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1 DATASETS

We evaluate our proposed RCCT on the most widely used UDA benchmarks, including Office-
31 Saenko et al. (2010), Office-Home Venkateswara et al. (2017), VisDA2017 Peng et al. (2017),
and DomainNet Peng et al. (2019). Office-31 Saenko et al. (2010) contains 4,652 images of 31
categories collected from three domains, i.e., Amazon (A), DSLR (D), and Webcam (W). Office-
HomeVenkateswara et al. (2017) has 15,500 images of 65 classes from four domains: Artistic
(Ar), Clip Art (Cl), Product (Pr), and Real-world (Rw) images. VisDA2017 Peng et al. (2017)
is a Synthetic-to-Real object recognition dataset, with more than 0.2 million images in 12 classes.
DomainNet Peng et al. (2019) dataset has the largest scale containing around 0.6 million images of
345 classes in 6 domains: Quickdraw (qdr), Real (rel), Sketch (skt), Clipart (clp), Infograph (inf),
Painting (pnt).

2 TRAINING DETAILS

The ViT-B/16 contains 12 transformer layers in total. We use minibatch Stochastic Gradient Descent
(SGD) optimizer Ruder (2016) with a momentum of 0.9 as the optimizer. The batch size is set to
32 for all the experiments. We initialized the learning rate as 0 and linearly warm up to 0.06 after
500 training steps. We then schedule it using the cosine decay strategy. For small to middle-scale
datasets such as Office-31 and Office-Home, the epoch is set to 5000. For large-scale datasets Visda-
2017 and DomainNet, the epoch is set to 20000. The LFI coefficient µ is set as 0.5, but we have
conducted an ablation study that explores values within the range of (0, 1.0). The hyper-parameters
α, β, and γ are set to [1.0, 0.01, 0.1] for Office-31 and Office-Home, [0.1, 0.1, 0.1] for Visda-2017
and DomainNet.

3 DETAILS OF CORE-PERIPHERY IMPLEMENTATION

The patch discriminator will evaluate the importance of image patches. A patch that can easily fool
the patch discriminator, indicating it is more likely domain-invariant, is considered to have high
importance, and vice versa. We use the term ‘coreness’ to define the importance of image patches.
Therefore, by knowing the coreness of image patches and considering each image patch as a node,
we can generate a weighted graph where the edge weights are determined by the coreness of the
patches. For example, for simplicity, given two image patches, p1 and p2, the patch discriminator
assigns coreness values of 0.9 and 0.5 to the two image patches, respectively. The weight of the edge
between p1 and p2 is calculated as 0.9× 0.5, the weight of the self-loop edge for p1 is calculated as
0.9× 0.9, and the weight of the self-loop edge for p2 is calculated as 0.5× 0.5.

For the initial epoch, since we do not know the coreness of each image patch. Therefore, we initiate
with an unweight complete graph to guide self-attention. With each iteration, the patch discriminator
in the robust core-periphery aware transformer layer will asses the coreness of each image patch.
The patch discriminator also encourages the class token in the last transformer layer to focus on
dominant-invariant features in core patches and contempt the dominant-specific features in periphery
nodes. Then the CP graph module will generate a CP graph according to the patch coreness. In the
meantime, we have incorporated a latent feature interaction operation into the core-periphery aware
transformer layer. This addition not only helps manifest the concept of the ‘noisy brain’ but also
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fortifies the model against potential fluctuations. From the second epoch, the transformer layers
before the robust CP aware layer will adopt the generated CP graph to reschedule the self-attention
to strengthen the information communication among core patches (dominant-invariant) and weaken
the connection among periphery patches (dominant-specific).

The classifier takes the class token of the source domain images and outputs label prediction. The
domain discriminator takes the output class tokens of the source and target domain to be aligned
in the latent space by playing a two-player min-max game with the feature extractor. The self-
clustering module enforces the aligned features of different classes of target-domain images to be
clustered and separable.

3.1 LEARNED CORE-PERIPHERY GRAPHS

Our method adaptively learns core-periphery graphs for different datasets and tasks and uses the
learned core-periphery graphs to reschedule self-attention. Some randomly selected learned core-
periphery graphs in the format of adjacency matrices are shown in Figure 1. The first line includes
the learned CP graphs from CCT, while the second line shows the CP graphs learned from RCCT.
These graphs have been examined by core-periphery detection algorithmsKojaku & Masuda (2017).
Obviously, the CP graphs from RCCT show more dense and weighted patterns, which helps capture
the core patches from different domains and improves domain adaptivity across domains. The vi-
sualization of learned CP graphs demonstrates the effectiveness of the core-periphery principle and
the concept of noisy brain in domain adaptation tasks.
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Figure 1: The learned core-periphery graphs (adjacency matrics) from some randomly selected
domain adaptation tasks. The first line includes the CP graphs generated from the CCT model,
while the second lines are the CP graphs from RCCT mode. The texts above the CP graphs show
the task to which the CP graphs belong. The redder colors the higher the weight.
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