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This supplementary material provides additional descriptions of the
proposed DPO, including empirical results and implementation de-
tails. Visual aids are also included to enhance understanding of the
method. Furthermore, the attached code is available for reference.

• Sect. 1: Additional experimental results.
• Sect. 2:More implementation details.
• Sect. 3: Quantitative study on Waymo→ KITTI-C task.

1 ADDITIONAL EXPERIMENTAL RESULTS
We adhere to a classical LiDAR-based 3D object detection evalu-
ation, focusing on the car class in the main paper. In addition to
this, we also explore the effectiveness of the proposed DPO on two
other classes: pedestrians and cyclists. We evaluate TTA baselines
and DPO across all difficulty levels for the most challenging trans-
fer task, i.e., composite domain shift, in terms of AP3D. Detailed
explanations are provided below.

1.1 Pedestrian Class
We evaluate the effectiveness of DPO for the pedestrian class across
all difficulty levels, as shown in Table 1. Notably, our proposed
method achieves state-of-the-art performance in terms of mean
AP3D, showcasing its effectiveness. When examining specific cor-
ruption types, DPO also demonstrates competitive performance.
Specifically, for the crosstalk (CrossT.) corruption, DPO improves
the AP3D from 40.71% to 42.06%, compared with the strongest base-
line SAR, at the hard level. Moreover, our method achieves a 4.1%
improvement at the moderate level for the same corruption type.
However, there are two exceptions: Beammissing (Beam.) and cross
sensor (CrossS.), where a significant number of object points are
dropped when generating the corruption, leading to a performance
decline for all pseudo-label-based adaptation methods [3], includ-
ing both CoTTA and DPO. Despite these challenges, our method
still manages to handle most corruptions effectively, maintaining a
leading mean AP3D.

1.2 Cyclist Class
A similar performance trend is observed in the cyclist class. Our
method outperforms the baseline methods at every difficulty level,
except for the cross-sensor corruption. Specifically, in terms of
mean AP3D, DPO achieves 7.28%, 5.09%, and 5.71% for the easy,
moderate, and hard difficulty levels, respectively. Notably, for the
snow corruption, our method leads to the greatest improvement
over the baseline, increasing from 52.91% to 58.02% AP3D at the
easy level. Similarly, a performance increase from 29.34% to 32.05%
is achieved at the hard level when facing motion blur (Moti.). For
reasons similar to those discussed in Sect. 1.1, DPO underperforms
for cross-sensor (CrossS.) corruption, potentially due to failure
of the pseudo-labeling strategy when encountering cyclists with

too few points. However, our method represents the best trade-off
solution, as it offers the highest mean AP3D.

2 MORE IMPLEMENTATION DETAILS
2.1 Datasets
2.1.1 Waymo. The Waymo open dataset [6] is a large 3D detec-
tion dataset for autonomous driving. It contains 798 training se-
quences with 158,361 LiDAR samples and 202 validation sequences
with 40,077 LiDAR samples. The point clouds feature 64 lanes of
LiDAR, corresponding to 180,000 points every 0.1 seconds. In DPO,
we train the source model on the Waymo training set.

2.1.2 nuScenes. The nuScenes dataset [1] consists of 1,000 driv-
ing sequences, divided into 700 for training, 150 for validation, and
150 for testing. Each sequence is approximately 20 seconds long,
with a LiDAR frequency of 20 FPS. The dataset provides calibrated
vehicle pose information for each LiDAR frame while offering box
annotations every ten frames (0.5s). nuScenes uses a 32-lane LiDAR,
which generates approximately 30,000 points per frame. In total,
there are 28,000 annotated frames for training, 6,000 for validation,
and 6,000 for testing. We employ its training set for pre-training
the source model for all baselines and the proposed DPO.

2.1.3 KITTI. The KITTI Dataset [2] is widely recognized as a cru-
cial resource for 3D object detection in autonomous driving. The
training point clouds are divided into a training split of 3,712 sam-
ples and a validation split of 3,769 samples. The dataset categorizes
detection difficulty into three levels, defined by criteria of visibility,
occlusion, and truncation. The category ‘Easy’ denotes scenarios
with no occlusion and a truncation limit of 15%. ‘Moderate’ applies
to conditions with partial occlusion and truncation not exceeding
30%. ‘Hard’ encompasses situations with severe occlusion and a
truncation threshold of 50%. For evaluating the predicted boxes in
3D object detection, KITTI requires a minimum 3D bounding box
overlap of 70% for cars and 50% for pedestrians and cyclists. In this
study, where KITTI serves as the target domain, we evaluate all
models using the validation split.

2.1.4 KITTI-C. The robustness of 3D perception systems against
natural corruptions, which arise due to environmental and sensor-
related anomalies, is crucial for safety-critical applications. While
existing large-scale 3D perception datasets are often meticulously
curated to exclude such anomalies, this does not accurately repre-
sent the operational reliability of perception models. KITTI-C [3]
is the first comprehensive benchmark designed to assess the ro-
bustness of 3D detectors in scenarios involving out-of-distribution
natural corruptions encountered in real-world environments. It
specifically investigates three major sources of corruption likely to
impact real-world deployments: 1) severe weather conditions such
as fog, rain (Wet.), and snow, which affect laser pulse dynamics
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Table 1: TTA-3OD results (easy/moderate/hard AP3D) of pedestrian class under the composite domain shift (Waymo→KITTI-C)
at heavy corruption level.

No Adaptation Tent CoTTA SAR MemCLR DPO

Fog 30.48/26.15/23.61 31.22/26.68/23.99 31.29/26.69/24.05 30.68/25.94/23.70 30.51/26.02/23.77 33.25/27.83/25.23
Wet. 49.10/44.44/41.74 49.13/44.58/41.85 49.14/45.01/42.23 49.18/44.59/41.97 49.09/44.55/41.81 50.31/45.27/42.31
Snow 47.22/42.26/39.19 47.55/42.79/39.44 46.30/41.62/38.11 47.42/42.85/39.54 47.68/42.78/39.45 48.06/43.61/40.11
Moti. 27.18/25.02/23.29 27.47/25.25/23.43 27.28/25.43/23.41 27.34/25.15/23.31 27.44/25.19/23.36 27.48/25.57/23.60
Beam. 32.47/27.89/25.27 34.50/30.55/28.18 32.22/27.41/25.13 34.83/30.74/28.54 34.53/30.30/28.16 34.29/30.42/28.13
CrossT. 47.42/43.08/40.37 47.66/43.37/40.51 47.76/43.29/40.39 48.13/43.65/40.71 47.87/43.58/40.48 50.38/45.43/42.06
Inc. 49.28/44.79/42.21 49.18/44.80/42.11 49.36/45.39/42.77 49.22/44.70/42.24 49.01/44.76/42.11 50.83/46.06/43.02
CrossS. 22.46/18.40/16.08 27.70/22.82/20.30 22.11/17.88/15.98 27.99/23.20/21.36 27.23/23.70/21.63 25.32/20.93/18.99

Mean 38.20/34.00/31.47 39.30/35.11/32.48 38.18/34.09/31.52 39.35/35.10/32.67 39.17/35.11/32.60 39.99/35.64/32.93

Table 2: TTA-3OD results (easy/moderate/hard AP3D) of cyclist class under the composite domain shift (Waymo → KITTI-C) at
heavy corruption level.

No Adaptation Tent CoTTA SAR MemCLR DPO

Fog 21.15/17.91/16.66 23.62/19.21/18.33 22.60/18.74/17.57 23.49/19.02/18.10 23.43/19.01/17.86 23.83/19.61/18.64
Wet. 60.36/49.61/47.20 59.72/48.57/45.96 61.36/49.27/47.04 57.43/46.48/43.96 57.76/46.34/44.79 62.64/50.78/48.50
Snow 48.87/40.37/37.96 52.81/42.25/40.11 52.91/41.55/39.09 52.09/41.89/39.26 52.24/41.71/39.28 58.02/44.09/42.18
Moti. 34.62/29.25/27.33 36.79/29.04/27.31 40.37/31.18/29.34 37.53/29.78/28.12 38.19/29.75/28.19 44.03/34.23/32.05
Beam. 32.48/22.42/21.26 36.08/25.03/23.85 30.89/21.37/20.42 37.16/26.21/24.74 36.34/25.35/24.32 38.65/26.78/25.45
CrossT. 59.56/48.75/46.20 58.72/49.26/46.51 62.14/49.13/46.21 58.66/49.16/46.61 58.68/48.87/46.40 63.57/51.07/48.22
Inc. 59.62/49.03/46.82 59.14/47.87/45.11 59.89/47.62/45.44 58.86/47.93/45.51 58.91/48.28/45.68 62.34/50.18/47.73
CrossS. 18.38/11.40/10.93 24.84/15.04/14.66 20.98/12.77/12.28 26.19/15.29/14.95 25.46/15.06/14.49 24.23/14.28/13.99

Mean 41.88/33.59/31.79 43.96/34.53/32.73 43.89/33.95/32.17 43.93/34.47/32.66 43.88/34.30/32.63 47.16/36.38/34.60

through back-scattering, attenuation, and reflection; 2) external dis-
turbances including bumpy surfaces, dust, and insects, which can
cause motion blur (Moti.) and missing LiDAR beams (Beam.); and
3) internal sensor failures like incomplete echo (Inc.) or misiden-
tification of dark-colored objects and sensor crosstalk (Cross.T),
which may compromise 3D perception accuracy. Additionally, un-
derstanding cross-sensor discrepancies is essential to mitigate risks
associated with sudden failures due to changes in sensor configura-
tions (Cross.S).

2.2 Additional Implementation Details
Tent and SAR [5, 8] utilize entropy minimization to optimize the
batchnorm layers during test time. Therefore, we calculate the en-
tropy loss by summing the classification logits for all proposals at
the first detection stage. CoTTA [9] follows a mean-teacher frame-
work. Although a broad range of data augmentations is typically
required to generalize the model to various corruptions, our em-
pirical evidence from test-time adaptation for 3D object detection
(TTA-3OD) suggests that most augmentations do not improve—and
may even impair—performance. The sole exception is randomworld
scaling. As a result, we adopt random world scaling as our primary
strategy, in accordance with [4], applying strong scaling (0.9 to
1.1) and weak scaling (0.95 to 1.05), respectively. Regarding pseudo-
labeling, we directly apply strategies tailored for 3D object detection
from [10, 11] to enhance self-training in CoTTA. Similar to CoTTA,
we adopt the same augmentation strategy forMemCLR [7], which

was originally tailored for image-based 2D object detection, and ex-
tend it to 3D detection scenarios. This involves reading and writing
pooled region of interest (RoI) features extracted during the second
detection stage and computing the memory-based contrastive loss.
We apply all hyperparameters from the original paper by default.
Besides, The proposedDPO is a pseudo-labeling-based self-training
approach for TTA-3OD. We leverage the self-training paradigm and
augmentation strategies from prior works [4, 10, 11]. The complete
configuration files and implementation code are included in this
supplementary material.

3 QUANTITATIVE STUDY
Figure 1 visualizes the box predictions from the source pre-trained
3D detector, the proposed DPO, and the ground truth labels. The
detection model, pre-trained on Waymo, is adapted to KITTI-C
under conditions simulating heavy snowfall, where many noisy
green points are distributed throughout the point clouds. The last
row displays images of the same testing scenes with projected 2D
ground truth boxes. All detected instances in the point clouds are
enclosed in blue 3D boxes. Intuitively, DPO demonstrates its ability
to better align with the ground truth labels, evidenced by more
accurate locations and fewer false positives. In comparison, direct
inference often results in a greater number of boxes that do not
contain actual objects, caused by a significant domain shift (i.e.,
cross-dataset plus heavy snow). Additionally, in the first column, a
car obscured behind thewhite car on the left is missed by the ground
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Figure 1: Visualization of box predictions comparing direct inference (No Adapt.), the proposed DPO, and the ground truth
labels, across a composite domain shift scenario (Waymo→ KITTI-C) under heavy snow conditions.

truth but detected by both DPO and direct inference. While direct
inference achieves high recall, it does so at the cost of numerous
false positives (i.e., boxes without actual objects). Conversely, the
proposed DPO not only demonstrates high recall but also maintains
high precision, effectively reducing false positives and confirming
its effectiveness in test-time adaptation for 3D object detection.
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