
Published as a conference paper at ICLR 2025

WHY DOES THE EFFECTIVE CONTEXT LENGTH OF
LLMS FALL SHORT?

Chenxin An1 ∗ Jun Zhang2 Ming Zhong3 Lei Li1 Shansan Gong1
Yao Luo2 Jingjing Xu2 Lingpeng Kong1
1The University of Hong Kong 2ByteDance Inc. 3University of Illinois Urbana-Champaign

ABSTRACT

Advancements in distributed training and efficient attention mechanisms have sig-
nificantly expanded the context window sizes of large language models (LLMs).
However, recent work reveals that the effective context lengths of open-source
LLMs often fall short, typically not exceeding half of their training lengths. In this
work, we attribute this limitation to the left-skewed frequency distribution of rela-
tive positions formed in LLMs pretraining and post-training stages, which impedes
their ability to effectively gather distant information. To address this challenge, we
introduce ShifTed Rotray position embeddING (STRING). STRING shifts well-
trained positions to overwrite the original ineffective positions during inference,
enhancing performance within their existing training lengths. Experimental results
show that without additional training, STRING dramatically improves the perfor-
mance of the latest large-scale models, such as Llama3.1 70B and Qwen2 72B, by
over 10 points on popular long-context benchmarks RULER and InfiniteBench, es-
tablishing new state-of-the-art results for open-source LLMs. Compared to commer-
cial models, Llama 3.1 70B with STRING even achieves better performance than
GPT-4-128K and clearly surpasses Claude 2 and Kimi-chat. All code and data
used in this work are released at https://github.com/HKUNLP/STRING.

1 INTRODUCTION

The increase in context length for large language models (LLMs; OpenAI 2023; Anthropic 2023; Bai
et al. 2023; Xiong et al. 2023; Llama Team 2024) has facilitated the development of a wide range
of applications (Pang et al., 2022; Bairi et al., 2023), substantially expanding the capabilities of AI
systems. Recent advancements in efficient training and attention calculation (Li et al., 2024a; Dao,
2023; Liu et al., 2023) have made it feasible to train LLMs with exceptionally long context windows.
For instance, Llama3.1 (Llama Team, 2024) features a context length of 128K tokens, which is 64×
longer than that of its initial release (Touvron et al., 2023a).

This trend towards longer context lengths in LLMs promises enhanced capabilities. Previous work
has primarily focused on extending the context length of LLMs, with significant efforts devoted to
improving data engineering techniques (Fu et al., 2024b; Hu et al., 2024; Bai et al., 2024; Zhao et al.,
2024). High-quality natural long-context data are scarce in real-world settings, limiting the availability
of such data for training purposes. To address this challenge, recent methods aim to generate synthetic
training data that better capture the nuances of naturally occurring long-context information, despite
inherent challenges such as time consumption in continual training and potential biases (Zhao et al.,
2024; An et al., 2024b; Lv et al., 2024). Researchers have also focused on addressing specific
architectural limitations. Efforts have been made to correct the improper adjustment of the base
frequency in Rotary Position Embedding (RoPE) (Su et al., 2022; Peng et al., 2023; Chen et al., 2023;
Lin et al., 2024b; Chen et al., 2024).

However, recent studies (An et al., 2023; Zhang et al., 2024d; Li et al., 2024b; Wang et al., 2024a)
reveal a notable discrepancy between these theoretical improvements and observed performance. In
practice, the effective context utilization of these models often falls substantially below their claimed
or training context lengths. For example, on the widely used RULER benchmark (Hsieh et al., 2024),

∗Work done during internship at ByteDance Inc.

1

https://github.com/HKUNLP/STRING

Published as a conference paper at ICLR 2025

the effective context length of the latest Llama 3.1 70B model is only 64K, despite employing scaled
RoPE base frequency (Peng et al., 2023) and having sufficient training data (Llama Team, 2024). In
fact, most open-source models demonstrate an effective context length less than 50% of their training
length (Hsieh et al., 2024). A key research question emerges from these observations: Why does the
effective context length of LLMs fall short of their training context lengths?

In this study, instead of further extending the context window size of current LLMs, we take a fresh
perspective to understand and address this gap. Our core insight revolves around a phenomenon
we term the left-skewed position frequency distribution – a pattern of severe undertraining of long-
distance position indices during pretraining and post-training stages. This skewed distribution
significantly contributes to the model’s suboptimal performance in long-range modeling tasks. In
SlimPajama-627B (Cerebras, 2023), a widely used pretraining corpus (Geng & Liu, 2023; Zhang
et al., 2024b), we clearly observe this left-skewed phenomenon. As illustrated in Figure 1a, even with
presumably adequate long-sequence data, the frequency of position indices decreases dramatically as
distances increase. For instance, when training a model with a 2048 context length on SlimPajama,
the frequency of position indices used to model relationships between distant tokens (distances
≥ 1024) is less than 20%, and for even longer distances (≥ 1536), it drops below 5%. Probing
experiments conducted during pretraining reveal that the frequency of exposure to specific position
indices has a crucial impact on the training context utilization. Capturing long-range dependencies is
inherently more challenging (Zhu et al., 2023; Wu et al., 2024), and this challenge is exacerbated
when the frequency of position indices allocated to gather distant information is exceedingly low, as
observed in Figure 1. In other words, the difficulty in modeling long-term dependencies, coupled
with the undertraining of the positions responsible for them, provides a compelling explanation for
the discrepancy between the theoretical and practical context lengths in LLMs.

Building on these findings, we investigate whether well-trained positions can be leveraged to capture
information from distant inputs during inference. To address this, we propose a training-free approach
called ShifTed Rotray position embeddING (STRING). This method eschews the use of positions at
the tail of the frequency distribution during inference. Specifically, STRING shifts position indices
from the main diagonal of the position matrix toward its bottom-left corner. This adjustment enables
the model to represent long-range dependencies using frequently encountered position indices,
effectively approximating the undertrained ones. STRING can be efficiently implemented using Flash
Attention (Dao, 2023) by combining two key components: (1) sliding window attention (Beltagy
et al., 2020; Ding et al., 2023; Xiao et al., 2023; 2024) around the diagonal, and (2) self-attention at
the bottom-left corner using shifted position indices (Algorithm 1). This implementation incurs no
additional computational costs and causes no obvious slowdowns during inference.

By strategically overwriting position indices in the upper range of the training length, we achieve
substantial performance enhancements across seven open-source LLMs with context lengths ranging
from 2K to 128K on the Needle-in-a-Haystack (4-needle) test, resulting in an average score increase
of 18 points. STRING requires no additional training, enabling seamless scaling up with powerful
large-scale models such as Llama3.1 70B (Llama Team, 2024) and Qwen2 72B (Bai et al., 2023).
This integration not only establishes new state-of-the-art performance for open-source LLMs on
long-context benchmarks RULER (Hsieh et al., 2024) and InfiniteBench (Zhang et al., 2024d) but
also enables Llama3.1 to outperform leading commercial models, including GPT-4-128K (OpenAI,
2023), Claude-2 (Anthropic, 2023), and Kimi-chat (Moonshot AI, 2023), across a wide range of
synthetic and practical tasks. The substantial improvements achieved by STRING provide strong
evidence for our hypothesis: underrepresented position indices at the tail of the position frequency
distribution, strongly constrain the long-context capabilities of current LLMs. We hope our findings
will inspire new approaches to overcome these limitations and lead to more effective long-context
processing in future LLM designs.

2 LEFT-SKEWED POSITION FREQUENCY DISTRIBUTION

2.1 POSITION EMBEDDINGS IN LLMS

Self-attention mechanisms (Vaswani et al., 2017; Radford et al., 2018; Dai et al., 2019) inherently
lack positional information (Liu et al., 2021; Su et al., 2022; Sun et al., 2022). To introduce positional
information, a common approach is to design a function p. For an input at position i, we inject
positional information using the following method: hi = p(h, i) where h is the hidden representation

2

Published as a conference paper at ICLR 2025

0 0.2K 0.5K 0.8K 1.0K 1.2K 1.5K 1.8K 2.0K0T

10T

20T

30T

40T

Po
sit

io
n

Fr
eq

ue
nc

y

Position frequency dist.
Data length dist.

0M

50M

100M

150M

Nu
m

be
r o

f D
at

a

(a) Natural data distribution

0 0.3K 0.5K 0.8K 1.0K 1.3K 1.5K 1.8K 2.0K0T

10T

20T

30T

40T

Po
sit

io
n

Fr
eq

ue
nc

y

Position frequency dist.
Data length dist.

0M

50M

100M

150M

Nu
m

be
r o

f D
at

a

(b) Uniform data distribution

0 0.3K 0.5K 0.8K 1.0K 1.3K 1.5K 1.8K 2.0K0T

10T

20T

30T

40T

Po
sit

io
n

Fr
eq

ue
nc

y

Position frequency dist.
Data length dist.

0M

100M

200M

300M

Nu
m

be
r o

f D
at

a

(c) Concatenated data distribution

Figure 1: Position frequency distribution exhibits a pronounced left-skewed pattern across training
data of varying lengths. Figure 1a illustrates the natural data length distribution of SlimPajama-627B
where oversized data is truncated into multiple 2K sequences. Figure 1b presents the case with a
uniform length distribution and the position frequency decline quadratically. Figure 1c demonstrates
that when all data are concatenated into a 2K sequence, the position frequency decreases linearly
with increasing position indices. The X-axis represents data length (shown in orange) and position
indices (shown in blue). The left Y-axis indicates the frequency of each position, while the right
Y-axis represents the number of data for each length.

of the input token. Another approach involves relative positional encodings (Bao et al., 2020), such
as T5-bias (Raffel et al., 2023) and ALiBi (Press et al., 2022), which injects relative positional
information by incorporating the relative distance (i−j) when computing the attention score between
the j-th token and the i-th token.

To achieve better training stability and lower perplexity, mainstream large models like Qwen (Hui
et al., 2024) and Llama (Llama Team, 2024) employ Rotary Position Embedding (RoPE) (Su et al.,
2022) as their positional encoding method. RoPE directly injects positional information into the
query and key vectors, enabling the inner product to encode the relative position information between
the query and key. We adopt the notation p for the embedding function of RoPE. Considering the
i-th query and the j-th key, we have: qi = p(q, i) and kj = p(k, j). When computing attention, the
inner product q⊤

i kj contains only the relative positional information (i− j), which means for any
pair (m, n) such that m− n = i− j, it holds that q⊤

mkn = q⊤
i kj .

2.2 RELATIVE POSITION MATRIX AND POSITION FREQUENCY

Using relative positional encodings implies that, given training length L, the resulting relative position
matrix P after computing Q⊤K is defined by:

P =

0
1 0
.

L− 2 · · · 1 0
L− 1 L− 2 · · · 1 0

 (1)

where the Toeplitz matrix P captures the relative positional relationships between tokens, with each
element P [m][n] = m − n encoding the relative distance between the m-th and n-th tokens in a
sequence. Based on Eq. 1, we define the frequency of relative position i by f(i) = L− i, which is
the number of occurrences of a relative position i. Throughout the remainder of this paper, the term
“position” refers to relative position. The structure of matrix P is linearly skewed toward smaller
positions, which inherently favors performance on shorter sequences. For example, when using a
training context window of L = 2048 tokens, the relative position 2047 occurs only once in P .

The frequency of relative positions in P also depends on the data length distribution of the pretraining
corpus C. We can obtain the frequency of relative position i by the following equation:

f(i) =
∑
s∈C

max(|s| − i, 0), 0 ≤ i < L (2)

We observe that the position frequency distribution is usually highly left-skewed, indicating that the
model is frequently exposed to small positions, while larger positions account for only a small pro-
portion. To illustrate this phenomenon, we examine the position distribution when using SlimPajama-
627B (Cerebras, 2023) as the training corpus. The blue bars in Figure 1 illustrate the position

3

Published as a conference paper at ICLR 2025

80B 120B 200B 300B 400B 500B 600B 800B 1T
0

0.5K

1.0K

1.5K

2.5K

consumed tokens

e
ff
e
c
ti
v
e
le
n
g
th

Tinyllama-1.3b-4k

Tinyllama-1.3b-2k

(a) Effective length vs. consumed tokens

256 512 768 1024 1152 1280 1408 2560
0

50B

100B

150B

200B

effective length

p
o
s
it
io
n
fr
e
q
u
e
n
c
y

f
(i

) Tinyllama-1.3b-4k

Tinyllama-1.3b-2k

(b) Effective length vs. position frequency

Figure 2: Analyzing effective context length of LLMs pretrained on SlimPajama with respect to
training length, token consumption, and position frequency. In Figure 2b, we use the model effective
length as the X-axis, and the Y-axis indicates the number of times the model was exposed to that
specific position during training.

frequency distribution based on the natural data length distribution of SlimPajama. Specially, when
the training length is 2048, the position indices i ≤ 1024 account for more than 80% of all indices,
whereas those with i ≥ 1536 constitute less than 5%. In addition to the biased relative position
matrix P , the real-world data length distribution is also biased. Given a training context length of
2048 tokens, the data length distribution is shown in Figure 1a (orange bars): about 20% of the data
consists of sequences around 256-512 tokens, and approximately 20% of the samples are around 2048
tokens. This latter percentage arises because long sequences are segmented into multiple sequences
of length 2048, following popular open-source pretraining projects (Geng & Liu, 2023; Zhang et al.,
2024b). Due to the combined effect of the data distribution and the relative position matrix, the
frequency of positions decreases following a polynomial trend as the position indices increase.

Despite capturing local dependencies is often effective for LLMs, the imbalance in position frequency
distribution when modeling both local and long-range dependencies is more pronounced than expected.
This may result in a substantial underrepresentation long-range dependencies.

3 A PROBING EXPERIMENT ON POSITION FREQUENCY AND MODEL
EFFECTIVE LENGTH

In this section, we empirically investigate the impact of the left-skewed position frequency distribution
on the effective context length of LLMs. Since the training data distributions for most open-source
LLMs are opaque and cannot be directly analyzed by researchers, this study represents the first
exploration of the impact of position frequency during the pretraining stage.

Evaluation To measure the effective context length, we adopt the popular Needle-in-a-Haystack
task (gkamradt, 2023). We use the 4-needle setting, the same as described in the Llama 3.1 report
(Llama Team, 2024), which involves inserting four needles (6-digit numbers (Hsieh et al., 2024;
Mohtashami & Jaggi, 2023)) into the context at various positions. The model should perfectly retrieve
at least two of them. The input examples used in this experiment can be found in Table 5 of the
Appendix. The evaluation context length increases in 128-token steps until the model fails to correctly
find 2 of 4 inserted needles. We perform 500 tests at each length.

Experimental Setup We pretrain two 1.3B-parameter models (referred to as TinyLlama-1.3B)
from scratch on the natural data distribution of the SlimPajama dataset to observe changes in the
model’s effective length. The total training tokens are 1T and we evaluate the model’s effective
context length for every 10B tokens during training. Both models begin to exhibit needle-retrieval
ability after about 50B tokens of training. Since position frequency is difficult to control directly, we
perform controlled experiments by adjusting two factors: (1) consumed tokens, and (2) the training
context window size. The first factor is straightforward. For the second factor, we illustrate the
position frequency distribution after training with 1T tokens using different training lengths (2K and
4K) in Figure 3. The configuration of our pretraining codebase and models is detailed in Section A.2.

4

Published as a conference paper at ICLR 2025

Findings Following previous work (Kaplan et al., 2020), we demonstrate how the models’ effective
length grows with increasing training tokens for two different training lengths (Finding (1)), while
our further analysis reveals that the position frequency is the underlying factor (Findings (2) and (3)).

(1) Larger training context window consumes fewer tokens to achieve the same effective context
length: In Figure 2a, a notable observation is that training with longer sequences results in a greater
effective context length when the same number of tokens is consumed. Specifically, the model trained
with a sequence length of 4K tokens achieves an effective context length of 1.4K after consuming
400B tokens. In contrast, the model with a 2K training length needs around 1T tokens to attain the
same effective context length. But it does not mean larger context training window can save more
computation.

0 0.5K 1.0K 1.5K 2.0K 2.5K 3.0K 3.5K 4.0K0T

16T

32T

48T

Po
sit

io
n

Fr
eq

ue
nc

y

Training Length 4K
Training Length 2K

Figure 3: Position frequency distribution for
models trained with different training lengths
after consuming 1T tokens. With the same num-
ber of tokens, training length has little effect
on small relative positions. For example, the
relative position 0 appears 4K times in both a
single 4K sequence and two 2K sequences with
the same total token count of 4K in each case.

(2) Models can achieve similar effective context
lengths if they have been exposed to similar fre-
quencies of position indices, even if their maxi-
mum training lengths differ: By directly plotting
the effective context length against the frequency
of position indices used to model that length (Fig-
ure 2b), we observe that the growth trends of ef-
fective lengths for different models align when the
Y-axis represents the frequency of indices at that
length. For instance, when the effective context
length reaches 1,280 tokens, both models exhibit
a position frequency f(1280) of 100B. This indi-
cates that models can attain comparable effective
context lengths when they have been trained on
similar frequencies of position indices, regardless
of differences in their maximum training lengths.

(3) The growth trend of the model’s effective length
aligns with the position frequency distribution: In
Figure 3, we observe that models with different
training lengths have close position frequencies when the position index i ≤ 1024. As i continues
to increase, the frequency gap between models trained with 4K and 2K context lengths becomes
increasingly larger. The growth rates of these two models’ effective lengths also align with this trend
(Figure 2). Both models consume roughly the same number of tokens (around 300B) when reaching
an effective length of 1024. However, as the effective length increases further, the growth rate of the
model pretrained with a 2K context window becomes significantly slower.

Limitations in Gathering Distant Inputs We visualize the performance of infrequent positions
with the Needle-in-a-Haystack (4-needle) test (gkamradt, 2023). The distance between the query and
the needles increases as the depth becomes smaller and the testing context length becomes longer.
The results indicate that when the needle and query are far apart, both TinyLlama 1.3B and the latest
Llama3.1 8B model fail to retrieve the needle effectively. In Figure 4, when we place the query at
the end of the document, we find that models fail at retrieving information from the beginning of
the document. Concretely, in Llama3.1, performance significantly degrades when position indices
exceed 90K. TinyLlama struggles to gather information when the distance exceeds 1,536 tokens. We
also evaluate 13 models from the open-source community, as shown in Table 4, and find that most
failure cases occur within the first L

3 of the document. This may indicate that the last L
3 positions of

current LLMs all fall in the tail of the position frequency distribution.

4 SHIFTED ROTARY POSITION EMBEDDING

In Figure 1c, we demonstrate that even when all data are concatenated to fill the training context
window, positions at the tail remain infrequent. In this section, we introduce ShifTed Rotray position
embeddING (STRING), STRING shifts position indices from the diagonal of P towards its bottom-left
corner, allowing the model to gather distant information with frequent position indices.

5

Published as a conference paper at ICLR 2025

Figure 4: NIAH results for our pretrained model TinyLlama-1.3B (2K) and Llama3.1 (128K) where
the X-axis means input context length and the Y-axis represents the document depth. In this figure,
we clearly observe that for TinyLlama 2K and Llama3.1 128K, most poor-performing cases are
concentrated in the lower-left triangle, indicating that the models are unable to gather distant needles.

0

1 0

2 1 0

0 2 1 0

1 0 2 1

1 0 2 1

2 1 0 2

3 2 1 0

4 3 2 1

5 4 3 2

0

1 0

2 1 0

0 2 1 0

Sh
ift

do
w

nw
ar

d
of

fs
et

 =
 3

Shift leftward offset = 3

0

1 0

2 1 0

3 2 1 0

4 3 2 1

4 3 2 1

5 4 3 2

6 5 4 3

7 6 5 4

8 7 6 5

0

1 0

2 1 0

3 2 1 0

0

0

1 0

2 1 0

0 2 1 0

1 0 2 1

1 0 2 1

1 0 2

1 0

4 1

5 4

0

1 0

2 1 0

0 2 1 0

+#

…

+#

(a) Dropping infrequent positions (b) Shifting frequent positions (c) Recovering locality

+#0

+# +#

+#
+#

+#

+#

+#

+#

+#

+#

+#

…

0

Figure 5: A illustrative example of STRING for a sequence length of L = 9. (a) Position indices
6, 7, and 8 are removed from the matrix. (b) Indices 0, 1, 2, 3, 4, and 5 are shifted from the main
diagonal to the lower-left triangle with an offset of 3. (c) A small constant W is added to all diagonals
where m ≥ n− 3, thereby restoring emphasis on the neighboring W tokens. The position matrix of
Llama3.1-128K using STRING is shown in Figure 8 Appendix.

4.1 MANIPULATING THE POSITION MATRIX

STRING is implemented by manipulating the position matrix P . The three main procedure of STRING
is shown in Figure 5:

(1) Dropping Infrequent Positions: We begin by assuming that position indices greater than a threshold
N falls into the infrequent area. Consequently, STRING initially drops all position indices i ≥ N . As
depicted in Figure 5a, we set N = 6 and L = 9, resulting in the removal of position indices 6, 7, and
8 from the matrix and leaving an empty area.

(2) Shifting Frequent Positions: Next, we shift the remaining position indices from the main diagonal
(the high-frequency area) to fill the empty triangle in the bottom-left corner of P . The shift offset is
defined as S = L−N . In our example, S = 9− 6 = 3, as shown in Figure 5b. For instance, let’s
consider the last row of the matrix P . The position indices after dropping are [−,−,−, 5, 4, 3, 2, 1, 0].
To fill the 3 empty slots, we shift the positions leftwards with a stride of 3, and they become
[5, 4, 3, 2, 1, 0, 2, 1, 0]. Formally, the updated position matrix is defined as:

P [m][n] =

{
P [m][n]− S if m ≥ n− S,

P [m][n] otherwise.
(3)

Here, m,n is the row/column index, m = n−S indicates that the element is located on a diagonal of
S away from the main diagonal, and m ≥ n− S signifies that the element is in the lower-left region
relative to this diagonal. The resulting position matrix after this operation is shown in Figure 5b.

(3) Restoring Locality with a Small Window: Applying Eq. 3 disrupts the model’s ability to capture
local relationships because it alters the relative positions between neighboring tokens (Su, 2023; Jin
et al., 2024; An et al., 2024a). Specifically, the relative positions on the S-th diagonal are set to zero.
Since neighboring tokens are crucial for generating fluent content, we introduce a small local window
value W ≪ S for elements where m ≥ n− S, as illustrated in Figure 5c. This adjustment maintains

6

Published as a conference paper at ICLR 2025

emphasis on the closest W neighboring tokens. The final position matrix is defined as:

P [m][n] =

{
P [m][n]− S +W if m ≥ n− S,

P [m][n] otherwise.
(4)

In Eq.4, S is the shift offset, and W is used to ensure the neighboring W tokens remain the closest in
terms of positional encoding. Notably, W does not rely on L, whereas S heavily depends on L. We
suggest setting the local window W ≥ 32 and the offset L

3 ≤ S ≤ L
2 . We set S = L

3 and W = 128
for all models across downstream tasks. An ablation study is shown in Figure 7.

FlashAttention Implementation We implement STRING using FlashAttention (Dao et al., 2022),
which is essential for verifying the method on modern large language models (LLMs) that typically
have long context windows (e.g., 128K tokens). STRING can be efficiently implemented by modifying
the position indices used in RoPE and combining two attention patterns. The pseudocode for STRING
is provided in Algorithm 1. Our implementation splits the standard self-attention mechanism into
two components:

1. Sliding Window Attention (lines 11-13): This approach calculates the attention outputs
around the main diagonal by considering positions where m < n − S (line 13). When
computing the sliding window attention, there is no need to modify the position indices for either
queries (line 6) or keys (line 7).

2. Shifted Self-Attention (lines 15-19): This method computes the attention outputs in the
bottom-left triangle, specifically for positions where m ≥ n − S, utilizing causal self-attention
(line 19). In this process, the position indices for queries are replaced with shifted position
indices (line 16). STRING controls the relative distance by only modifying the position indices
for queries and there is no influence on caching keys and values.

Finally, we merge the attention outputs from the sliding window around the main diagonal and the
left-bottom triangle to produce the final output. An example of applying STRING on Llama3.1 is
shown in Section §A.1 and the efficiency test of STRING is shown in Figure 9.

Algorithm 1 Pseudocode of STRING with FlashAttention

1 # Q, K, V: tensors with shape [L, d]
2 # W: the local window value (scalar)
3 # S: the slding window size (scalar)
4 # N: the left-bottom triangle height (scalar)
5
6 pids_query = [0,1,2,...L-1] # standard position ids for keys
7 pids_key = [0,1,2,...L-1] # standard position ids for queries
8 # Apply rotary position embeddings to K
9 K = apply_rotary_pos_emb(K, pids_key)

10
11 # <--- Calculating sliding window attention around the diagonal --->
12 Q_diag = apply_rotary_pos_emb(Q, pids_query)
13 O_diag, attn_map_diag = flash_attn(Q_diag, K, V, sliding window=S)
14
15 # <--- Calculating self-attention at the left-bottom triangle --->
16 pids_q_shifted = pids_query - S + W # new position ids for queries
17 Q_shifted = apply_rotary_pos_emb(Q, pids_q_shifted)
18 # obtain q,k,v in the bottom-left corner & calculate flash-attn
19 O_shifted, attn_map_shifted = flash_attn(Q_shifted[-N:], K[:N], V[:N])
20
21 # Merge the attention outputs from the diagonal and left-bottom triangle
22 output = merge_diag_shifted(O_diag, O_shifted, attn_map_diag, attn_map_shifted)

Figure 6: Detailed pseudocode of STRING incorporating FlashAttention Dao et al. (2022). The
implementation of merge_diag_shifted can be found in Algorithm 2 in the Appendix.

4.2 MAIN RESULTS OF STRING

In this section, we evaluate the effectiveness of STRING across three widely recognized long-context
benchmarks: Needle-in-a-Haystack (NIAH) (gkamradt, 2023), RULER (Hsieh et al., 2024), and
InfiniteBench (Zhang et al., 2024d). These tasks enable us to assess STRING’s performance across a
broad spectrum of practical scenarios.

7

Published as a conference paper at ICLR 2025

Baselines We primarily compare STRING with the original position embedding RoPE used in
mainstream Large Language Models. Additionally, we evaluate RoPE against several effective extrap-
olation baselines. Specifically, we compare STRING with the following training-free extrapolation
methods: NTK-Aware RoPE (LocalLLaMA, 2023b;a), YaRN (Peng et al., 2023), ReRoPE (Su, 2023),
Self-Extend (Jin et al., 2024), and DCA (An et al., 2024a). Extrapolation refers to testing LLMs on
sequence lengths beyond their training lengths while STRING focus on improving the performance
within the training context size. NTK-Aware RoPE and YaRN implement extrapolation by increasing
the base frequency of RoPE. Meanwhile, ReRoPE, Self-Extend, and DCA modify the position matrix
to aviod unseen positions. We reproduced their results using scripts from their official repositories.
When testing these extrapolation baselines, we modify the training length of the model to 2

3 of the
original length and set the extrapolation scaling factor to Ltest

Ltrain
= 3

2 , meaning the test sequence length
is 1.5 times the training length. All other configurations remain the same as in their paper. Our
findings indicate that although extrapolation methods can extend the model’s capability to handle
longer sequences, the performance improvements are still limited within the original training length.

Table 1: Needle-in-a-haystack (4 needles) results of 7 base models across various methods (columns
reordered from smallest to largest average) where Ltrain means the size of the training context
window. All the models were tested using their training length. The number of test cases is 500.

Model Ltrain ReRoPE NTK RoPE(origin) Self-Extend YaRN DCA STRING

TinyLlama-1.3B (ours) 2k 62.8 62.0 56.6 60.2 68.6 74.4 84.6
TinyLlama-1.1B-3T 2k 77.2 79.8 69.8 83.2 88.0 80.2 97.2
Llama-2-7B 4k 98.6 98.6 98.0 95.4 98.0 91.6 100.0
Llama-3-8B 8k 99.6 100.0 99.8 99.8 100.0 99.9 99.6
LWM-7B-base 32k 25.2 19.4 31.8 29.0 22.2 28.8 50.4
Mistral-7B-base 32k 54.5 42.2 52.8 54.2 48.2 64.2 73.0
Llama-3.1-8B 128k 53.6 71.2 66.0 65.8 68.8 72.8 95.2

Average – 67.3 67.6 67.8 69.6 70.5 73.1 85.7

Needle-in-a-Haystack Needle-in-a-Haystack (gkamradt, 2023) (NIAH) is the most popular long-
context task, extensively utilized in recent studies (Zheng et al., 2024; Liu et al., 2024b). As reported
by Hsieh et al. (2024); Wang et al. (2024a), single needle retrieval is no longer a challenging task
for current LLMs, and we adopt the multi-needle setting following Llama 3.1 (Llama Team, 2024)
and the input example can be found in Table 5. We verify the effectiveness of our method on
seven community models with training lengths ranging from 2K to 128K. Across all seven models,
LargeWorldModel (LWM-7B-base) (Liu et al., 2024a), Mistral 7B (Mistral.AI, 2024), and Llama 3.1
8B (Llama Team, 2024) are continually trained on longer contexts. On models with various training
context lengths, STRING consistently outperforms other methods, achieving the highest scores on
each model. Notably, STRING improves the average performance by a significant margin, reaching
85.7% compared to the next best method, DCA, at 73.1%, and the original RoPE at only 67.8%.

RULER The RULER benchmark (Hsieh et al., 2024) encompasses a variety of synthetic tasks,
including eight variants of Needle-in-a-Haystack (NIAH), as well as tasks involving variable tracking,
counting, and long-context question answering (QA). The evaluation code and metrics are from
their official repository1. The primary results are presented in Table 2. The results on Llama3.1-8B
reveal that, except for our proposed method (STRING), all other extrapolation-based approaches fail
to achieve performance improvements. Since our method does not require additional training, we
are able to validate its effectiveness on 70B-level models. Applying our method to larger models
yields remarkable enhancements: a 15-point improvement on Llama3.1 70B and over a 30-point
improvement on Qwen2 72B compared to the baseline. Furthermore, our approach achieved state-
of-the-art performance on the RULER benchmark for open-source models. Notably, after applying
STRING, both Llama3.1 70B and Qwen2 72B surpass GPT-4-128K in average performance. The
remarkable performance gain on large models demonstrates that the frequent positions in large
models may possess a stronger potential for modeling long-range dependencies. Additionally, we
also demonstrate that both Llama3.1 and Qwen2 can be effectively boosted to an effective sequence
length of 100K on RULER by STRING (the last block in Table 2).

1https://github.com/hsiehjackson/RULER

8

https://github.com/hsiehjackson/RULER

Published as a conference paper at ICLR 2025

Table 2: Performance of various models and methods on RULER with a tested at a sequence length
of 128K. The RULER benchmark consists of 13 tasks (500 test cases for each task) categorized into
Needle-in-a-Haystack (NIAH), Variable Tracing (VT), Aggregation, and Question Answering (QA).
We report the average scores for each category as well as the overall average across all 13 tasks.
Effective denotes the actual effective sequence length as defined in RULER, indicating whether the
model surpasses the performance of Llama2 (Touvron et al., 2023b), and Claimed represents the
sequence length reported by the model.

Models Effective/Claimed NIAH VT Aggregation QA Avg. (13 tasks)

Llama2-chat 4K / 4K 96.9 89.7 84.8 49.7 85.6

GPT-4-1106-preview 64K / 128K 84.8 99.6 79.7 59.0 81.2
GLM4 (Open-source best) 64K / 1M 94.4 97.7 49.7 63.6 83.1

LWM (7B) 4K / 128K 83.4 15.2 29.1 52.6 65.0
Phi3-medium (14B) 8K / 128K 51.3 26.0 43.5 38.0 46.1
Llama3.1 (8B) 32K / 128K 92.6 70.4 36.2 58.8 77.0
+ YaRN 32K / 128K 94.7 39.8 38.2 58.8 76.3
+ DCA 32K / 128K 89.5 62.5 39.2 55.2 74.4
+ Self-Extend 32K / 128K 94.9 65.0 37.3 49.8 76.8
+ ReRoPE 32K / 128K 90.0 56.3 38.7 56.9 74.4
+ STRING 32K / 128K 94.0 88.1 37.6 62.7 80.0

Yi (34B) 32K / 200K 90.2 76.8 43.4 59.9 77.3
GradientAI/Llama3 (70B) 16K / 1M 84.9 56.2 41.4 59.8 72.1
Mixtral (8x22B) 32K / 64K 23.8 0.0 69.7 40.8 31.7
Command-R-plus (104B) 32K / 128K 65.7 97.2 59.5 39.2 63.1
Llama3.1 (70B) 64K / 128K 78.9 59.2 39.8 47.6 66.6
+ STRING 100K / 128K 92.7 95.6 50.0 63.0 81.7

Qwen2 (72B) 64K / 128K 48.0 79.0 70.3 47.2 53.7
+ STRING (new SOTA) 100K / 128K 91.2 98.4 83.7 52.2 84.6

Test Length: 100K
Llama3.1-STRING (70B) 100K / 128K 94.6 97.8 72.1 67.3 87.2
Qwen2-STRING (72B) 100K / 128K 93.9 97.7 88.1 57.8 87.8

Table 3: Comparison of STRING with three leading commercial long-context models on InfiniteBench.
Each model is evaluated using a maximum context length of 128K.

Tasks Commercial Models Llama3.1 8B Llama3.1 70B

GPT-4 Claude2 Kimi-chat RoPE(origin) STRING RoPE(origin) STRING

En.Sum 14.73 14.45 17.93 26.00 28.22 26.89 27.64
En.QA 22.22 11.97 16.52 10.05 10.20 13.68 16.73
En.MC 67.25 62.88 72.49 65.50 70.30 76.41 81.98
En.Dia 8.50 46.50 11.50 20.00 19.50 18.00 30.50
Retr.PassKey 100.00 97.80 98.14 100.00 100.00 100.00 100.00
Retr.Number 100.00 98.14 94.42 99.32 99.89 100.00 100.00
Retr.KV 89.00 65.40 53.60 42.00 83.00 2.22 76.07
Code.debug 39.59 2.28 18.02 22.84 26.90 29.20 32.80
Math.find 60.00 32.29 12.57 32.18 34.87 40.92 46.28

Avg. 55.69 47.96 43.91 46.43 52.54 45.25 56.88

InfiniteBench InfiniteBench (Zhang et al., 2024d) encompasses a variety of real-world tasks,
including long-context question answering (QA), multiple-choice QA, mathematical problem-solving,
long-dialogue QA, long-context summarization, retrieval tasks, and code debugging.

The evaluation code and metrics are sourced from the official repository2. The results for commercial
models are from Zhang et al. (2024d). We compare our method, STRING, with the original position

2https://github.com/OpenBMB/InfiniteBench

9

https://github.com/OpenBMB/InfiniteBench

Published as a conference paper at ICLR 2025

RoP E 8 32 128 256 512

0

40

80

100

Local window W

P
e
rf
o
rm

a
n
c
e

TinyLlama-2K

Llama-2-4K

LWM-7B-32K

Llama-3.1-128K

(a) Ablation on local window W (S = L
3

)

RoP E L/5 L/4 L/3 L/2

0

40

60

80

100

Shifted offset S

P
e
rf
o
rm

a
n
c
e

TinyLlama-2K

Llama-2-4K

LWM-7B-32K

Llama-3.1-128K

(b) Ablation on shifted offset S (W = 128)

Figure 7: Ablation study on the local window W and shifted offset S where L is the training length.

embedding, RoPE, across two scales of Llama3.1: 8B and 70B parameters. The results are presented
in Table 3. STRING demonstrates significant improvements for both models; for instance, we enhance
the performance of Llama3.1 70B by over 10 points, establishing a new state-of-the-art for open-
source models. On InfiniteBench, our method also surpasses the performance of strong baseline
GPT-4-128K and significantly outperforms Claude-2 and Kimi-chat.

Ablation Study We conduct an ablation study on the Needle-in-a-Haystack (4 needles) task to
examine the impact of two main hyperparameters in our STRING: the local window size W and
the shifted offset size S. The experimental results are shown in Figure 7. We increase the local
window size from 4 to 512 and find that when W ≥ 32, the model achieves a significant improvement
compared to the original RoPE method. Furthermore, as long as W ≪ S, further increasing W does
not cause a performance drop. For the offset size S, we experiment with values ranging from L

5

to L
2 . As S increases, more position indices are discarded. We observe that within this range, the

performance increased with the growth of S. However, the trend slowed down when S exceeded L
3 ,

indicating that at least the last 33% to 50% of the position can be overwritted.

5 RELATED WORK

Long-Context Scaling of LLMs Modeling long text has always been a challenging problem. With
the development of large language models (LLMs), researchers have begun to explore ways to
extend these models to handle longer contexts from various perspectives. (1) Efficient Architectures:
Jiang et al. (2024); Fu et al. (2024a); Ding et al. (2023); Song et al. (2023); Yang et al. (2024);
Zhu et al. (2024b) demonstrate that the training and inference overhead of long-context LLMs can
be substantially optimized by sparse attention patterns. Another crucial architecture is state space
models (Gu & Dao, 2023; Yuan et al., 2024; Lieber et al., 2024). (2) Continual Training with
Long Data: Efforts have been made to continually train models by collecting high-quality long
sequences (Fu et al., 2024b; Zhu et al., 2024a; Wu et al., 2024; Gao et al., 2024). (3) LLMs with
Infinite Contexts: Recent work has shown that the context length of LLMs can be scaled to infinite,
as evidenced by models such as StreamingLLM and InfLLM (Xiao et al., 2023; 2024; Han et al.,
2023; Zhang et al., 2024a; Cai et al., 2024; Lin et al., 2024a; Dong et al., 2024). However, these
methods typically cannot maintain a full KV cache, resulting in weakened long-context capabilities.

Length Extrapolation Training to extend the model context length incurs significant overhead.
Recent works focus on length extrapolation, training on short sequences to infer longer ones, as a
means to address this issue (Press et al., 2022; Raffel et al., 2023; Han et al., 2024). An et al. (2024a);
Jin et al. (2024); Su (2023); Ma et al. (2024); Zhang et al. (2024e) believe that the model’s inability to
generalize to longer contexts is caused by positions being out-of-distribution. They achieved effective
extrapolation by repeating trained positions, thereby maintaining low perplexity in exceedingly long
contexts. On the other hand, Zhu et al. (2023) randomly places large position indices within the
training window in the training and infer longer sequences. For RoPE-based LLMs, Peng et al.
(2023); Men et al. (2024); Zhong et al. (2024); Wang et al. (2024b) reduce the long-range attenuation
effect of RoPE by amplifying the base frequency, thereby bringing the remote token closer.

10

Published as a conference paper at ICLR 2025

6 CONCLUSION

This work uncovers the limitations of current open-source large language models in effectively
utilizing their extended training context windows. We show that using positions at the tail of the left-
skewed position frequency distributions strongly hinders models’ long-range dependency modeling
ability. We introduce STRING, a novel approach that shifts well-trained positions to replace ineffective
ones during inference, thereby enhancing the model’s ability to capture distant contextual information
without requiring additional training. Our experiments demonstrate that STRING significantly boosts
the performance of strong baselines like Llama 3.1 70B and Qwen-2 72B on prominent long-context
benchmarks, setting new state-of-the-art results for open-source LLMs.

ACKNOWLEDGMENTS

We sincerely appreciate the assistance provided by various individuals and teams. The pretraining
part of this work is built upon the TinyLlama Project. We would also like to express our gratitude
to the Llama3 and Qwen2 teams for providing the robust base models that have been essential for
this work. Additionally, we thank Yushi Bai for his help and valuable discussions. This research was
supported in part by the joint research scheme of the National Natural Science Foundation of China
(NSFC) and the Research Grants Council (RGC) under grant number N_HKU714/21.

REFERENCES

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
L-eval: Instituting standardized evaluation for long context language models. arXiv preprint
arXiv:2307.11088, 2023.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models, 2024a.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, and Jian-Guang Lou. Make your llm fully
utilize the context, 2024b. URL https://arxiv.org/abs/2404.16811.

Anthropic. Introducing 100K Context Windows, 2023. URL https://www.anthropic.com/
index/100k-context-windows.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren
Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi
Li. Longalign: A recipe for long context alignment of large language models, 2024. URL
https://arxiv.org/abs/2401.18058.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms
and planning, 2023. URL https://arxiv.org/abs/2309.12499.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang, Songhao Piao,
Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unilmv2: Pseudo-masked language models for
unified language model pre-training, 2020. URL https://arxiv.org/abs/2002.12804.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue
Dong, Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression
based on pyramidal information funneling. ArXiv, abs/2406.02069, 2024. URL https://api.
semanticscholar.org/CorpusID:270226243.

11

https://arxiv.org/abs/2404.16811
https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://arxiv.org/abs/2401.18058
https://arxiv.org/abs/2309.12499
https://arxiv.org/abs/2002.12804
https://arxiv.org/abs/2004.05150
https://api.semanticscholar.org/CorpusID:270226243
https://api.semanticscholar.org/CorpusID:270226243

Published as a conference paper at ICLR 2025

Cerebras. Slimpajama: A 627b token, cleaned and deduplicated ver-
sion of redpajama, 2023. URL https://cerebras.ai/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. Clex: Continuous
length extrapolation for large language models, 2023.

Yuhan Chen, Ang Lv, Ting-En Lin, Changyu Chen, Yuchuan Wu, Fei Huang, Yongbin Li, and Rui
Yan. Fortify the shortest stave in attention: Enhancing context awareness of large language models
for effective tool use, 2024. URL https://arxiv.org/abs/2312.04455.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In NeurIPS, 2022.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, and Furu Wei.
Longnet: Scaling transformers to 1,000,000,000 tokens, 2023.

Harry Dong, Xinyu Yang, Zhenyu (Allen) Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen.
Get more with less: Synthesizing recurrence with kv cache compression for efficient llm inference.
ArXiv, abs/2402.09398, 2024. URL https://api.semanticscholar.org/CorpusID:
267657553.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, Guohao Dai, Huazhong Yang, and Yu Wang. Moa: Mixture
of sparse attention for automatic large language model compression. ArXiv, abs/2406.14909, 2024a.
URL https://api.semanticscholar.org/CorpusID:270688596.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao
Peng. Data engineering for scaling language models to 128k context, 2024b. URL https:
//arxiv.org/abs/2402.10171.

Chaochen Gao, Xing Wu, Qingfang Fu, and Songlin Hu. Quest: Query-centric data synthesis
approach for long-context scaling of large language model. ArXiv, abs/2405.19846, 2024. URL
https://api.semanticscholar.org/CorpusID:270123337.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

gkamradt. Llmtest_needleinahaystack: Doing simple retrieval from llm models. https://github.
com/gkamradt/LLMTest_NeedleInAHaystack/tree/main, 2023. [Online; accessed
29-December-2023].

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models, 2023.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

12

https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://arxiv.org/abs/2312.04455
https://api.semanticscholar.org/CorpusID:267657553
https://api.semanticscholar.org/CorpusID:267657553
https://api.semanticscholar.org/CorpusID:270688596
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://api.semanticscholar.org/CorpusID:270123337
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/2404.06654

Published as a conference paper at ICLR 2025

Zhiyuan Hu, Yuliang Liu, Jinman Zhao, Suyuchen Wang, Yan Wang, Wei Shen, Qing Gu, Anh Tuan
Luu, See-Kiong Ng, Zhiwei Jiang, and Bryan Hooi. Longrecipe: Recipe for efficient long context
generalization in large language models, 2024. URL https://arxiv.org/abs/2409.
00509.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention, 2024. URL
https://arxiv.org/abs/2407.02490.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers, 2022.

Dacheng Li, Rulin Shao, Anze Xie, Eric P. Xing, Xuezhe Ma, Ion Stoica, Joseph E. Gonzalez, and
Hao Zhang. Distflashattn: Distributed memory-efficient attention for long-context llms training,
2024a. URL https://arxiv.org/abs/2310.03294.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning, 2024b. URL https://arxiv.org/abs/2404.02060.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Bin Lin, Tao Peng, Chen Zhang, Minmin Sun, Lanbo Li, Hanyu Zhao, Wencong Xiao, Qi Xu,
Xiafei Qiu, Shen Li, Zhigang Ji, Yong Li, and Wei Lin. Infinite-llm: Efficient llm service for
long context with distattention and distributed kvcache. ArXiv, abs/2401.02669, 2024a. URL
https://api.semanticscholar.org/CorpusID:266818470.

Hongzhan Lin, Ang Lv, Yuhan Chen, Chen Zhu, Yang Song, Hengshu Zhu, and Rui Yan. Mixture of
in-context experts enhance llms’ long context awareness. ArXiv, abs/2406.19598, 2024b. URL
https://api.semanticscholar.org/CorpusID:270845965.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with ringattention. arXiv preprint, 2024a.

Xiaoran Liu, Qipeng Guo, Yuerong Song, Zhigeng Liu, Kai Lv, Hang Yan, Linlin Li, Qun Liu,
and Xipeng Qiu. Farewell to length extrapolation, a training-free infinite context with finite
attention scope. ArXiv, abs/2407.15176, 2024b. URL https://api.semanticscholar.
org/CorpusID:271328963.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows, 2021. URL
https://arxiv.org/abs/2103.14030.

Llama Team. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.
2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

13

https://arxiv.org/abs/2409.00509
https://arxiv.org/abs/2409.00509
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2001.08361
https://github.com/facebookresearch/xformers
https://arxiv.org/abs/2310.03294
https://arxiv.org/abs/2404.02060
https://api.semanticscholar.org/CorpusID:266818470
https://api.semanticscholar.org/CorpusID:270845965
https://arxiv.org/abs/2310.01889
https://api.semanticscholar.org/CorpusID:271328963
https://api.semanticscholar.org/CorpusID:271328963
https://arxiv.org/abs/2103.14030
https://doi.org/10.48550/arXiv.2407.21783

Published as a conference paper at ICLR 2025

LocalLLaMA. Dynamically scaled rope further increases performance of long context llama with zero
fine-tuning, July 2023a. URL https://www.reddit.com/r/LocalLLaMA/comments/
14mrgpr/dynamically_scaled_rope_further_increases/.

LocalLLaMA. Ntk-aware scaled rope allows llama models to have extended (8k+) con-
text size without any fine-tuning and minimal perplexity degradation., June 2023b. URL
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_
scaled_rope_allows_llama_models_to_have/.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Kai Lv, Xiaoran Liu, Qipeng Guo, Hang Yan, Conghui He, Xipeng Qiu, and Dahua Lin. Longwanjuan:
Towards systematic measurement for long text quality, 2024.

Xindian Ma, Wenyuan Liu, Peng Zhang, and Nan Xu. 3d-rpe: Enhancing long-context modeling
through 3d rotary position encoding. ArXiv, abs/2406.09897, 2024. URL https://api.
semanticscholar.org/CorpusID:270521302.

Xin Men, Mingyu Xu, Bingning Wang, Qingyu Zhang, Hongyu Lin, Xianpei Han, and Weipeng
Chen. Base of rope bounds context length. ArXiv, abs/2405.14591, 2024. URL https://api.
semanticscholar.org/CorpusID:269983770.

Mistral.AI. La plateforme, 2024. URL https://mistral.ai/news/la-plateforme/.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

Moonshot AI. Kimi chat. https://kimi.moonshot.cn/, 2023.

OpenAI. Gpt-4 technical report, 2023.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel Bowman. QuALITY:
Question answering with long input texts, yes! In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 5336–5358, Seattle, United States, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.391. URL https://aclanthology.org/
2022.naacl-main.391.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models, 2023.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Kaiqiang Song, Xiaoyang Wang, Sangwoo Cho, Xiaoman Pan, and Dong Yu. Zebra: Extending
context window with layerwise grouped local-global attention, 2023.

Jianlin Su. Rectified rotary position embeddings. https://github.com/bojone/rerope,
2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2022.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary,
Xia Song, and Furu Wei. A length-extrapolatable transformer, 2022.

14

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://api.semanticscholar.org/CorpusID:270521302
https://api.semanticscholar.org/CorpusID:270521302
https://api.semanticscholar.org/CorpusID:269983770
https://api.semanticscholar.org/CorpusID:269983770
https://mistral.ai/news/la-plateforme/
https://kimi.moonshot.cn/
https://aclanthology.org/2022.naacl-main.391
https://aclanthology.org/2022.naacl-main.391
https://arxiv.org/abs/1910.10683
https://github.com/bojone/rerope

Published as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no
document behind: Benchmarking long-context llms with extended multi-doc qa, 2024a. URL
https://arxiv.org/abs/2406.17419.

Suyuchen Wang, Ivan Kobyzev, Peng Lu, Mehdi Rezagholizadeh, and Bang Liu. Resonance rope:
Improving context length generalization of large language models. In Annual Meeting of the
Association for Computational Linguistics, 2024b. URL https://api.semanticscholar.
org/CorpusID:268201728.

Wenhao Wu, Yizhong Wang, Yao Fu, Xiang Yue, Dawei Zhu, and Sujian Li. Long context alignment
with short instructions and synthesized positions, 2024. URL https://arxiv.org/abs/
2405.03939.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for understanding
extremely long sequences with training-free memory, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks, 2023.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike
Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models. CoRR,
abs/2309.16039, 2023. doi: 10.48550/ARXIV.2309.16039. URL https://doi.org/10.
48550/arXiv.2309.16039.

Shuo Yang, Ying Sheng, Joseph E. Gonzalez, Ion Stoica, and Lianmin Zheng. Post-training
sparse attention with double sparsity. ArXiv, abs/2408.07092, 2024. URL https://api.
semanticscholar.org/CorpusID:271865443.

Danlong Yuan, Jiahao Liu, Bei Li, Huishuai Zhang, Jingang Wang, Xunliang Cai, and Dongyan Zhao.
Remamba: Equip mamba with effective long-sequence modeling. arXiv preprint arXiv:2408.15496,
2024.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from 4k
to 400k: Extending llm’s context with activation beacon. ArXiv, abs/2401.03462, 2024a. URL
https://api.semanticscholar.org/CorpusID:266844488.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024b.

Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
arXiv preprint arXiv:2406.16852, 2024c. URL https://arxiv.org/abs/2406.16852.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞bench: Extending long context
evaluation beyond 100k tokens, 2024d. URL https://arxiv.org/abs/2402.13718.

15

https://arxiv.org/abs/2406.17419
https://api.semanticscholar.org/CorpusID:268201728
https://api.semanticscholar.org/CorpusID:268201728
https://arxiv.org/abs/2405.03939
https://arxiv.org/abs/2405.03939
https://doi.org/10.48550/arXiv.2309.16039
https://doi.org/10.48550/arXiv.2309.16039
https://api.semanticscholar.org/CorpusID:271865443
https://api.semanticscholar.org/CorpusID:271865443
https://api.semanticscholar.org/CorpusID:266844488
https://arxiv.org/abs/2406.16852
https://arxiv.org/abs/2402.13718

Published as a conference paper at ICLR 2025

Zhenyu (Allen) Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen,
Xiaoxia Wu, and Zhangyang Wang. Found in the middle: How language models use long
contexts better via plug-and-play positional encoding. ArXiv, abs/2403.04797, 2024e. URL
https://api.semanticscholar.org/CorpusID:268296885.

Liang Zhao, Tianwen Wei, Liang Zeng, Cheng Cheng, Liu Yang, Peng Cheng, Lijie Wang, Chenxia
Li, Xuejie Wu, Bo Zhu, Yimeng Gan, Rui Hu, Shuicheng Yan, Han Fang, and Yahui Zhou.
Longskywork: A training recipe for efficiently extending context length in large language models,
2024. URL https://arxiv.org/abs/2406.00605.

Chuanyang Zheng, Yihang Gao, Han Shi, Minbin Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren,
Michael Ng, Xin Jiang, Zhenguo Li, and Yu Li. Dape: Data-adaptive positional encoding for
length extrapolation, 2024. URL https://arxiv.org/abs/2405.14722.

Meizhi Zhong, Chen Zhang, Yikun Lei, Xikai Liu, Yan Gao, Yao Hu, Kehai Chen, and Min
Zhang. Understanding the rope extensions of long-context llms: An attention perspective.
ArXiv, abs/2406.13282, 2024. URL https://api.semanticscholar.org/CorpusID:
270620800.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. Pose:
Efficient context window extension of llms via positional skip-wise training, 2023.

Dawei Zhu, Liang Wang, Nan Yang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. Longembed:
Extending embedding models for long context retrieval. ArXiv, abs/2404.12096, 2024a. URL
https://api.semanticscholar.org/CorpusID:269214659.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Xiao Chuanfu, Xingcheng Zhang, Dahua Lin, and Chao Yang. Sampleattention: Near-lossless
acceleration of long context llm inference with adaptive structured sparse attention, 2024b. URL
https://arxiv.org/abs/2406.15486.

16

https://api.semanticscholar.org/CorpusID:268296885
https://arxiv.org/abs/2406.00605
https://arxiv.org/abs/2405.14722
https://api.semanticscholar.org/CorpusID:270620800
https://api.semanticscholar.org/CorpusID:270620800
https://api.semanticscholar.org/CorpusID:269214659
https://arxiv.org/abs/2406.15486

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 APPLYING STRING ON LLAMA3.1 128K

In this section, we demonstrate the application of STRING on Llama3.1 128K. We present
the utilization of STRING to drop position indices greater than 2

3 ∗ L ≈ 42K and
1
2 ∗ L = 64K, where L=128K represents the training length of Llama3.1. The result-
ing position matrix is illustrated in Figure 8. In Figure 8a, let us consider the last
row of the matrix. The original position indices are [128K − 1, . . . , 2, 1, 0]. After drop-
ping position indices ≥ 86K, they become [−,−, . . . ,−︸ ︷︷ ︸

42K empty slots

, 86K − 1, . . . , 2, 1, 0︸ ︷︷ ︸
86K indices

]. To fill the

empty slots, we shift the positions leftwards with a stride of S = 42K, resulting in
[86K − 1, . . . , 2, 1, 0, 42K − 1, . . . , 2, 1, 0]. After adding a local window W of 128, we obtain
the shifted position indices: [86K + 127, .., 129, 128, 42K − 1, . . . , 2, 1, 0]. Applying STRING with
an offset S = 64K is shown in (Figure 8b). The procedure is the same. We also illustrate the
changes in the last row of the position matrix. After dropping position indices ≥ 64K, the row is
converted to [−,− . . . ,−︸ ︷︷ ︸

64K empty slots

, 64K − 1, . . . , 2, 1, 0]. Then, the well-trained positions are shifted from

the diagonal:[−,− . . . ,−︸ ︷︷ ︸
64K empty slots

, 64K − 1, . . . , 2, 1, 0]−→[64K − 1, .., 1, 0, 64K − 1, . . . , 1, 0]. Finally, the

position indices after adding a local window of 128 are [64K + 127, .., 129, 128, 64K − 1, . . . , 1, 0].

Projecting Local Relationships The local value W is essential for projecting the relationships
among neighboring tokens, ensuring fluent generation. To demonstrate the importance of setting local
value W , consider the relative matrix of Llama3.1 128K, where the value on the 42K-th diagonal is
set to W instead of 42K (using ROPE) to achieve a shifting effect. This means each token treats the
token 42K positions away as if it’s at a distance of W . In an extreme case, if W = 0, the current token
would treat the token 42K positions away as itself. As we know, LLMs rely heavily on neighboring
tokens to maintain fluency. If W is too small, the model can not correctly focus on these nearby
tokens. By setting W = 128, we ensure that relative positions 0-127 are unique and assigned to
neighboring tokens. This maintains fluency while enhancing long-context performance.

Handling Short-Context Input STRING will produce the same results as RoPE on short-context
benchmarks. When the input length l < S where S is the shifting offset, the sliding window attention
which calculates attention within in neighboring S tokens. For Llama3.1 we have S=42K which
significantly exceeds the input length of short context tasks. The sliding window attention in line
13 of Algorithm 6 calculates full attention for the short sequence without shifting positions, and the
shifted self-attention mechanism is not invoked.

0

1 0

⋱ 1 0
42K-1 ⋱ 1 0

128 42K-1 ⋱ 1 0

129 128 42K-1 ⋱ 1 0

⋱ 129 128 42K-1 ⋱ 1 0

86K+126 ⋱ 129 128 42K-1 ⋱ 1 0

86K+127 86K+126 ⋱ 129 128 42K-1 ⋱ 1 0

(a) Shifted offset 𝑆 = "
#

0

1 0

⋱ 1 0
64K-1 ⋱ 1 0

128 64K-1 ⋱ 1 0

129 128 64K-1 ⋱ 1 0

⋱ 129 128 64K-1 ⋱ 1 0

64K+126 ⋱ 129 128 64K-1 ⋱ 1 0

64K+127 64K+126 ⋱ 129 128 64K-1 ⋱ 1 0

(b) Shifted offset 𝑆 = "
$

Figure 8: The resulted position matrix of Llama3.1 128K after shifting. In Figure (a), we use a shifted
offset of L

3 ≈ 42K and the local window W is 128. In Figure (b), we overwrite more infrequent
positions and the shifted offset is S = L

2 = 64K.

17

Published as a conference paper at ICLR 2025

A.2 PRETRAINING SETUP

We pretrain two 1.3B models with maximum context window sizes of 2048 and 4096 to observe
how the models gain the effective context length. The model architecture aligns with TinyLlama
1.1B3. We utilize a hidden size of 2,048, the size of the feed-forward layers inside each transformer
block is set to 5632. The model employs 32 attention heads and comprises 22 layers. The only
difference is the use of the llama3 tokenizer (Llama Team, 2024), which has a larger vocabulary size
of 128,256 tokens compared to the 32,000 tokens in TinyLlama 1.1B. This difference results in a
larger embedding matrix. We used the SlimPajama-627B (Cerebras, 2023) dataset as our pretraining
corpus and total training tokens for each model is 1T tokens.

Our pretraining codebase is primarily built on the TinyLlama project4, a popular codebase for
reproducing Llama at the 1B scale. The main speed optimization libraries employed in this project
are Fully Sharded Data Parallel (FSDP)5, FlashAttention-2 (Dao, 2023)6, and xFormers (Lefaudeux
et al., 2022)7. The entire project is based on PyTorch Lightning 8. We use the cross entropy loss
as the pretraining objective and the AdamW optimizer (Loshchilov & Hutter, 2019). Additionally,
we employed a cosine learning rate schedule with a maximum learning rate of 4 ∗ 10−4, starting
from a minimum learning rate of 4 ∗ 10−5. The warmup steps are 2,000. The batch size is set to 4M
tokens for different training context lengths. For the model pretrained with a 4K context length, the
gradient accumulation is set to twice that of the model trained with a 2K context length. We pack
the sequences in a mini-batch into a long sequence and used the variable-length version of Flash
Attention9 to calculate casual self-attention on packed sequences. A gradient clipping threshold of
1.0 is used to stablize the gradient.

We utilized 16 NVIDIA 80G A100 GPUs on 2 nodes. Training a 1.3B model with a 2K context
length and 1T tokens took approximately 28 days, while expanding the context length to a 4K context
length took around 32 days.

A.3 EFFICIENCY TEST OF STRING

In this section, we demonstrate that STRING can be implemented with negligible additional overhead
compared to flash attention by comparing the inference time and GPU memory consumption. We
test the baseline and STRING on a single NVIDIA 80G A100 GPU based on Llama3.1 8B. The long
inputs are sourced from the summarization task in InfiniteBench (Zhang et al., 2024d). We test the
model 50 times and report the average results. The results of inference time are shown in Figure 9a,
where we test the model with context lengths ranging from 64K to 128K. STRING maintains the
average time consumed per token within 0.3 seconds of the standard Flash Attention. Figure 9b shows
the consumption of GPU memory, with the growth of input context lengths, STRING exhibiting only
a less than 5GB increase.

A.4 LIMITATIONS

One limitation of this work is that it only investigates pretraining lengths smaller than 4K tokens,
while the question of how to effectively implement long-context training remains an open open. The
open-source community’s approaches to this problem remains diverse (Hu et al., 2024; Fu et al.,
2024b; An et al., 2024a; Jin et al., 2024). For companies, Llama3.1 (Llama Team, 2024) reported
using a 6-stage training approach to gradually implement long-context training, but this makes it
difficult to analyze position frequencies because the data distribution used in each stage is unknown.

STRING achieves surprising results by only using frequent position during inference. It is clear that
there are many ways to adjust the distribution of frequent positions during training, but this may

3https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T/
blob/main/config.json

4https://github.com/jzhang38/TinyLlama
5https://huggingface.co/docs/accelerate/usage_guides/fsdp
6https://github.com/Dao-AILab/flash-attention
7https://github.com/facebookresearch/xformers
8https://github.com/Lightning-AI/pytorch-lightning
9https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/

flash_attn_interface.py#L1178

18

https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T/blob/main/config.json
https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T/blob/main/config.json
https://github.com/jzhang38/TinyLlama
https://huggingface.co/docs/accelerate/usage_guides/fsdp
https://github.com/Dao-AILab/flash-attention
https://github.com/facebookresearch/xformers
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/flash_attn_interface.py#L1178
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/flash_attn_interface.py#L1178

Published as a conference paper at ICLR 2025

64K 80K 96K 112K 128K
Input length

0

1

2

3

4

5

Av
er

ag
e

tim
e

pe
r t

ok
en

 (s
)

1.39

1.94

2.47

3.30

3.77

1.39

2.07

2.57

3.59
4.01

Flash-Attn
Flash-Attn-STRING

(a) Inference time

64K 80K 96K 112K 128K
Input length

0

10

20

30

40

50

60

70

80

G
PU

 M
em

or
y

(G
)

34.70
39.60

44.10
48.90

54.10

38.90
43.80

47.90
54.50

59.00

Flash-Attn
Flash-Attn-STRING

(b) GPU memory consumption

Figure 9: Efficiency Test of STRING and the standard Flash Attention based on Llama3.1 8B. All
experiments are run on a single NVIDIA 80G A100 GPU.

require data with a distribution similar to the Llama training corpus to avoid the model losing its
reasoning ability. A key feature of STRING is that it can be easily applied to all existing models
without requiring the collection of high-quality data for training. We leave the problem of addressing
the left-skewed distribution from a training perspective as a future work.

Algorithm 2 Pseudocode of merge_diag_shifted

1 def merge_diag_shifted(O_diag, O_shifted, attn_map_diag, attn_map_shifted):
2 """
3 Merge the attention outputs from the diagonal and left-bottom triangle.
4
5 Parameters:
6 O_diag (Tensor: [L, d]): Output tensor from diagonal attention.
7 O_shifted (Tensor: [N, d]): Output tensor from left-bottom triangle attention.
8 attn_map_diag (Tensor: [L, L]): Attention map from diagonal attention.
9 attn_map_shifted (Tensor: [N, N]): Attention map from left-bottom triangle attention.

10
11 Returns:
12 output (Tensor: [L, d]): Merged output tensor.
13 """
14
15 # the softmax normalizer of the sliding window attention
16 S=L-N # S is the slding window size, and N is the triangle height
17 diag_norm = attn_map_diag.sum(-1) # shape: [L,]
18 # the softmax normalizer of the self-attention
19 shifted_norm = attn_map_shifted.sum(-1) # shape: [N,]
20 O_diag_head = O_diag[:S] # shape: [S, d], no need for changing the first S tokens
21 O_diag_tail = O_diag[S:] # [N, d]
22 diag_norm_tail = diag_lse[S:] # [N,]
23 diag_rate = diag_norm_tail / (diag_norm_tail + shifted_norm) # [N,]
24 shifted_rate = shifted_norm / (diag_norm_tail + shifted_norm) # [N,]
25 O_merged_tail = diag_rate * O_diag_trail + shifted_rate * O_shifted # [N,d]
26 output = torch.cat([O_diag_head, O_merged_tail]) # [L, d]
27 return output

19

Published as a conference paper at ICLR 2025

Table 4: Performance of GPT-4 and 13 community models on the Needle-in-a-Haystack task at
various document depths. The document is split into three equal segments: 0-33% depth, 33-66%
depth, and 66-100% depth. Peak Failure Depth indicates the document depth at which the most test
cases failed for each model. Results are reported at the training length for each model.

Model Ltrain HF_PATH Peak Failure Depth Acc
GPT-4-128K – – 0-33.3% 100.0

Trained on open-source data
TinyLlama-1.3b-1T(ours) 2k – 0-33.3% 56.6
TinyLlama-1.1b-1T 2k TinyLlama/TinyLlama-1.1B-intermediate-step-480k-1T 0-33.3% 38.0
TinyLlama-1.1b-3T 2k TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T 0-33.3% 69.8
Pythia-1.4b 2k EleutherAI/pythia-1.4b 0-33.3% 22.5
OpenLlama-3B 2k openlm-research/open_llama_3b 0-33.3% 85.0

Llama2-7B 4k meta-llama/Llama-2-7b 0-33.3% 98.0
Llama3-8B 8k meta-llama/Llama-3-7b 0-33.3% 99.8
Together-base 32k togethercomputer/Llama-2-7B-32K 0-33.3% 63.0
LWM-base 32k LargeWorldModel/LWM-Text-32K 0-33.3% 31.8
Mistral-base 32k alpindale/Mistral-7B-v0.2-hf 0-33.3% 52.8
Llama3.1-8B 128k meta-llama/Meta-Llama-3.1-8B 0-33.3% 66.0
Yarn-base 128k NousResearch/Yarn-Llama-2-7b-128k 0-33.3% 32.4
Yi-6b-200k 200k 01-ai/Yi-6B-200K 0-33.3% 20.8
Gradient-Llama3-8B 262k gradientai/Llama-3-70B-Instruct-Gradient-256k 0-33.3% 46.0

Table 5: The input format of the Needle-in-a-Haystack (4-Needle) test where the needles are 6-digit
numbers and the haystack is Paul Graham Essays (gkamradt, 2023). The needles we use in this work
are numbers to exclude the influence by inner-knowledge following previous work (Zhang et al.,
2024c; Mohtashami & Jaggi, 2023; Hsieh et al., 2024; Zhang et al., 2024d)

.

Haystack Needles Query There is an important info hidden inside a lot of irrelevant text. Find it and
memorize them. I will quiz you about the important information there.\n\n
July 2006I’ve discovered a handy test for figuring out what you’re addicted
to. Imagine you were going to spend the weekend at a friend’s house on a
little island off the coast of Maine. There are no shops on the island and you
won’t be able to leave while you’re there. Also, you’ve never been to this house
before, so you can’t assume it will have more than any house might.What,
besides clothes and toiletries, do you make a point of packing? That’s what
you’re addicted to... One of the magic numbers is 144231. they’re going to
issue a public report tracking how this specific tranche of money is spent,
NFTs are a new territory, and this way of using them is especially new, but
I’m excited about its potential. And I’m excited to see what happens with this
particular auction, because unlike an NFT representing something that has
already happened, this NFT gets better as the price gets higher.The reserve price
was about $2.5 million, because that’s what it takes for the name to be accurate:
that’s what it costs to... One of the magic numbers is 543171. you can’t expect
an idea to be novel to everyone. Any insight that you have will probably
have already been had by at least one of the world’s 7 billion people. But it’s
sufficient if an idea is novel to a lot of readers.Ditto for correctness, importance,
and strength. In effect the four components One of the magic numbers is
264468. And we were always far ahead of them in features.Sometimes, in
desperation, competitors would try to introduce features that we didn’t have.
But with Lisp our development cycle was so fast that we could sometimes
duplicate a new feature within a day or two of a competitor announcing it in a
press release. By the time journalists covering the press release got round to
One of the magic numbers is 423103. nThere is a founder community just as
there’s a VC community. They all know one another, and techniques spread
rapidly between them. If one tries a new programming language or a new
hosting provider and gets good results, 6 months later half of...
\n\n What are the magic numbers mentioned in the provided text?\n The
numbers are

Answer [144231, 543171, 264468, 423103]

20

	Introduction
	Left-Skewed Position Frequency Distribution
	Position Embeddings in LLMs
	Relative Position Matrix and Position Frequency

	A Probing Experiment on Position Frequency and Model Effective Length
	Shifted Rotary Position Embedding
	Manipulating the Position Matrix
	Main results of StRing

	Related Work
	Conclusion
	Appendix
	Applying StRing on Llama3.1 128K
	Pretraining Setup
	Efficiency Test of StRing
	Limitations

