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A Quantitative Evaluation on Pedestrian Dataset

In addition to the datasets reported in the main text, we also evaluate our model on the publicly-
available ETH [12]/UCY [11] pedestrian dataset, which consists 5 sets of data from 4 unique scenes.
There has been several settings to evaluate on this dataset in the literature. Gupta et al. [5] and
Ivanovic et al. [6] adopt a leave-one-out approach, training on 4 sets and testing on the remaining set.
On the other hand, Kamra et al. [8] merges the 5 sets and splits out train/validation/test sets from the
merged set. In evaluation, the model observes 8 frames and predicts 12 frames. In this work, we only
evaluate the performance of the predicted 12 frames on the pedestrians that appear throughout the
whole 20 frames to avoid the absence of ground-truth due to occlusion or out-of-camera-view. We
sample 100 times for each given history, select the best one to compute ADE and FDE only.

Several scene transferring issues are brought up by recent papers on the leave-one-out approach.
To name a few, the majority of the trajectories in the Hotel set have different directions with the
ones in the other 4 sets. Schöller et al. [13] claim that rotation augmentation is required to make the
learned model valid to at least beat the linear baseline model. Zhang et al. [15] notice that the ETH
set has a different sampling frame rate with the others. Due to these issues, data augmentation plays
an important role to get good performance on this dataset. Typical augmentation methods include
rotation, adjusting frame rate, training with various trajectory lengths, etc. In this paper, we use the
same evaluation setting as FQA [8] such that no scene transferring issue need to be taken care of. We
do not apply augmentation for all methods in Table 1 except for Trajectron since augmentation is
deeply coupled with Trajectron training code. Our model can be combined with these augmentation
techniques, but for now we mark that as a future work alongside with adding visual feature and
extending to dynamic model. We compare GRIN with Social-GAN [5] and Trajectron [6] baselines.
GRIN produces better results on best-of-100 ADE/FDE performance compared with the baselines
without augmentation. Our ADE performance is slightly worse than Trajectron [6] while our FDE is
on-par, despite that Trajectron [6] is trained with variable sequence lengths and other augmentation
methods. Meanwhile, our best-of-20 ADE/FDE performance is better than all baselines, and the
gap between best-of-20 and best-of-100 is the lowest, meaning our model is more certain on the
predictions.
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Table 1: Quantitative performance comparison on ETH/UCY pedestrian trajectory dataset

Model NBA ETH/UCY

ADE 20/100 FDE 20/100 ADE 20/100 FDE 20/100

NRI [10] 2.12/2.10 4.67/4.56 0.17/0.17 0.38/0.38
FQA† [8] 2.42/2.42 4.81/4.81 0.19/0.19 0.44/0.44

Trajectron [6] 2.82/2.31 5.65/4.64 0.10/0.07 0.21/0.15
Social-GAN [5] 1.95/1.88 3.81/3.64 0.12/0.10 0.24/0.20

GRIN 1.75/1.72 3.68/3.59 0.10/0.09 0.21/0.15

B Visualization Examples on NBA Dataset

We have shown in our results that our model captures better the distribution of predictions compared
with baselines, suggesting that it may be able to capture multimodality in complex scenes. In this
section, we visualize and analyze four more randomly picked scenes and predictions from the NBA
dataset in Figure 1. The first column contains the ground truth trajectories for each scene, and the
other columns are different predictions given each trajectory history. Although picked randomly,
these scenes cover a range of diverse situations on the court.

First, we focus on the scene in the third row. The third row shows obvious multi-modality of player 4
(pink square next to the star in ground truth; numbers are visible in zoom-up) and the ball (marked
by the star). From the generated results in the third row, we see that player 4 either carries the ball
in hand (second and third columns) or passes the ball to the teammate player 3 (fourth and fifth
columns). Although in the ground truth the ball is not passed, one can argue that the pass is also a
reasonable move, since player 4 faces multiple opponents while the view from player 4 to 3 is open
and clear.

The first, second, and fourth rows show less uncertain scenarios. There are generated trajectories that
don’t match perfectly with the ground truth. For instance, player 5 in the first scene and player 8
in the second scene. However, these cases include sudden changes of direction, and such changes
are more challenging to infer from the past trajectory. Overall, we qualitatively demonstrate that the
predictions align with the common sense of basketball.

C Model Architectures and Hyper-parameters

We provide the hyper-parameters of our model and baseline models in this section. All our exper-
iments were done on an AWS p3.8xlarge EC2 instance with 4 Nvidia V100 GPU, with Ubuntu
18.04 system. Neural networks were implemented using PyTorch framework v1.8.1+cu102, and
graph neural networks include graph attention neural networks and graph convolution networks are
defined using DGL [14] v0.6.1. The code for implementing GRIN can be found at the supplementary
material file. For all models, the input dimension is 4 (2 for positional coordinates plus 2 for velocity
vector). For baseline models that have multiple design choices, we try the combination of choices
and select the best one based on the performance on the validation dataset. Due to the different
scalability of models, we did not specifically tune the batch size but adjusted it to fill up the GPU
memory. All models are trained with Adam optimizer [9] with learning rate 1 × 10−3. For NRI
and dNRI, the teacher forcing steps is set to 10 for NBA dataset, 20 for charged dataset and 4 for
ETH/UCY dataset. Different from the original paper of NRI and dNRI, where the variance of the
output distribution is set to a fixed value 5× 10−5, we let it be a learned parameter so that the model
adapts to different datasets automatically. We found that this can improve the NLL performance on
NBA dataset. For ETH/UCY dataset, we sample 20 times for the latent variables during training and
only back-propagate for the one getting the smallest loss in order to encourage diversity as described
in Social-GAN [5].

C.1 Neural Relational Inference (NRI)

We adapt the code from official repository (https://github.com/ethanfetaya/NRI) of the
paper [10]. We set the number of edge types to 2, and the first edge type is not skipped in the decoder
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Ground Truth Generations

Figure 1: More visualization samples of generated trajectories on NBA. For each trajectory, the light
solid line is the past trajectory, and the dotted line is the future trajectory. Attacking players are pink,
defending players are blue, and the basketball is brown. Each row corresponds to a single movement
history of a scene. The first column is the ground truth trajectories, and the other columns are the
generated predictions.

(since skip the first type gave worse performance). We tried combinations of CNN/MLP encoder and
RNN/MLP decoder with different sizes of hidden layers. We found that CNN encoder with MLP
decoder with hidden dimension 256 and no dropout works best on both charged dataset and NBA
dataset.

C.2 Dynamic Neural Relational Inference (dNRI)

We adapt the code from the official repository (https://github.com/cgraber/cvpr_dNRI) of
the paper [3]. Similar to the implementation of NRI, we set the number of edge types to 2, and the
first edge type is not skipped in the decoder. We use RNN encoder and MLP decoder with hidden
dimension 256 and no dropout.

C.3 Fuzzy Query Attention (FQA)

We use the code from the official repository (https://github.com/nitinkamra1992/FQA) of
the paper [8]. As suggested by the paper, we use 8 query-key pair for all datasets. The dimension
for keys and queries is set to 4, and the dimension for yes-no responses is set to 6. The hidden state
dimension of the shared LSTM is set to 32.
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(a) Sample zA,4 of particle No.4 (purple)
while all other zs are fixed

(b) Sample zA,G of particle No.4 (purple)
while all other zs are fixed

Figure 2: Visualization of ablation study on the latent disentanglement by fixing all z except for
zA or zG of particle No.4 (purple), the thick solid lines are ground-truth trajectories, and thin
semi-transparent lines are generated trajectories from samples.

C.4 Social GAN

We use the code from the official repository (https://github.com/agrimgupta92/sgan) of the
paper [5]. The RNN module is LSTM. The hidden dimension is 32 for the encoder generator, 64 for
the encoder discriminator and 32 for the decoder. For NBA and charged ball dataset, we sample 10
times for the latent variable in training. For ETH/UCY dataset, we sample 20 times in training.

D Qualitative Analysis of Disentanglement

To demonstrate the effects of zA and zG, we perform a pair of perturbation experiments on the
Charged dataset:

• We fix zA,0, . . . , zA,4 for all five particles and zG,0, . . . , zG,3 for four of the five parti-
cles, and only sample zG,4 for one particle, then observe the distribution of the generated
trajectories.

• We fix zG,0, . . . , zG,4 for all five particles and zA,0, . . . , zA,3 for four of the five parti-
cles, and only sample zA,4 for one particle, then observe the distribution of the generated
trajectories.

In this pair of experiments, we observe:

• As shown in Figure. 2(a), when sampling only for zA,4 one particle, only its own generated
trajectory is affected, and all other four particles’ trajectories are not affected. This clearly
shows the disentanglement of inter- and intra-agent factors.

• As shown in Figure. 2(b), when sampling only zG,4 for one particle, the generated trajectories
of all five particles are affected.

E Ablation Studies

In the experiment we use a very small z dimension, where z_dim is 2. We also provide results with
larger z dimension on the NBA dataset. As shown in Table 2, z_dim is the dimension of a zA or zG
vector for each agent; ADE, FDE, and NLL are the metrics on the test data. From the table we can
tell that the dimension of zA and zG has minimal impact on ADE and FDE, and a large dimension
(=20 in our ablation) slightly improves the NLL.

We also did an ablation study with only a single zA or zG as follows:
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z dim ADE FDE NLL
2 1.715 3.598 507.495
5 1.736 3.636 509.381
10 1.732 3.614 508.102
20 1.71 3.594 503.393

Table 2: Ablation study of zA and zG dimension on the NBA dataset.

model ADE FDE NLL
zA only 1.95 3.98 531.2
zG only 1.88 3.83 530.5
zA& zG 1.69 3.52 504.9

Table 3: Ablation study of using single zA or zG on the NBA dataset.

• remove zA and double the size of zG.
• remove zG, double the size of zA and compute the attention weights using the hidden states.

For models with single zA or zG, we set the dimension of z to be 20. For zA& zG model, we set the
dimension of each z to be 10. The experiments is conducted with different seeds from ablation study
of z dimension, such that the results are slightly different from Table 2. From Table 3, we can see that
the performance of the model is worst in the case of only zA and reaches its best in the case of both
zA and zG, showing that zA and zG encode different implicit states in a disentangled way.

F Maximum Mean Discrepancy

In our task, the goal is to learn a good conditional density of future trajectory given the past. As the
distribution of futures may be multi-modal, the naive mean squared error (MSE) measure may be
misleading. Also, the MSE ignores the correlations between time steps and between agents and only
measures the marginal distributions. For a simple 1-D example, assume that the correct future paths
given some history is either to the left by 2 units (-1, -2) or to the right by 2 units (+1, +2), each with
equal probability, then a model that predicts (-1,+2) and (1,-2) with equal probability will on average
have the same MSE with another model that predicts (-1,-2) and (+1,+2) with equal probability.
Clearly, the second model has the same distribution with the truth and should be preferred, but MSE
cannot tell any difference. Such difference can be identified by a distributional metric.

We choose to measure distributional distance using a well-established metric known as the maximum
mean discrepancy (MMD, [4]). In this section, we aim to give a brief summary of MMD, its
application to model comparison and extension to conditional MMD. MMD measures the difference
between two distributions based on the difference between their expectations of a “witness” function
f in some space of functionsH.

MMD[P‖Q] := sup
f∈H:‖f‖H≤1

|EP [f ]− EQ[f ]| .

Please see [4] for detail; we only provide an intuitive description. Essentially, the best witness
function f is one that can tell apart P from Q while satisfying a smoothness constraint ‖f‖H ≤ 1. It
is similar to the KL divergence in that they both compute distributional distances. When the space of
functions is the reproducing kernel Hilbert space associated with kernel function k(·, ·) satisfying

k(x, y) = φ(x) · φ(y)

for canonical feature vectors φ that can be infinite-dimensional. Then the MMD can be estimated
using samples, as it is equivalent to

MMD[P‖Q]2 = ‖EX∼P [φ(X)]− EY∼Q[φ(Y )]‖2H (1)

= EX,X′∼P [k(X,X
′)] + EY,Y ′∼Q[k(Y, Y

′)]− 2EY∼Q,Y∼P [k(X,Y )] (2)

If we interpret the kernel as a form of similarity measure, then this metric makes intuitive sense. It
computes the average similarity from intra-distribution samples from P and Q (first two term), then
minus twice the average similarity between inter-distribution samples (last term). In practise, care
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must be taken to avoid biasing the estimate when computing the within-distribution similarities: we
must only compare the kernel using distinct samples and avoid valuating the kernel using the same
sample. Therefore, given finite samples {xi}Ni=1 ∼ P and {xj}Mj=1 ∼ Q, an empirical unbiased
estimate of the MMD is

M̂MD2[P‖Q] = 1
N(N−1)

N∑
i=1

N∑
i′ 6=i

k(xi, xi′) +
1

M(M−1)

M∑
j=1

M∑
j′ 6=j

k(yj , yj′)− 2
MN

N∑
i=1

M∑
j=1

k(xi, yj)

(3)

This distributional distance can be used to test whether two sets of samples p and q are from the same
distribution, and also compare if MMD[R‖P ] < MMD[R‖Q] give a third distributions R [1]. In

short, ifR 6= P andR 6= Q, then the M̂MD2[R‖P ]−M̂MD2[R‖Q] using samples has an asymptotic
normal distribution, using which we could determine whether the difference is significantly smaller
or greater than zero.

For the purpose of measure predictive distribution, we need to adapt the MMD for testing conditional
distributions. We suppose that the real data distribution is R from which we split samples along
the time dimension as [H,Z] ∼ R, where H is the history and R is the real future. In addition, we
have a model trained to predict the future X given the past H , resulting in a model distributions
P (X|H). Here, the variables X , Y and Z are defined over the same domain but may follow different
distributions.

Following a similar definition in [7], we define the following conditional MMD (using minimal
technical terminology):

CMMD2[R‖P ] = ‖EH∼R[L(·, H)ζ(H)]‖2H, (4)
ζ(H) := EZ∼R(Z|H)[φ(Z)]− EX∼P (X|H)[φ(Y )], (5)

where L(·, ·) is a operator (vector-valued kernel) such that

L(x, y) = l(x, y)I,

where l is another kernel similar to k, and I is the identity mapping in H. One can think of L as
acting on each element of the difference vector ζ. Thus, to compute the CMMD, we first compute a
difference between the moments of φ under two models; this difference is then “smoothed” using an
operator L weighted by the distribution of the history R. The squared CMMD is then the norm of
this smoothed and weighted difference.

By the reproducing property of the kernels, the CMMD reduces to an MMD over R(H)R(Z|H) and
R(H)P (Z|H)

CMMD2[R‖P ] = ‖E[H,Z]∼R[L(·, H)φ(Z)]− E[H,X]∼R(H)P (Y |H)[L(·, H)φ(Y )]‖2H (6)

= E[H,Z],[H′,Z′]∼R[l(H,H
′)k(Z,Z ′)] + E[H,X],[X′,Z′]∼RP [l(H,H

′)k(X,X ′)]
(7)

− E[H,Z]∼R,[H′,X′]∼RP [l(H,H
′)k(Z,X ′)]. (8)

And the similar test in [1] can be used for comparing with a second model that has learned Q(Z|H).
In our experiments, We used the IMQ kernel for l and k [2]

k(x, y) =

(
1 +

∥∥∥∥x− yσ
∥∥∥∥2
2

)−0.5
where σ is determined by the median distance between pairs of the history (for l) and true future (for
k). This is to ensure that the CMMDs computed on all models are comparable to each other for a
given test dataset.

We modified the code from [1] to carry out the CMMD test for model comparison using the product
kernel l(·, ·)k(·, ·) as above. In addition, we implemented the data splitting procedure described by
[7] to avoid biased estimates. That is, we split the test data into two halves [H1, Z1] and [H2, Z2],
then use each baseline model to predict the future given H2, giving [H2, X] ∼ RP for model P .
We also predict using GRIN, giving [H2, Y ] ∼ RQ. For each baseline model P , we test the null
hypothesis that

ĈMMD[R‖P ] < ĈMMD[R‖Q],
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using a significance level of 0.05.

Specifically for this work, we computed the MMD by drawing a single prediction given a history in
the test dataset. More predicted samples could be incorporated in principle but would take longer
to run, and the CMMDs are unlikely to be drastically affected (the test results may change due to
potentially smaller variance in the estimates). Finally, since MMD compares distributions supported
on spaces with fixed dimensionality, we cannot apply to datasets that have a variable number of
people, and thus do not report it for the ETH/UCY pedestrian trajectory dataset.
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