

√
d))[ww

T (wTβ⋆)2]β̃⊥

= IS β̃⊥
= λ2β̃⊥.
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For β⋆
⊥,

ITβ⋆
⊥ = 4Ew∼Uniform(Sd−1(

√
d))[(ww

T + wvT + vwT + vvT )(wTβ⋆)2]β⋆
⊥

= 4Ew∼Uniform(Sd−1(
√
d))[ww

T (wTβ⋆)2]β⋆
⊥ + 4Ew∼Uniform(Sd−1(

√
d))[wv

T (wTβ⋆)2]β⋆
⊥

+ 4Ew∼Uniform(Sd−1(
√
d))[vw

T (wTβ⋆)2]β⋆
⊥ + 4Ew∼Uniform(Sd−1(

√
d))[vv

T (wTβ⋆)2]β⋆
⊥

:= I1 + I2 + I3 + I4.

As in the previous proofs,
I1 = ISβ⋆

⊥ = λ2β
⋆
⊥.

I2 = 4Ew∼Uniform(Sd−1(
√
d))[wv

T (wTβ⋆)2]β⋆
⊥

v=rβ⋆
⊥= 4rEw∼Uniform(Sd−1(

√
d))[w(β

⋆T
⊥ β⋆

⊥)(w
Tβ⋆)2]

∥β⋆
⊥∥=1
= 4rEw∼Uniform(Sd−1(

√
d))[w(w

Tβ⋆)2]

= 0.

where the last lines follows from w is symmetric and w(wTβ⋆)2 is a odd function of w.
I3 = 4Ew∼Uniform(Sd−1(

√
d))[vw

T (wTβ⋆)2]β⋆
⊥

v=rβ⋆
⊥= 4rEw∼Uniform(Sd−1(

√
d))[β

⋆
⊥w

Tβ⋆
⊥(w

Tβ⋆)2]

= 4rEw∼Uniform(Sd−1(
√
d))[(w

Tβ⋆
⊥)(w

Tβ⋆)2]β⋆
⊥

= 0.

where the last lines follows from w is symmetric and (wTβ⋆
⊥)(w

Tβ⋆)2 is a odd function of w.

I4 = 4Ew∼Uniform(Sd−1(
√
d))[vv

T (wTβ⋆)2]β⋆
⊥

v=rβ⋆
⊥= 4r2Ew∼Uniform(Sd−1(

√
d))[β

⋆
⊥β

⋆T
⊥ β⋆

⊥(w
Tβ⋆)2]

∥β⋆
⊥∥=1
= 4r2Ew∼Uniform(Sd−1(

√
d))[β

⋆
⊥(w

Tβ⋆)2]

= r2λ3β
⋆
⊥.

Combine the calculations of I1, I2, I3, I4, we have
ITβ⋆

⊥ = I1 + I2 + I3 + I4

= λ2β
⋆
⊥ + r2λ3β

⋆
⊥

= (λ2 + r2λ3)β
⋆
⊥.

In conclusion, we have IS = Udiag(λ1, λ2, . . . , λ2)U
T and IT = Udiag(λ1, λ2 +

r2λ3, λ2, . . . , λ2)U
T for an orthonormal matrix U , where U = [β⋆, β⋆

⊥, · · · ].

Proof of Lemma B.5. Recall the definition of λ1, λ2, λ3:

λ1 := 4Ex∼Uniform(Sd−1(
√
d))[(β

⋆Tx)4] = 4Ez∼N (0,Id)[(β
⋆T z)4

d2

∥z∥42
],

λ2 := 4Ex∼Uniform(Sd−1(
√
d))[(β

⋆Tx)2(β⋆T
⊥ x)2] = 4Ez∼N (0,Id)[(β

⋆T z)2(β⋆T
⊥ z)2

d2

∥z∥42
],

λ3 := 4Ex∼Uniform(Sd−1(
√
d))[(β

⋆Tx)2] = 4Ez∼N (0,Id)[(β
⋆T z)2

d

∥z∥22
].

Next we will show that there exists constants c, C, c′ > 0 such that when d ≥ c′, we have c ≤ λ1 ≤
C. The proofs for λ2 and λ3 are similar. 35 With this concentration, we do the following truncation:

1

4
λ1 = Ez∼N (0,Id)[(β

⋆T z)4
d2

∥z∥42
]

= Ez∼N (0,Id)[(β
⋆T z)4

d2

∥z∥42
I ∥z∥√

d
∈[ 12 ,

3
2 ]
] + Ez∼N (0,Id)[(β

⋆T z)4
d2

∥z∥42
I ∥z∥√

d
/∈[ 12 ,

3
2 ]
]

:= J1 + J2.
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For J2, it is obvious that

0 ≤ J2 ≤ d2P(
∥z∥√
d
/∈ [

1

2
,
3

2
]) ≤ 2d2e−cd. (49)

For upper bound of J1,

J1 = Ez∼N (0,Id)[(β
⋆T z)4

d2

∥z∥42
I ∥z∥√

d
∈[ 12 ,

3
2 ]
]

≤ Ez∼N (0,Id)[16(β
⋆T z)4] = 48.

Therefore

1

4
λ1 = J1 + J2 ≤ 48 + 2d2e−cd.

It’s obvious that there exists an absolute constant c′ such that when d ≥ c′, 1
4λ1 ≤ 50.

For lower bound of J1, we have

J1 = Ez∼N (0,Id)[(β
⋆T z)4

d2

∥z∥42
I ∥z∥√

d
∈[ 12 ,

3
2 ]
]

≥ Ez∼N (0,Id)[(
2

3
)4(β⋆T z)4] = (

2

3
)4 · 3.

Therefore

1

4
λ1 = J1 + J2 ≥ (

2

3
)4 · 3

Therefore it’s obvious that there exists an absolute constant c′ such that when d ≥ c′, 1
4λ1 ≥ 1

2 . The
proofs for λ2 and λ3 are almost the same.

C PROOFS FOR SECTION 5

C.1 POOFS FOR PROPOSITION 5.1

Proof. We consider the case where Y = X2 + ε, ε ∼ N (0, 1), ε ⊥⊥ X , and we have X ∼
N (−10, 1) on the source domain and X ∼ N (10, 1) on the target domain. Then the optimal linear
fit on the target is given by

β⋆ = argminβ∈RE(x,y)∼PT (X,Y )

[
(y − xβ)2

]
=
(
Ex∼N (10,1)[x

2]
)−1 Ex∼N (10,1)[x

3] > 0.

However, the linear fit learned via classical MLE asymptotically behaves as

βMLE = argminβ∈R
1

2n

n∑
i=1

(yi − xiβ)
2 =

(
1

n

n∑
i=1

x2i

)−1(
1

n

n∑
i=1

xiyi

)
n→∞−−−−→

(
Ex∼N (−10,1)[x

2]
)−1 Ex∼N (−10,1)[x

3] < 0.

Hence, the classical MLE losses consistency. For MWLE, we have

βMWLE = argminβ∈R
1

2n

n∑
i=1

w(xi)(yi − xiβ)
2

=

(
1

n

n∑
i=1

w(xi)x
2
i

)−1(
1

n

n∑
i=1

w(xi)xiyi

)
n→∞−−−−→ β⋆,

which asymptotically provides a good estimator.
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C.2 PROOFS FOR THEOREM 5.2

The detailed version of Theorem 5.2 is stated as the following.
Theorem C.1. Suppose the function class F satisfies Assumption C. LetGw := Gw(M) andHw :=
Hw(M). For any δ ∈ (0, 1), if n ≥ cmax{N⋆ log(d/δ), N(δ), N ′(δ)}, then with probability at
least 1− 3δ, we have

RM (βMWLE) ≤ c
Tr
(
GwH

−1
w

)
log d

δ

n

for an absolute constant c. Here

N⋆ :=W 2 ·max{λ−1α̃2
1 log

2γ(W 2λ−1α̃2
1), α̃

2
2, λα̃

2
3},

where α̃1 := B1∥H−1
w ∥0.52 , α̃2 := B2∥H−1

w ∥2, α̃3 := B3∥H−1
w ∥1.52 , and λ :=

Tr(GwH
−2
w )/∥H−1

w ∥2.

The proofs for Theorem C.1 is similar to proofs for Theorem A.1. For notation simplicity, through
out the proofs for Theorem C.1, let β⋆ := β⋆(M), Hw := Hw(M), Gw := Gw(M). We first state
two main lemmas, which capture the distance between βMWLE and β⋆ under different measurements.
Lemma C.2. Suppose Assumption C holds. For any δ ∈ (0, 1) and any n ≥
cmax{N1 log(d/δ), N(δ), N ′(δ)}, with probability at least 1 − 2δ, we have βMWLE ∈

Bβ⋆(c

√
Tr(GwH−2

w ) log d
δ

n ) for some absolute constant c. Here

N1 := max

{
W 2B2

2∥H−1
w ∥22,W 2B2

3Tr(GwH
−2
w )∥H−1

w ∥22,
(
W 3B2

1B2∥H−1
w ∥32 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

) 2
3

,

(
W 4B3

1B3∥H−1
w ∥42 log

3γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

) 1
2

,
W 2B2

1∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

}
.

Lemma C.3. Suppose Assumption C holds. For any δ ∈ (0, 1) and any n ≥
cmax{N1 log(d/δ), N2 log(d/δ), N(δ), N ′(δ)}, with probability at least 1− 3δ, we have

∥H
1
2
w (βMWLE − β⋆)∥22 ≤ c

Tr(GwH
−1
w ) log d

δ

n
.

for some absolute constant c. Here N1 is defined in Lemma C.2 and

N2 := max

{(
WB2Tr(GwH

−2
w )

Tr(GwH
−1
w )

)2

,

(
WB3Tr(GwH

−2
w )1.5

Tr(GwH
−1
w )

)2

,

(
W 3B2

1B2∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−1
w )

) 2
3

,

(
W 4B3

1B3∥H−1
w ∥32 log

3γ(Wλ−1/2α̃1)

Tr(GwH
−1
w )

) 1
2

,
W 2B2

1∥H−1
w ∥2 log2γ(Wλ−1/2α̃1)

Tr(GwH
−1
w )

}
.

The proofs for Lemma C.2 and C.3 are delayed to the end of this subsection. With these two lemmas,
we can now state the proof for Theorem C.1.

Proof of Theorem C.1. By Assumption C.1 and C.3, we can do Taylor expansion w.r.t. β as the
following:

RM (βMWLE) = E(x,y)∼PT (x,y) [ℓ(x, y, βMWLE)− ℓ(x, y, β⋆)]

≤ E(x,y)∼PT (x,y)[∇ℓ(x, y, β⋆)]T (βMWLE − β⋆)

+
1

2
(βMWLE − β⋆)THw(βMWLE − β⋆) +

WB3

6
∥βMWLE − β⋆∥32.

Applying Lemma C.2 and C.3, we know for any δ and any n ≥
cmax{N1 log(d/δ), N2 log(d/δ), N(δ), N ′(δ)}, with probability at least 1− 3δ, we have

(βMWLE − β⋆)THw(βMWLE − β⋆) ≤ c
Tr(GwH

−1
w ) log d

δ

n
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and

∥βMWLE − β⋆∥2 ≤ c

√
Tr(GwH

−2
w ) log d

δ

n
.

Also notice that, E(x,y)∼PT (x,y)[∇ℓ(x, y, β⋆)] = 0. Therefore, with probability at least 1 − 3δ, we
have

RM (βMWLE) ≤
c

2

Tr(GwH
−1
w ) log d

δ

n
+
c3

6
WB3Tr(GwH

−2
w )1.5(

log d
δ

n
)1.5.

If we further have n ≥ c(
WB3Tr(GwH−2

w )1.5

Tr(GwH−1
w )

)2 log(d/δ), it then holds that

RM (βMWLE) ≤ c
Tr(GwH

−1
w ) log d

δ

n
.

Note that

max

{
N1, N2,

(
WB3Tr(GwH

−2
w )1.5

Tr(GwH
−1
w )

)2}

= max

{
W 2B2

2∥H−1
w ∥22, W 2B2

3Tr(GwH
−2
w )∥H−1

w ∥22,
(
W 3B2

1B2∥H−1
w ∥32 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

) 2
3

,

(
W 4B3

1B3∥H−1
w ∥42 log

3γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

) 1
2

,
W 2B2

1∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

}
=W 2 ·max{α̃2

2, λα̃
2
3, α̃

4/3
1 α̃

2/3
2 λ−2/3 log4γ/3(Wλ−1/2α̃1), α̃

3/2
1 α̃

1/2
3 λ−1/2 log3γ/2(Wλ−1/2α̃1), λ

−1α̃2
1 log

2γ(Wλ−1/2α̃1)}
≤W 2 ·max{λ−1α̃2

1 log
2γ(W 2λ−1α̃2

1), α̃
2
2, λα̃

2
3}

=: N⋆.

Here the first equation follows from the fact that
Tr(GwH

−2
w ) = Tr(H−1/2

w GwH
−1/2
w H−1

w ) ≤ ∥H−1
w ∥2Tr(H−1/2

w GwH
−1/2
w ) = ∥H−1

w ∥2Tr(GwH
−1
w ).

To summarize, for any δ ∈ (0, 1) and any n ≥ cmax{N⋆ log(d/δ), N(δ), N ′(δ)}, with probability
at least 1− 3δ, we have

RM (βMWLE) ≤ c
Tr(GwH

−1
w ) log d

δ

n
.

In the following, we prove Lemma C.2 and C.3.

Proof of Lemma C.2

Proof of Lemma C.2. For notation simplicity, we denote g := ∇ℓwn (β⋆)−EPS
[∇ℓwn (β⋆)]. Note that

V = n · E[∥A(∇ℓwn (β⋆)− E[∇ℓwn (β⋆)])∥22]
= n · E[∇ℓwn (β⋆)TATA∇ℓwn (β⋆)]

= n · E[Tr(A∇ℓwn (β⋆)∇ℓwn (β⋆)TAT )]

= Tr(AGwA
T ).

By taking A = H−1
w in Assumption C.2, for any δ and any n > N(δ), we have with probability at

least 1− δ:

∥H−1
w g∥2 ≤ c

√
Tr(GwH

−2
w ) log d

δ

n
+WB1∥H−1

w ∥2 logγ
 WB1∥H−1

w ∥2√
Tr(GwH

−2
w )

 log d
δ

n

= c

√
Tr(GwH

−2
w ) log d

δ

n
+WB1∥H−1

w ∥2 logγ(Wλ−1/2α̃1)
log d

δ

n
(50)

∥∥∇2ℓwn (β
⋆)− E[∇2ℓwn (β

⋆)]
∥∥
2
≤WB2

√
log d

δ

n
. (51)
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Let event Ã := {(50), (51) holds} and Ã′ := {ℓwn (·) has a unique local minimum, which is also global minimum}.
By Assumption C.2 and Assumption C.4, it then holds for any δ and any n ≥ max{N(δ), N ′(δ)}
that P(Ã ∩ Ã′) ≥ 1− 2δ. Under the event Ã ∩ Ã′, we have the following Taylor expansion:

ℓwn (β)− ℓwn (β
⋆)

by Assumption C.1, C.3
≤ (β − β⋆)T∇ℓwn (β⋆) +

1

2
(β − β⋆)T∇2ℓwn (β

⋆)(β − β⋆) +
WB3

6
∥β − β⋆∥32

EPS [∇ℓwn (β⋆)]=0
= (β − β⋆)T g +

1

2
(β − β⋆)T∇2ℓwn (β

⋆)(β − β⋆) +
WB3

6
∥β − β⋆∥32

by (51)
≤ (β − β⋆)T g +

1

2
(β − β⋆)THw(β − β⋆) +WB2

√
log d

δ

n
∥β − β⋆∥22 +

WB3

6
∥β − β⋆∥32

∆β :=β−β⋆

= ∆T
β g +

1

2
∆T

βHw∆β +WB2

√
log d

δ

n
∥∆β∥22 +

WB3

6
∥∆β∥32

=
1

2
(∆β − z)THw(∆β − z)− 1

2
zTHwz +WB2

√
log d

δ

n
∥∆β∥22 +

WB3

6
∥∆β∥32

(52)

where z := −H−1
w g. Similarly

ℓwn (β)− ℓwn (β
⋆) ≥ 1

2
(∆β − z)THw(∆β − z)− 1

2
zTHwz −WB2

√
log d

δ

n
∥∆β∥22 −

WB3

6
∥∆β∥32.

(53)

Notice that ∆β⋆+z = z, by (50) and (52), we have
ℓwn (β

⋆ + z)− ℓwn (β
⋆)

≤ −1

2
zTHwz +WB2

√
log d

δ

n

c
√

Tr(GwH
−2
w ) log d

δ

n
+WB1∥H−1

w ∥2 logγ(Wλ−1/2α̃1)
log d

δ

n

2

+
WB3

6

c
√

Tr(GwH
−2
w ) log d

δ

n
+WB1∥H−1

w ∥2 logγ(Wλ−1/2α̃1)
log d

δ

n

3

≤ −1

2
zTHwz + 2c2WB2Tr(GwH

−2
w )(

log d
δ

n
)1.5 + 2W 3B2

1B2∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)(
log d

δ

n
)2.5

+
2

3
c3WB3Tr(GwH

−2
w )1.5(

log d
δ

n
)1.5 +

2

3
W 4B3

1B3∥H−1
w ∥32 log

3γ(Wλ−1/2α̃1)(
log d

δ

n
)3.

(54)

For any β ∈ Bβ⋆(3c

√
Tr(GwH−2

w ) log d
δ

n ), by (53), we have

ℓwn (β)− ℓwn (β
⋆) ≥ 1

2
(∆β − z)THw(∆β − z)− 1

2
zTHwz

− 9c2WB2Tr(GwH
−2
w )(

log d
δ

n
)1.5 − 9

2
c3WB3Tr(GwH

−2
w )1.5(

log d
δ

n
)1.5. (55)

(55) - (54) gives
ℓwn (β)− ℓwn (β

⋆ + z)

≥ 1

2
(∆β − z)THw(∆β − z)

−
(
11c2WB2Tr(GwH

−2
w )(

log d
δ

n
)1.5 +

31

6
c3WB3Tr(GwH

−2
w )1.5(

log d
δ

n
)1.5

+ 2W 3B2
1B2∥H−1

w ∥22 log
2γ(Wλ−1/2α̃1)(

log d
δ

n
)2.5 +

2

3
W 4B3

1B3∥H−1
w ∥32 log

3γ(Wλ−1/2α̃1)(
log d

δ

n
)3
)

(56)
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Consider the ellipsoid

D :=

{
β ∈ Rd

∣∣∣∣ 12(∆β − z)THw(∆β − z)

≤ 11c2WB2Tr(GwH
−2
w )(

log d
δ

n
)1.5 +

31

6
c3WB3Tr(GwH

−2
w )1.5(

log d
δ

n
)1.5

+ 2W 3B2
1B2∥H−1

w ∥22 log
2γ(Wλ−1/2α̃1)(

log d
δ

n
)2.5

+
2

3
W 4B3

1B3∥H−1
w ∥32 log

3γ(Wλ−1/2α̃1)(
log d

δ

n
)3
}

Then by (56), for any β ∈ Bβ⋆(3c

√
Tr(GwH−2

w ) log d
δ

n ) ∩ DC , we have

ℓwn (β)− ℓwn (β
⋆ + z) > 0. (57)

Notice that by the definition of D, using λ−1
min(Hw) = ∥H−1

w ∥2, we have for any β ∈ D,

∥∆β − z∥22 ≤ 22c2∥H−1
w ∥2WB2Tr(GwH

−2
w )(

log d
δ

n
)1.5 +

31

3
c3∥H−1

w ∥2WB3Tr(GwH
−2
w )1.5(

log d
δ

n
)1.5

+ 4∥H−1
w ∥2W 3B2

1B2∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)(
log d

δ

n
)2.5

+
4

3
∥H−1

w ∥2W 4B3
1B3∥H−1

w ∥32 log
3γ(Wλ−1/2α̃1)(

log d
δ

n
)3.

Thus for any β ∈ D,

∥∆β∥22 ≤ 2(∥∆β − z∥22 + ∥z∥22)
by(50)
≤ 44c2∥H−1

w ∥2WB2Tr(GwH
−2
w )(

log d
δ

n
)1.5 +

62

3
c3∥H−1

w ∥2WB3Tr(GwH
−2
w )1.5(

log d
δ

n
)1.5

+ 8∥H−1
w ∥2W 3B2

1B2∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)(
log d

δ

n
)2.5

+
8

3
∥H−1

w ∥2W 4B3
1B3∥H−1

w ∥32 log
3γ(Wλ−1/2α̃1)(

log d
δ

n
)3

+ 4c2Tr(GwH
−2
w )

log d
δ

n
+ 4W 2B2

1∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)(
log d

δ

n
)2.

To guarantee Tr(GwH
−2
w )

log d
δ

n is the leading term, we only need Tr(GwH
−2
w )

log d
δ

n to dominate the
rest of the terms. Hence, if we further have n ≥ cN1 log(d/δ), it then holds that

∥∆β∥22 ≤ 9c2Tr(GwH
−2
w )

log d
δ

n
,

i.e., β ∈ Bβ⋆(3c

√
Tr(GwH−2

w ) log d
δ

n ). Here

N1 := max

{
W 2B2

2∥H−1
w ∥22,W 2B2

3Tr(GwH
−2
w )∥H−1

w ∥22,
(
W 3B2

1B2∥H−1
w ∥32 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

) 2
3

,

(
W 4B3

1B3∥H−1
w ∥42 log

3γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

) 1
2

,
W 2B2

1∥H−1
w ∥22 log

2γ(Wλ−1/2α̃1)

Tr(GwH
−2
w )

}
.

In other words, we show that D ⊂ Bβ⋆(3c

√
Tr(GwH−2

w ) log d
δ

n ). Recall that by (57), we know that for

any β ∈ Bβ⋆(3c

√
Tr(GwH−2

w ) log d
δ

n ) ∩ DC ,

ℓwn (β)− ℓwn (β
⋆ + z) > 0.
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Note that β⋆+ z ∈ D. Hence there is a local minimum of ℓwn (β) in D. Under the event Ã′, we know
that the global minimum of ℓwn (β) is in D, i.e.,

βMWLE ∈ D ⊂ Bβ⋆(3c

√
Tr(GwH

−2
w ) log d

δ

n
).

Proof of Lemma C.3

Proof of Lemma C.3. Let Ẽ := {βMWLE ∈ D ⊂ Bβ⋆(

√
Tr(GwH−2

w ) log d
δ

n )}. Then by the proof of
Lemma C.2, for any δ ∈ (0, 1) and any n ≥ cmax{N1 log(d/δ), N(δ), N ′(δ)}, we have P(Ẽ) ≥
1− 2δ.

By taking A = H
− 1

2
w in Assumption C.2, for any δ ∈ (0, 1) and any n ≥ N(δ), with probability at

least 1− δ, we have:

∥H− 1
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w ) log d
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− 1
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w ∥2√
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≤ c
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− 1
2

w ∥2 logγ
 WB1∥H
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−1
w ) log d

δ

n
+WB1∥H
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w ∥2 logγ(Wλ−1/2α̃1)
log d

δ

n
(58)

We denote Ẽ′ := {(58) holds}. Then for any δ and any n ≥
cmax{N1(M) log(d/δ), N(δ), N ′(δ)}, we have P(Ẽ ∩ Ẽ′) ≥ 1− 3δ.

Under Ẽ ∩ Ẽ′, βMWLE ∈ D, i.e.,

1

2
(∆βMWLE

− z)THw(∆βMWLE
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In other words,
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Thus we have

∥H
1
2
w (βMWLE − β⋆)∥22

= ∥H
1
2
w∆βMWLE

∥22
= ∥H
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2
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1
2
wz∥22

= 2∥H
1
2
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− z))∥22 + 2∥H− 1
2

w g∥22
by(59)and(58)
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log d
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)1.5 +
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+ 8W 3B2
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To guarantee Tr(GwH−1
w ) log d

δ

n is the leading term, we only need Tr(GwH−1
w ) log d

δ

n to dominate the rest
of the terms. Hence, if we further have n ≥ cN2 log(d/δ), we have

∥H
1
2
w (βMWLE − β⋆)∥22 ≤ 9c2
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−1
w ) log d
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n
.

Here
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To summarize, we show that for any δ and any n ≥
cmax{N1 log(d/δ), N2 log(d/δ), N(δ), N ′(δ)}, with probability at least 1− 3δ, we have

∥H
1
2
w (βMWLE − β⋆)∥22 ≤ 9c2

Tr(GwH
−1
w ) log d

δ

n
.

C.3 PROOFS FOR THEOREM 5.3

Proof of Theorem 5.3. For any W > 1, we construct PS(X), PT (X), M and F as follows. We
define PT (X) := Uniform(B(1)) and PS(X) := Uniform(B(W 1

d )), where B(1) and B(W 1
d ) are

d-dimensional balls centered around the original with radius 1 and W
1
d , respectively. For notation

simplicity, we denote Q := B(1) and P := B(W 1
d ) in the following. The density ratios is then

given by

w(x) :=
dPT (x)

dPS(x)
=

{
W x ∈ Q

0 x /∈ Q
,

which is upper bounded by W . We further have

IS(β) = Ex∼PS(X)[xx
T ] =

W
2
d

3d
Id ≻ 0, IT (β) = Ex∼PT (X)[xx

T ] =
1

3d
Id ≻ 0.

Let F := {f(y |x;β) |β ∈ Rd} be the linear regression class, i.e., − log f(y |x;β) = (log 2π)/2+
(y − xTβ)2/2. We assume the true conditional distribution belongs to a class M that is defined as

M :=
{
Y |X s.t p(y |x) = f(y |x;β⋆

1)1{x∈Q} + f(y |x;β⋆
2)1{x∈P\Q}, β

⋆
1 , β

⋆
2 ∈ Bβ0

(B)
}
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for some β0 ∈ Rd and B > 0. We utilize the function class F to approximate the true conditional
density function, which subsequently results in model mis-specification. In the sequel, we will show
the lower bound of excess risk for any estimators under this model class M.

Fix any ground truth model M ∈ M, that is, we are assuming the true conditional distribution
follows the form:

p(y |x) = f(y |x;β⋆
1)1{x∈Q} + f(y |x;β⋆

2)1{x∈P\Q},

where β⋆
1 and β⋆

2 are arbitrarily chosen fixed points from Bβ0
(B). Note that the model is actually

well-specified on the target domain. Hence the optimal fit on the target is given by

β⋆(M) = argminβE(x,y)∼PT (X,Y )[ℓ(x, y, β)] = β⋆
1 .

For linear regression, it is easy to verify that Assumption B.2, B.3 and B.4 hold. Let R0 and R1 be
the parameters chosen by Lemma A.5. Then similar to the proofs of Theorem 3.2, we have
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(61)

By Theorem 1 in Gill & Levit (1995) (multivariate van Trees inequality) with ψ(β⋆
1 , β

⋆
2) = β⋆

1 ,
C(β⋆

1 , β
⋆
2) ≡ C := [WId, 0] ∈ Rd×2d and B(β⋆

1 , β
⋆
2) ≡ B := I−1

T (β0), we have for any estimator
β̂ and good prior density λ that supported on C[βT

0 ,βT
0 ](

R1√
d
),

E[β⋆T
1 ,β⋆T

2 ]∼λE(xi,yi)∼PS(X,Y )

[
(β̂ − β⋆

1)
TIT (β0)(β̂ − β⋆

1)
]
≥ (Wd)2

2nWd+ Ĩ(λ)
,

where

Ĩ(λ) =
∫
C

[βT
0 ,βT

0 ]
(
R1√

d
)

∑
i,j,k,ℓ

BijCikCjℓ
∂

∂β̃k
λ(β̃)

∂

∂β̃ℓ
λ(β̃)

 1

λ(β̃)
dβ̃.

Let β̃0 = [β0,1, . . . , β0,d, β0,1, . . . , β0,d]
T , β̃ = [β1, . . . , β2d]

T and

fi(x) :=
π
√
d

4R1
cos

(
π
√
d

2R1
(x− β̃0,i)

)
, i = 1, . . . , 2d.

We define the prior density as

λ(β̃) :=

{
Π2d

i=1fi(βi) β̃ ∈ C[βT
0 ,βT

0 ](
R1√
d
)

0 β̃ /∈ C[βT
0 ,βT

0 ](
R1√
d
)
.

Then following the same argument as in the proof of Lemma A.6, we have

Ĩ(λ) = π2d

R2
1

Tr(BCCT ) =
π2W 2d

R2
1

Tr(I−1
T (β0)).
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As a result, for any estimator β̂, we have

E[β⋆T
1 ,β⋆T

2 ]∼λE(xi,yi)∼PS(X,Y )

[
(β̂ − β⋆

1)
TIT (β0)(β̂ − β⋆

1)
]

≥ (Wd)2

2nWd+ π2W 2d
R2

1
Tr(I−1

T (β0))
,

which implies

sup
[β⋆T

1 ,β⋆T
2 ]∈C

[βT
0 ,βT

0 ]
(
R1√

d
)

E(xi,yi)∼PS(X,Y )

[
(β̂ − β⋆

1)
TIT (β0)(β̂ − β⋆

1)
]

≥ E[β⋆T
1 ,β⋆T

2 ]∼λE(xi,yi)∼PS(X,Y )

[
(β̂ − β⋆)TIT (β0)(β̂ − β⋆)

]
≥ (Wd)2

2nWd+ π2W 2d
R1

Tr(I−1
T (β0))

. (62)

Combine (61) and (62), we have

inf
β̂

sup
M∈M

E(xi,yi)∼PS(X,Y )

[
RM (β̂)

]
≥ 1

4
· (Wd)2

2nWd+ π2W 2d
R1

Tr(I−1
T (β0))

≳
Wd

n

when n is sufficiently large.

Recall that

Hw(M) = E(x,y)∼PT (X,Y )

[
∇2ℓ(x, y, β⋆(M))

]
= E(x,y)∼PT (X,Y )

[
∇2ℓ(x, y, β⋆

1)
]
= IT (β⋆

1).

and by the definition of w(x), we further have

Gw(M) = E(x,y)∼PS(X,Y )

[
w(x)2∇ℓ(x, y, β⋆(M))∇ℓ(x, y, β⋆(M))T

]
= E(x,y)∼PT (X,Y )

[
w(x)∇ℓ(x, y, β⋆(M))∇ℓ(x, y, β⋆(M))T

]
=WE(x,y)∼PT (X,Y )

[
∇ℓ(x, y, β⋆(M))∇ℓ(x, y, β⋆(M))T

]
=WE(x,y)∼PT (X,Y )

[
∇ℓ(x, y, β⋆

1)∇ℓ(x, y, β⋆
1)

T
]

=WIT (β⋆
1).

Therefore Tr(Gw(M)Hw(M)−1) = Wd, which gives the desired result. What remains is to verify
that M satisfies Assumption C.1, C.2, C.3 and C.4. Assumption C.1 is trivially satisfied. For
Assumption C.2 and C.3, notice that

∇ℓ(x, y, β) = −x(y − xTβ),

∇2ℓ(x, y, β) = xxT ,

∇3ℓ(x, y, β) = 0.

and

w(x) :=
dPT (x)

dPS(x)
=

{
W x ∈ Q

0 x /∈ Q
,

By the definition of M, we can write the distribution of y as

yi =

{
xTi β

⋆
1 + ϵi xi ∈ Q

xTi β
⋆
2 + ϵi xi /∈ Q

,

where ϵi is a N (0, 1) noise independent of all xi’s. Therefore let ui := Aw(xi)∇ℓ(xi, yi, β⋆(M)),
we have

ui =

{
−WAxiϵi xi ∈ Q

0 xi /∈ Q
,
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which indicates that ∥ui∥ is ∥A∥W -subgaussian. Therefore by Lemma D.1, the vector concentration
in Assumption C.2 is satisfied with γ = 0.5, B1 = 1. For the matrix concentration, notice that

w(xi)∇2ℓ(xi, yi, β
⋆(M)) =

{
Wxix

T
i xi ∈ Q

0 xi /∈ Q
,

therefore my matrix Hoeffding, ∥w(xi)∇2ℓ(xi, yi, β
⋆(M))∥2 ≤ W , thus the matrix concentration

in Assumption C.2 is satisfied with B2 = 1. Further more, N(δ) = 0 is enough for satisfying
Assumption C.2.

Assumption C.3 is satisfied with B3 = 0 since ∇3ℓ(x, y, β) = 0.

For Assumption C.4, we can prove that it is satisfied with N ′(δ) = max{8W log 1
δ , 2dW}. This is

because,

P(∇2ℓwn (β) ≻ 0 for all β) = P(
W

n

n∑
i=1

xix
T
i Ixi∈Q ≻ 0)

≥ P(#{xi ∈ Q} > d)

= 1− P(#{xi ∈ Q} ≤ d)

by Chernoff bound
≥ 1− exp(−µ

2
(1− d

µ
)2)

≥ 1− δ,

where µ := n
W , and the last inequality hold when n ≥ N ′(δ). Therefore when n ≥ N ′(δ), with

probability at least 1− δ, ℓwn is strictly convex, therefore has a unique local minimum which is also
the global minimum.

D AUXILIARIES

In this section, we present several auxiliary lemmas and propositions.

D.1 CONCENTRATION FOR GRADIENT AND HESSIAN

The following lemma gives a generic version of Bernstein inequality for vectors.
Lemma D.1. Let u, u1, · · · , un be i.i.d. mean-zero random vectors. We denote V = E[∥u∥22] and

B(α)
u := inf{t > 0 : E[exp(∥u∥α/tα)] ≤ 2}, α ≥ 1.

Suppose B(α)
u < ∞ for some α ≥ 1. Then there exists an absolute constant c > 0 such that for all

δ ∈ (0, 1), with probability at least 1− δ:∥∥∥∥∥ 1n
n∑

i=1

ui

∥∥∥∥∥
2

≤ c

√V log d
δ

n
+B(α)

u

(
log

B
(α)
u√
V

)1/α
log d

δ

n

 .

Proof. See Proposition 2 in Koltchinskii et al. (2011) for the proof.

The following proposition shows that when gradient and Hessian are bounded or sub-Gaussian (sub-
exponential), Assumption A.1 is naturally satisfied.
Proposition D.2. If ∥∇ℓ(xi, yi, β⋆)∥2 ≤ b1 for all i ∈ [n], then the vector concentration (5) is
satisfied with B1 = b1 and γ = 0. Alternatively, if ∥∇ℓ(xi, yi, β⋆)∥2 is b1-subgaussian, then (5)
is satisfied with B1 = b1 and γ = 1/2. When ∥∇ℓ(xi, yi, β⋆)∥2 is b1-subexponential, then (5) is
satisfied with B1 = b1 and γ = 1. For the Hessian concenntration, if ∥∇2ℓ(xi, yi, β

⋆)∥2 ≤ b2 for
all i ∈ [n], then (6) is satisfied with B2 = b2.

Proof. The vector concentration (5) is a direct proposition of Lemma D.1. The Hessian concentra-
tion (6) is a direct consequence of matrix Hoeffiding inequality.
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