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ABSTRACT

Sample reweighting is an effective strategy for learning from training data com-
ing from a mixture of different subpopulations. However, existing reweighting
algorithms do not fully take advantage of the particular type of data distribu-
tion encountered in volumetric medical image segmentation, where the training
data images are uniformly distributed but their associated data labels fall into
two subpopulations—“label-sparse” and “label-dense”—depending on whether
the data image occurs near the beginning/end of the volumetric scan or the mid-
dle. For this setting, we propose AdaWAC as an adaptive weighting algorithm
that assigns label-dense samples to supervised cross-entropy loss and label-sparse
samples to unsupervised consistency regularization. We provide a convergence
guarantee for AdaWAC by appealing to the theory of online mirror descent on
saddle point problems. Moreover, we empirically demonstrate that AdaWAC not
only enhances segmentation performance and sample efficiency but also improves
robustness to the subpopulation shift in labels.

1 INTRODUCTION

Modern machine learning has been revolutionizing the field of medical imaging, especially in
computer-aided diagnosis with Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) scans. While the successes of most classical learning algorithms (e.g., empirical risk mini-
mization (ERM)) build upon the assumption that training samples are independently and identically
distributed (i.i.d.), real-world volumetric medical images rarely fit into this picture. Specifically for
medical image segmentation, as instantiated in Figure 1, the segmentation labels corresponding to
different cross-sections of organs within a given volume tend to have distinct distributions. That is,
the slices toward the beginning/end of the volume that contain no target organs have very few, if any,
segmentation labels (which we refer to as “label-sparse”); whereas segmentation labels are prolific
in the slices toward the middle of the volume (“label-dense”). Such discrepancy in labels results
in distinct difficulty levels measured by the training cross-entropy (Wang et al., 2021b) and leads
to various training schedulers (Tullis & Benjamin, 2011; Tang et al., 2018; Hacohen & Weinshall,
2019). Motivated by the separation between label-sparse and label-dense samples, we explore the
following questions in this work:

What is the effect of separation between sparse and dense labels on segmentation?
Can we leverage such separation to improve the segmentation accuracy?

We first formulate the mixture of label-sparse and label-dense samples as a subpopulation shift
in the conditional distribution of labels given images P (y|x). As illustrated in Figure 1, such
subpopulation shift induces a separation in supervised cross-entropy between sparse and dense labels
despite the uniformity of data images.

Prior works address the subpopulation shift issue by utilizing hard thresholding algorithms such
as Trimmed Loss Estimator (Shen & Sanghavi, 2019), MKL-SGD (Shah et al., 2020), Ordered
SGD (Kawaguchi & Lu, 2020), and quantile-based Kacmarz algorithm (Haddock et al., 2020).
However, these trimmed-loss-based methods discard the samples from some subpopulations (e.g.
samples with label corruption estimated by their losses) at each iteration, which results in loss of
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information in the discarded data, leading to reduced sample efficiency. Relaxing the hard thresh-
olding operator to soft thresholding is proposed to incorporate the information from both subpopu-
lations (Wang et al., 2018; Sagawa et al., 2020). However, lowering the weights assigned to some
subpopulations of data according to the properties of their labels reduces the importance of the
data and labels simultaneously, suggesting that we may further improve the learning efficiency by
exploiting the uniformity of data and the separation of labels separately.

Figure 1: Evolution of cross-entropy losses versus consistency regularization terms for slices across
one training volume (Case 40) in the Synapse dataset (Section 5) during training.

Instead of thresholding out or down-weighting the label-sparse samples, we exploit the image inputs
of these samples via augmentation consistency regularization. Consistency regularization (Bach-
man et al., 2014; Laine & Aila, 2016; Sohn et al., 2020) aims to learn the proximity between data
augmentations of the same samples; crucially, this set-up does not involve the data labels, and hence
consistency regularization has become an essential strategy for utilizing unlabeled data. For med-
ical imaging tasks, consistency regularization has been extensively studied in the semi-supervised
learning setting (Bortsova et al., 2019; Zhao et al., 2019; Li et al., 2020; Wang et al., 2021a; Zhang
et al., 2021; Zhou et al., 2021; Basak et al., 2022). By contrast, we will explore its potency in the
fully supervised setting—leveraging the spare information in all image inputs, regardless of their
label subpopulations.

Moreover, in light of the uniformity of unsupervised consistency on different slices throughout each
volume, the augmentation consistency of the encoder layer outputs serves as a natural reference
for separating samples from different subpopulations. Whereby, we introduce the weighted aug-
mentation consistency (WAC) regularization—a minimax formulation that not only incorporates
the consistency regularization but also leverages the consistency regularization as a reference for
reweighting the cross-entropy and the augmentation consistency terms corresponding to different
samples. At the saddle point, the WAC regularization automatically separates samples from differ-
ent label subpopulations by assigning all weight to the consistency terms for label-sparse samples,
and all weight to the cross-entropy terms for label-dense samples.

Furthermore, as an algorithm for solving the minimax problem posed by the WAC regularization,
we propose AdaWAC—an adaptive weighting scheme inspired by a mirror-descent-based algorithm
for distributionally-robust optimization (Sagawa et al., 2020). By adaptively adjusting the weights
between the cross-entropy and consistency terms of different samples, AdaWAC comes with both a
convergence guarantee and empirical success.

Overall, we summarize the main contributions of this work as follows:

• We cast the discrepancy between the sparse and dense labels within each volume as a subpopula-
tion shift in the conditional distribution P (y|x) (Section 2).

• We propose WAC regularization which uses the consistency of encoder layer outputs (in a UNet
architecture) as a natural reference to incentivize separation between samples with sparse and
dense labels (Section 3), along with an adaptive weighting algorithm—AdaWAC—for solving the
WAC regularization problem with a convergence guarantee (Section 4).

• We empirically demonstrate the potency of AdaWAC not only in enhancing segmentation perfor-
mance and sample efficiency but also in improving distributional robustness (Section 5).
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1.1 RELATED WORK

Sample reweighting. Sample reweighting is a popular strategy for coping with subpopulation
shifts in training data where different weights are assigned to samples from different subpopula-
tions. In particular, the distributionally-robust optimization (DRO) (Ben-Tal et al., 2013; Duchi
et al., 2016; Duchi & Namkoong, 2018; Sagawa et al., 2020) considers a collection of training sam-
ple groups from different distributions where, with the explicit grouping of samples, the goal is to
minimize the worst-case loss over the groups. Without prior knowledge on sample grouping, impor-
tance sampling (Needell et al., 2014; Zhao & Zhang, 2015; Alain et al., 2015; Loshchilov & Hutter,
2015; Gopal, 2016; Katharopoulos & Fleuret, 2018), iterative trimming (Kawaguchi & Lu, 2020;
Shen & Sanghavi, 2019), and empirical-loss-based reweighting (Wu et al., 2022) are commonly in-
corporated in the stochastic optimization process for adaptive reweighting and separation of samples
from different subpopulations.

Consistency regularization. Consistency regularization (Bachman et al., 2014; Laine & Aila,
2016; Sohn et al., 2020; Berthelot et al., 2019) is a popular way to exploit data augmentations
that encourage the model to learn the vicinity among augmentations of the same sample, with the
assumption that data augmentations generally preserve the semantic information in data.

For medical imaging, consistency regularization is generally leveraged as a semi-supervised learning
tool (Bortsova et al., 2019; Zhao et al., 2019; Li et al., 2020; Wang et al., 2021a; Zhang et al., 2021;
Zhou et al., 2021; Basak et al., 2022). In efforts to incorporate consistency regularization in medical
image segmentation with augmentation-sensitive labels, Li et al. (2020) encourages transformation
consistency between predictions with augmentations applied to the image inputs and the segmen-
tation outputs. Basak et al. (2022) penalizes inconsistent segmentation outputs between teacher-
student models, with MixUp (Zhang et al., 2017) applied on image inputs of the teacher model and
segmentation outputs of the student model. Instead of enforcing consistency in the segmentation out-
put space as above, our algorithm leverages the insensitivity of sparse labels to augmentations and
encourages consistent encodings (in the latent space of encoder outputs) on label-sparse samples.

2 PROBLEM SETUP

Notations. We denote [K] = {1, . . . ,K} for any K ∈ N. For an arbitrary tensor, we adapt the
syntax for Python slicing on the subscript (except counting from 1) to represent its elements and
subtensors. For example, x[i,j] denotes the (i, j)-entry of the two-dimensional tensor x, and x[i,:]

denotes its i-th row. Let I be a function onto {0, 1} such that, for any event e, I {e} = 1 if e is true
and 0 otherwise. For any distribution P and n ∈ N, let Pn denote the joint distribution of n samples
drawn i.i.d. from P . We refer to an event as happening with high probability (w.h.p.) if it takes place
with probability 1− Ω (poly (n))

−1.

2.1 PIXEL-WISE CLASSIFICATION WITH SPARSE AND DENSE LABELS

We consider the volumetric medical image segmentation as a pixel-wise multi-class classification
problem where we aim to learn a pixel-wise classifier h : X → [K]d that serves as a good approxi-
mation for the ground truth h∗ : X → [K]d.

Recall the separation of cross-entropy losses between samples with different fractions of non-
background labels during training from Figure 1. We refer to a sample (x,y) ∈ X × [K]d as
label-sparse if most pixels in y are labeled as the background such that the cross-entropy loss on
(x,y) converges rapidly in the early stage of training1. Otherwise, we say that (x,y) is label-dense.
Formally, we describe such variation as a subpopulation shift in the label distribution.

Definition 1 (Mixture of label-sparse and label-dense distributions). Let P0 and P1 be the distri-
butions of label-sparse and label-dense samples with distinct conditional distributions P0 (y|x)

1Although the sparsity of non-background pixels in the segmentation label is a key feature of label-sparse
samples (as the name suggests), the unknown cut-off on such sparsity degenerates it as a sufficient condition
for the rapid convergence of cross-entropy loss (Figure 1). Instead of making distinction with the sparsity
of non-background pixels, we formalize a natural separation between label-sparse and label-dense samples in
Assumption 1, based on which our algorithm can distinguish different samples spontaneously.
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and P1 (y|x), respectively, but the same marginal distribution P (x) such that Pi (x,y) =
Pi (y|x)P (x) (i = 0, 1). For ξ ∈ [0, 1], we define a data distribution Pξ where each sample
(x,y) ∼ Pξ is drawn either from P1 with probability ξ or from P0 with probability 1− ξ.

We aim to learn a pixel-wise classifier from a function class H ∋ hθ = argmaxk∈[K] fθ (x)[j,:]
for all j ∈ [d] where the underlying function fθ ∈ F , parameterized by some θ ∈ Fθ, admits an
encoder-decoder structure:

F =
{
fθ = ϕθ ◦ ψθ

∣∣ ϕθ : X → Z, ψθ : Z → [0, 1]d×K
}
. (1)

Here ϕθ, ψθ correspond to the encoder and decoder functions, respectively; (Fθ, ⟨·, ·⟩F ) denotes the
inner product space of parameters with the induced norm ∥·∥F and dual norm ∥·∥F,∗; (Z, ϱ) is a
latent metric space.

To learn from segmentation labels, we consider the averaged cross-entropy loss:

ℓCE (θ; (x,y)) = −
1

d

d∑
j=1

K∑
k=1

I
{
y[j] = k

}
· log

(
fθ (x)[j,k]

)
= −1

d

d∑
j=1

log
(
fθ (x)[j,y[j]]

)
. (2)

We assume proper learning where there exists θ∗ ∈
⋂

ξ∈[0,1] argminθ∈Fθ
E(x,y)∼Pξ

[ℓCE (θ; (x,y))]

that is invariant with respect to ξ.

2.2 AUGMENTATION CONSISTENCY REGULARIZATION

Despite the invariance of fθ∗ to Pξ on the population loss, in practice we have a finite number
of training samples and the predominance of label-sparse samples in the training set introduces
difficulties due to the class imbalances. As a specific extreme scenario for the pixel-wise classifier
with encoder-decoder structure (Equation (1)), when the label-sparse samples are predominant (ξ ≪
1), a decoder function ψθ that predicts every pixel as background can achieve near-optimal cross-
entropy loss, regardless of what the encoder function ϕθ is, considerably compromising the test
performance (cf. Table 1). To encourage legit encoding even in absence of sufficient dense labels,
we leverage the unsupervised consistency regularization on the encoder function ϕθ based on data
augmentations.

Let A be a distribution over transformations on X where for any x ∈ X , each A ∼ A (A :
X → X ) induces an augmentation A (x) of x that perturbs low-level information in x. We aim to
learn an encoder function ϕθ : X → Z that is capable of filtering out low-level information from
x and therefore provides similar encodings for augmentations of the same sample. Recalling the
metric ϱ on Z , for a given scaling hyperparameter λAC > 0, we measure the similarity between
augmentations with a consistency regularization term on ϕθ (·): for any A1, A2 ∼ A2,

ℓAC (θ;x, A1, A2) ≜ λAC · ϱ
(
ϕθ (A1(x)) , ϕθ (A2(x))

)
. (3)

For the n training samples {(xi,yi)}i∈[n] ∼ Pn
ξ , we consider n pairs of data augmentation transfor-

mations {(Ai,1, Ai,2)}i∈[n] ∼ A
2n. In the basic version, we encourage the similar encoding ϕθ (·)

of the augmentation pairs (Ai,1 (xi), Ai,2 (xi)) for all i ∈ [n] via consistency regularization:

min
θ∈Fθ∗ (γ)

1

n

n∑
i=1

ℓCE (θ; (xi,yi)) + ℓAC (θ;xi, Ai,1, Ai,2) . (4)

We enforce consistency on ϕθ (·) in light of the encoder-decoder architecture: the encoder is gener-
ally designed to abstract essential information and filters out low-level non-semantic perturbations
(e.g., those introduced by augmentations), while the decoder recovers the low-level information for
the pixel-wise classification. Therefore, with different A1, A2 ∼ A, the encoder output ϕθ (·) tends
to be more consistent than the other intermediate layers, especially for label-dense samples.

3 WEIGHTED AUGMENTATION CONSISTENCY (WAC) REGULARIZATION

As the motivation, we begin with a key observation about the averaged cross-entropy:
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Remark 1 (Separation of averaged cross-entropy loss on P0 and P1). As demonstrated in Figure 1,
the sparse labels from P0 tend to be much easier to learn than the dense ones from P1, leading
to considerable separation of averaged cross-entropy losses on the sparse and dense labels after
a sufficient number of training epochs – ℓCE (θ; (x,y)) ≪ ℓCE (θ; (x

′,y′)) for most label-sparse
samples (x,y) ∼ P0 and label-dense samples (x′,y′) ∼ P1.

Although Equation (4) with consistency regularization alone can boost the segmentation accuracy
during testing (cf. Table 4), it does not take the separation between label-sparse and label-dense
samples into account. In Section 5, we will empirically demonstrate that proper exploitation of such
separation, like the formulation introduced below, can bring compelling further improvements.

Concretely, we formalized the notion of separation between P0 and P1 based on the consistency
regularization term (Equation (3)) with the following assumption 2.
Assumption 1 (N -separation between P0 and P1). Given a sufficiently small γ > 0, let Fθ∗ (γ) =
{θ ∈ Fθ | ∥θ − θ∗∥F ≤ γ} be a compact and convex neighborhood of well-trained pixel-wise clas-
sifiers3. We say that P0 and P1 are N -separated over Fθ∗ (γ) if there exists ω > 0 such that both:

(i) ℓCE (θ; (x,y)) < ℓAC (θ;x, A1, A2) for all θ ∈ Fθ∗ (γ) given (x,y) ∼ P0

(ii) ℓCE (θ; (x,y)) > ℓAC (θ;x, A1, A2) for all θ ∈ Fθ∗ (γ) given (x,y) ∼ P1

hold with probability 1− Ω
(
N1+ω

)−1
over ((x,y) , (A1, A2)) ∼ Pξ ×A2.

This assumption is motivated by the empirical observation that the perturbation in ϕθ (·) induced by
A is more uniform across P0 and P1 than the averaged cross-entropy, as instantiated in Figure 3.

Under Assumption 1, up to a proper scaling hyperparameter λAC, the consistency regularization
(Equation (3)) can separate the averaged cross-entropy loss (Equation (2)) on N label-sparse and
label-dense samples with probability 1 − Ω (Nω)

−1 by the union bound (as explained formally in
Appendix A). In particular, the larger N correspond to the stronger separation between P0 and P1.

With Assumption 1, we introduce a minimax formulation that incentivizes the separation of label-
sparse and label-dense samples automatically by introducing a flexible weight β[i] ∈ [0, 1] that
balances ℓCE (θ; (xi,yi)) and ℓAC (θ;xi, Ai,1, Ai,2) for each of the n samples.

θ̂WAC, β̂ ∈ argmin
θ∈Fθ∗ (γ)

argmax
β∈[0,1]n

{
L̂WAC (θ,β) ≜

1

n

n∑
i=1

L̂WAC
i (θ,β)

}
(5)

L̂WAC
i (θ,β) ≜ β[i] · ℓCE (θ; (xi,yi)) + (1− β[i]) · ℓAC (θ;xi, Ai,1, Ai,2) .

With convex and continuous loss and regularization terms (formally in Proposition 1), Equation (5)
has a saddle point where β̂ separates the label-sparse and label-dense samples under Assumption 1.

Proposition 1 (Formal proof in Appendix A). Assume that ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2)
are convex and continuous in θ for all (x,y) ∈ X × [K]d and A1, A2 ∼ A2; Fθ∗ (γ) ⊂ Fθ is
compact and convex. If P0 and P1 are n-separated (Assumption 1), then there exists β̂ ∈ {0, 1}n

and θ̂WAC ∈ argminθ∈Fθ∗ (γ)
L̂WAC

(
θ, β̂

)
such that

min
θ∈Fθ∗ (γ)

L̂WAC
(
θ, β̂

)
= L̂WAC

(
θ̂WAC, β̂

)
= max

β∈[0,1]n
L̂WAC

(
θ̂WAC,β

)
. (6)

Further, β̂ separates the label-sparse and label-dense samples—β[i] = I {(xi,yi) ∼ P1}—w.h.p..

In other words, for n samples drawn from a mixture of the n-separated P0 and P1, at the saddle point,
Equation (5) automatically identifies the label-sparse samples with β[i] = 0, learning more from the
unsupervised consistency regularization, and the label-dense ones with β[i] = 1, emphasizing more
on the supervised averaged cross-entropy loss.

2We note that although Assumption 1 can be rather strong, it is only required for the separation guarantee of
label-sparse and label-dense samples with high probability in Proposition 1, but not for the adaptive weighting
algorithm introduced in Section 4 or in practice for the experiments.

3With pretrained initialization, we assume that the optimization algorithm is always probing in Fθ∗ (γ).
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4 ADAPTIVELY WEIGHTED AUGMENTATION CONSISTENCY (AdaWAC)

Remark 2 (Connection to hard thresholding algorithms). The saddle point of Equation (5) is closely
related to hard thresholding algorithms like Ordered SGD (Kawaguchi & Lu, 2020) and iterative
trimmed loss (Shen & Sanghavi, 2019). In each iteration, these algorithms update the model only
on a proper subset of training samples based on the (ranking of) current empirical risks. Compared
to hard thresholding algorithms, (i) Equation (5) additionally leverages the unused samples (e.g.,
label-sparse samples) for unsupervised consistency regularization on data augmentations, which is
known for improving generalization and feature learning even in supervised settings (Yang et al.,
2022; Shen et al., 2022); (ii) meanwhile, it does not require prior knowledge of the sample subpop-
ulations (e.g., ξ for Pξ) which is essential for hard thresholding algorithms.

Equation (5) further facilitates the more flexible optimization process. As we will empirically show
in Table 2, despite the close relation between Equation (5) and the hard thresholding algorithms
(Remark 2), such updating strategies may be suboptimal for solving Equation (5).

Algorithm 1 Adaptively Weighted Augmentation Consistency (AdaWAC)

1: Input: Training samples {(xi,yi)}i∈[n] ∼ Pn
ξ , augmentations {(Ai,1, Ai,2)}i∈[n] ∼ A

2n,
maximum number of iterations T ∈ N, learning rates ηθ, ηβ > 0, pretrained initialization for
the pixel-wise classifier θ0 ∈ Fθ∗ (γ).

2: Initialize the sample weights β0 = 1/2 ∈ [0, 1]n.
3: for t = 1, . . . , T do
4: Sample it ∼ [n] uniformly
5: b←

[
(βt−1)[it], 1− (βt−1)[it]

]
6: b[1] ← b[1] · exp (ηβ · ℓCE (θt−1; (xit ,yit)))
7: b[2] ← b[2] · exp (ηβ · ℓAC (θt−1;xit , Ait,1, Ait,2))
8: βt ← βt−1, (βt)[it] ← b[1]/ ∥b∥1
9: θt ← θt−1 − ηθ ·

(
(βt)[it] · ∇θℓCE (θt−1; (xit ,yit))

+
(
1− (βt)[it]

)
· ∇θℓAC (θt−1;xit , Ait,1, Ait,2)

)
10: end for

Inspired by the breakthrough made by Sagawa et al. (2020) in the distributionally-robust optimiza-
tion (DRO) setting where gradient updating on weights is shown to enjoy better convergence guar-
antees than hard thresholding, in Algorithm 1, we introduce an adaptive weighting algorithm for
solving Equation (5) based on online mirror descent. In contrast to the commonly used stochas-
tic gradient descent (SGD), the flexibility of online mirror descent in choosing the associated norm
space not only allows gradient updates on sample weights, but also grants distinct learning dynamics
to sample weights βt and model parameters θt, which leads to the following convergence guarantee.

Proposition 2 (Formally in Proposition 3, proof in Appendix B, assumptions instantiated in Ex-
ample 1). Assume that ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex and continuous in θ for
all (x,y) ∈ X × [K]d and A1, A2 ∼ A2; Fθ∗ (γ) ⊂ Fθ is convex and compact. If there ex-

ist 4 (i) Cθ,∗ > 0 such that 1
n

∑n
i=1

∥∥∥∇θL̂
WAC
i (θ,β)

∥∥∥2
F,∗
≤ C2

θ,∗ and (ii) Cβ,∗ > 0 such that

1
n

∑n
i=1 max {ℓCE (θ; (xi,yi)) , ℓAC (θ;xi, Ai,1, Ai,2)}2 ≤ C2

β,∗ for all θ ∈ Fθ∗ (γ), β ∈ [0, 1]n,
then with ηθ = ηβ = 2√

5T(γ2C2
θ,∗+2nC2

β,∗)
, Algorithm 1 provides

E
[

max
β∈[0,1]n

L̂WAC (
θT ,β

)
− min

θ∈Fθ∗ (γ)
L̂WAC (

θ,βT

)]
≤ 2

√
5
(
γ2C2

θ,∗ + 2nC2
β,∗

)/
T

where θT = 1
T

∑T
t=1 θt and βT = 1

T

∑T
t=1 βt.

4Following the convention, we use ∗ in subscription to denote the dual spaces. For instance, recalling the
parameter space Fθ characterized by the norm ∥·∥F from Section 2.1, we use ∥·∥F,∗ to denote its dual norm;
while Cθ,∗, Cβ,∗ upper bound the dual norms of the gradients with respect to θ and β.
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In addition to the convergence guarantee, Algorithm 1 also demonstrates superior performance over
hard thresholding algorithms for segmentation problems in practice (Table 2). An intuitive expla-
nation is that instead of filtering out all the label-sparse samples via hard thresholding, the adaptive
weighting allows the model to learn from some sparse labels at the early epochs, while smoothly
down-weighting ℓCE of these samples since learning sparse labels tends to be easier (Remark 1).
With the learned model tested on a mixture of label-sparse and label-dense samples, learning sparse
labels at the early stage is crucial for accurate segmentation.

5 EXPERIMENTS

In this section, we investigate the proposed AdaWAC algorithm (Algorithm 1) on different medical
image segmentation tasks with different UNet-like architectures. We first demonstrate the perfor-
mance improvements brought by AdaWAC in terms of sample efficiency and robustness to sub-
population shift (Table 1). Then, we verify the empirical advantage of AdaWAC compared to the
closely related hard thresholding algorithms as discussed in Remark 2 (Table 2). Our ablation study
(Table 4) further illustrates the indispensability of both sample reweighting and consistency regular-
ization, the deliberate combination of which leads to the superior performance of AdaWAC5.

Experiment setup. We conduct experiments on two volumetric medical image segmentation
tasks: abdominal CT segmentation for Synapse multi-organ dataset (Synapse)6 and cine-MRI seg-
mentation for Automated cardiac diagnosis challenge dataset (ACDC)7, with two UNet-like ar-
chitectures: TransUNet (Chen et al., 2021) and UNet Ronneberger et al. (2015) (deferred to Ap-
pendix E.1). For the main experiments with TransUNet in Section 5, we follow the official imple-
mentation in (Chen et al., 2021) and use ERM+SGD as the baseline. We evaluate segmentations with
two standard metrics—the average Dice-similarity coefficient (DSC) and average 95-percentile of
Hausdorff distance (HD95). Dataset and implementation details are deferred to Appendix D. Given
the sensitivity of medical image semantics to perturbations, our experiments only involve simple
augmentations (i.e., rotation and mirroring) adapted from (Chen et al., 2021).

5.1 SEGMENTATION PERFORMANCE OF AdaWAC WITH TRANSUNET

Segmentation on Synapse. Figure 2 visualizes the segmentation predictions on 6 Synapse test
slices given by models trained via AdaWAC (ours) and via the baseline (ERM+SGD) with Tran-
sUNet (Chen et al., 2021). We observe that AdaWAC provides more accurate predictions on the
segmentation boundaries and captures small organs better than the baseline.

Figure 2: Visualization of segmentation predictions against the ground truth (in grayscale) on
Synapse. Top to bottom: ground truth, ours (AdaWAC), baseline.

5We release our code anonymously at https://anonymous.4open.science/r/adawac-F5F8.
6https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
7https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Visualization of AdaWAC. As shown in Figure 3, with ℓCE (θt; (xi,yi)) (Equation (2)) of label-
sparse versus label-dense slices weakly separated in the early epochs, the model further learns
to distinguish ℓCE (θt; (xi,yi)) of label-sparse/label-dense slices during training. By contrast,
ℓAC (θt;xi, Ai,1, Ai,2) (Equation (3)) remains mixed for all the slices in the entire training process.
As a result, the CE weights of label-sparse slices are much smaller than those of label-dense ones,
pushing AdaWAC to learn more image representations but less pixel classification for slices with
sparse labels and learn more pixel classification for slices with dense labels.

Figure 3: ℓCE (θt; (xi,yi)) (top), CE weights βt (middle), and ℓAC (θt;xi, Ai,1, Ai,2) (bottom) of the
entire Synapse training process. The x-axis indices slices 0–2211. The y-axis enumerates epochs
0–150. Individual volumes (cases) are partitioned by black lines; while the purple lines separate
slices with/without non-background pixels.

Sample efficiency and robustness. We first demonstrate the sample efficiency of AdaWAC in
comparison to the baseline (ERM+SGD) when training only on different subsets of the full Synapse
training set (“full” in Table 1). Specifically, (i) half-slice contains slices with even indices only in
each volume8; (ii) half-vol consists of 9 volumes uniformly sampled from the total 18 volumes in
full where different volumes tend to have distinct ξs (i.e., ratios of label-dense samples); (iii) half-s-
parse takes the first half slices in each volume, most of which tend to be label-sparse (i.e., ξs are
made to be small). As shown in Table 1, the model trained with AdaWAC on half-slice generalizes
as well as a baseline model trained on full, if not better. Moreover, the half-vol and half-sparse
experiments illustrate the robustness of AdaWAC to subpopulation shift. Furthermore, such sample
efficiency and distributional robustness of AdaWAC extend to the more widely used UNet architec-
ture. We defer the detailed results and discussions on UNet to Appendix E.1.

Table 1: AdaWAC with TransUNet trained on the full Synapse and its subsets.

Training Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

full baseline 75.94 ± 0.68 32.91 ± 8.80 87.16 54.70 81.04 74.37 93.99 57.34 84.25 74.66
AdaWAC 78.83 ± 0.38 27.50 ± 1.88 87.65 55.96 82.89 80.21 93.97 61.40 89.57 79.01

half-slice baseline 74.62 ± 0.78 31.62 ± 8.37 86.14 44.23 79.09 78.46 93.50 55.78 84.54 75.24
AdaWAC 77.37 ± 0.40 29.56 ± 1.09 86.89 55.96 82.15 78.63 94.34 57.36 86.60 77.05

half-vol baseline 71.08 ± 0.90 46.83 ± 2.91 84.38 46.71 78.19 74.55 92.02 48.03 76.28 68.47
AdaWAC 73.81 ± 0.94 35.33 ± 0.92 84.37 48.14 80.32 77.39 93.23 52.78 83.50 70.79

half-sparse baseline 31.74 ± 2.78 69.72 ± 1.37 65.71 8.33 59.46 51.59 51.18 10.72 6.92 0.00
AdaWAC 41.03 ± 2.12 59.04 ± 12.32 71.27 8.33 69.14 63.09 64.29 17.74 30.77 3.57

Comparison with hard thresholding algorithms. Table 2 illustrates the empirical advantage of
AdaWAC over the hard thresholding algorithms, as suggested in Remark 2. In particular, we con-
sider the following hard thresholding algorithms: (i) trim-train learns only from slices with at least
one non-background pixel and trims the rest in each iteration on the fly; (ii) trim-ratio ranks the
cross-entropy loss ℓCE (θt; (xi,yi)) in each iteration (mini-batch) and trims samples with the low-
est cross-entropy losses at a fixed ratio – the ratio of all-background slices in the full training set

8Such sampling is equivalent to doubling the time interval between two consecutive scans or halving the
scanning frequency in practice, resulting in the halving of sample size.
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(1 − 1280
2211 ≈ 0.42); (iii) ACR further incorporates the augmentation consistency regularization di-

rectly via addition of ℓAC (θt;xi, Ai,1, Ai,2) without reweighting; (iv) pseudo-AdaWAC simulates
the sample weights β at the saddle point and learns via ℓCE (θt; (xi,yi)) on slices with at least one
non-background pixel while via ℓAC (θt;xi, Ai,1, Ai,2) otherwise. We notice that naive incorporation
of ACR brings less observable boosts to the hard-thresholding methods. Therefore, the deliberate
combination via reweighting in AdaWAC is essential for performance improvement.

Table 2: AdaWAC versus hard thresholding algorithms with TransUNet on Synapse.

Method baseline trim-train trim-ratio pseudo-AdaWAC AdaWAC+ACR +ACR

DSC ↑ 76.28 76.01 75.66 74.26 77.98 78.28 79.12
HD95 ↓ 29.23 26.94 35.06 28.59 33.59 29.06 25.79

Segmentation on ACDC. Performance improvements granted by AdaWAC are also observed on
the ACDC dataset (Table 3). We defer detailed visualization of ACDC segmentation to Appendix E.

Table 3: AdaWAC with TransUNet trained on ACDC.

Method DSC ↑ HD95 ↓ RV Myo LV

TransUNet 89.36 3.02 88.36 83.84 95.87
AdaWAC (ours) 90.41 1.29 89.50 85.78 95.95

5.2 ABLATION STUDY

On the influence of consistency regularization. To illustrate the role of consistency reg-
ularization in AdaWAC, we consider the reweight-only scenario with λAC = 0 such that
ℓAC (θt;xi, Ai,1, Ai,2) ≡ 0 and therefore b[2] (Algorithm 1 line 7) remains intact. With zero consis-
tency regularization in AdaWAC, reweighting alone brings little improvement (Table 4).

On the influence of sample reweighting. We then investigate the effect of sample reweighting
under different reweighting learning rates ηβ (recall Algorithm 1): (i) ACR-only for ηβ = 0
(equivalent to the naive addition of ℓAC (θt;xi, Ai,1, Ai,2)), (ii) AdaWAC-0.01 for ηβ = 0.01, and
(iii) AdaWAC-1.0 for ηβ = 1.0. As Table 4 implies, when removing reweighting from AdaWAC,
augmentation consistency regularization alone improves DSC slightly from 76.28 (baseline) to 77.89
(ACR-only), whereas AdaWAC boosts DSC to 79.12 (AdaWAC-1.0) with a proper choice of ηβ.

Table 4: Ablation study of AdaWAC with TransUNet trained on Synapse.

Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

baseline 76.28 29.23 87.46 55.21 82.06 77.76 94.10 54.06 85.07 74.54
reweight-only 76.68 29.24 86.15 53.98 82.96 80.28 93.42 55.86 85.29 75.49
ACR-only 77.89 31.65 87.96 54.34 81.79 80.21 94.52 60.41 88.07 75.83
AdaWAC-0.01 77.94 27.81 87.58 52.75 82.29 80.22 94.90 55.92 91.63 78.23
AdaWAC-1.0 79.12 25.79 87.23 54.94 84.58 81.69 94.62 58.29 90.63 81.01

6 DISCUSSION

In this paper, we exploit the non-uniformity in labels commonly observed in volumetric medical
image segmentation via AdaWAC—a deliberate combination of adaptive weighting and augmenta-
tion consistency regularization. By casting the separation between sparse and dense segmentation
labels as a subpopulation shift in the label distribution, we leverage the unsupervised consistency
regularization on encoder layer outputs (of UNet architectures) as a natural reference to distinguish
label-sparse and label-dense samples via comparisons against the supervised average cross-entropy
losses. We formulate such comparisons as a weighted augmentation consistency (WAC) regulariza-
tion problem and propose an adaptive weighting scheme—AdaWAC—for iterative and smooth sep-
aration of samples from different subpopulations with a convergence guarantee. Our experiments
demonstrate empirical effectiveness of AdaWAC not only in improving segmentation performance
and sample efficiency but also in enhancing robustness to the subpopulation shift in labels.
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A SEPARATION OF LABEL-SPARSE AND LABEL-DENSE SAMPLES

Proof of Proposition 1. We first observe that, since ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex
and continuous in θ for all (x,y) ∈ X × Y and A1, A2 ∼ A2, for all i ∈ [n], L̂WAC

i (θ,β) is
continuous, convex in θ, and affine (thus concave) in β; and therefore so is L̂WAC (θ,β). Then with
the compact and convex domains θ ∈ Fθ∗ (γ) and β ∈ [0, 1]n, Sion’s minimax theorem (Sion,
1958) suggests the minimax equality,

min
θ∈Fθ∗ (γ)

max
β∈[0,1]n

L̂WAC (θ,β) = max
β∈[0,1]n

min
θ∈Fθ∗ (γ)

L̂WAC (θ,β) , (7)

where inf, sup can be replaced by min,max respectively due to compactness of the domains.

Further, by the continuity and convexity-concavity of L̂WAC (θ,β), the pointwise maximum
maxβ∈[0,1]n L̂

WAC (θ,β) is lower semi-continuous and convex in θ; while the pointwise mini-
mum minθ∈Fθ∗ (γ) L̂

WAC (θ,β) is upper semi-continuous and concave in β. Then via Weier-
strass’ theorem (Bertsekas (2009), Proposition 3.2.1), there exist θ̂WAC ∈ Fθ∗ (γ) and β̂ ∈
[0, 1]n that achieve the minimax optimal by minimizing maxβ∈[0,1]n L̂

WAC (θ,β) and maximizing

minθ∈Fθ∗ (γ) L̂
WAC (θ,β). Along with Equation (7), such

(
θ̂WAC, β̂

)
provides a saddle point for

Equation (5) (Bertsekas (2009), Proposition 3.4.1).

Next, we show via contradiction that there exists a saddle point with β̂ attained on a vertex β̂ ∈
{0, 1}n. Suppose the opposite, then for any saddle point

(
θ̂WAC, β̂

)
, there must be an i ∈ [n] with

β̂[i] ∈ (0, 1), where we have the following contradictions:

(i) If ℓCE

(
θ̂WAC; (xi,yi)

)
< ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
, decreasing β̂[i] > 0 to β̂′

[i] = 0 leads to

L̂WAC
(
θ̂WAC, β̂′

)
> L̂WAC

(
θ̂WAC, β̂

)
, contradicting Equation (6).

(ii) If ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
, increasing β̂[i] < 1 to β̂′

[i] = 1 again

leads to L̂WAC
(
θ̂WAC, β̂′

)
> L̂WAC

(
θ̂WAC, β̂

)
, contradicting Equation (6).

(iii) If ℓCE

(
θ̂WAC; (xi,yi)

)
= ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
, β̂[i] can be replaced with any value in

[0, 1], including 0, 1.

Therefore, there must be a saddle point
(
θ̂WAC, β̂

)
with β̂ ∈ {0, 1}n such that

β[i] = I
{
ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)}
.

Finally, it remains to show that w.h.p. over {(xi,yi)}i∈[n] ∼ Pn
ξ and {(Ai,1, Ai,2)}i∈[n] ∼ A

2n,

(i) ℓCE

(
θ̂WAC; (xi,yi)

)
≤ ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
for all (xi,yi) ∼ P0; and

(ii) ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
for all (xi,yi) ∼ P1;

which leads to β[i] = I {(xi,yi) ∼ P1} w.h.p. as desired. To illustrate this, we begin by observing
that when P0 and P1 are n-separated (Assumption 1), since θ̂WAC ∈ Fθ∗ (γ), there exists some
ω > 0 such that for each i ∈ [n],

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
< ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

) ∣∣∣ (xi,yi) ∼ P0

]
≥ 1− 1

Ω (n1+ω)
,

and

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

) ∣∣∣ (xi,yi) ∼ P1

]
≥ 1− 1

Ω (n1+ω)
.
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Therefore by the union bound on a set of n samples {(xi,yi)}i∈[n] ∼ Pn
ξ ,

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
< ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
∀ (xi,yi) ∼ P0

]
≥ 1− 1

Ω (nω)
, (8)

and

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
∀ (xi,yi) ∼ P1

]
≥ 1− 1

Ω (nω)
. (9)

Applying the union bound again on Equation (8) and Equation (9), we have the desired condition
holds with probability 1− Ω (nω)

−1, i.e., w.h.p..

B CONVERGENCE OF AdaWAC

For any d ∈ N, let ∆n
d ≜

{
[β1; . . . ;βn] ∈ [0, 1]n×d

∣∣ ∥βi∥1 = 1 ∀ i ∈ [n]
}

. Then Equation (5) can
be reformulated as:

θ̂WAC, β̂ = argmin
θ∈Fθ∗ (γ)

argmax
B∈∆n

2

{
L̂WAC (θ,B) ≜

1

n

n∑
i=1

L̂WAC
i (θ,B)

}
, (10)

L̂WAC
i (θ,B) ≜ B[i,1] · ℓCE (θ; (xi,yi)) +B[i,2] · ℓAC (θ;xi, Ai,1, Ai,2) .

Proposition 3 (Convergence (formal restatement of Proposition 2)). Assume that ℓCE (θ; (x,y))
and ℓAC (θ;x, A1, A2) are convex and continuous in θ for all (x,y) ∈ X × Y and A1, A2 ∼ A2;
Fθ∗ (γ) ⊂ Fθ is convex and compact. If there exist

(i) Cθ,∗ > 0 such that 1
n

∑n
i=1

∥∥∥∇θL̂
WAC
i (θ,B)

∥∥∥2
F,∗
≤ C2

θ,∗ for all θ ∈ Fθ∗ (γ), B ∈ ∆n
2 and

(ii) CB,∗ > 0 such that 1
n

∑n
i=1 max {ℓCE (θ; (xi,yi)) , ℓAC (θ;xi, Ai,1, Ai,2)}2 ≤ C2

B,∗ for all
θ ∈ Fθ∗ (γ),

then with ηθ = ηB = 2
/√

5T
(
γ2C2

θ,∗ + 2nC2
B,∗

)
, Algorithm 1 provides the convergence guar-

antee for the duality gap E
(
θT ,BT

)
≜ maxB∈∆n

2
L̂WAC

(
θT ,B

)
−minθ∈Fθ∗ (γ) L̂

WAC
(
θ,BT

)
:

E
[
E
(
θT ,BT

)]
≤ 2

√√√√5
(
γ2C2

θ,∗ + 2nC2
B,∗

)
T

,

where θT = 1
T

∑T
t=1 θt and BT = 1

T

∑T
t=1 Bt.

Proof of Proposition 3. The proof is an application of the standard convergence guarantee for the
online mirror descent on saddle point problems, as recapitulated in Lemma 1.

Specifically, for B ∈ ∆n
2 , we use the norm ∥B∥1,2 ≜

√∑n
i=1

(∑2
j=1

∣∣B[i,j]

∣∣)2

with its dual norm

∥B∥1,2,∗ ≜
√∑n

i=1

(
maxj∈[2]

∣∣B[i,j]

∣∣)2. We consider a mirror map φB : [0, 1]n×2 → R such that

φB (B) =
∑n

i=1

∑2
j=1 B[i,j] logB[i,j]. We observe that, since B[i,:],B

′
[i,:] ∈ ∆2 for all i ∈ [n],

DφB
(B,B′) =

n∑
i=1

2∑
j=1

B[i,j] log
B[i,j]

B′
[i,j]
≥ 1

2

n∑
i=1

 2∑
j=1

∣∣B[i,j] −B′
[i,j]

∣∣2

=
1

2
∥B−B′∥21,2 ,

and therefore φB is 1-strongly convex with respect to ∥·∥1,2. With such φB, we have the associated

Fenchel dual φ∗
B (G) =

∑n
i=1 log

(∑2
j=1 exp

(
G[i,j]

))
, along with the gradients

∇φB (B)[i,j] = 1 + logB[i,j], ∇φ∗
B (G)[i,j] =

exp
(
G[i,j]

)∑2
j=1 exp

(
G[i,j]

) ,
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such that the mirror descent update on B is given by

(Bt+1)[i,j] =∇φ
∗
B

(
∇φB (Bt)− ηB · ∇BL̂

WAC
it (θt,Bt)

)

=

(Bt)[i,j] exp

(
ηB ·

(
∇BL̂

WAC
it

(θt,Bt)
)
[i,j]

)
∑2

j=1 (Bt)[i,j] exp

(
ηB ·

(
∇BL̂

WAC
it

(θt,Bt)
)
[i,j]

) .
For it ∼ [n] uniformly, the stochastic gradient with respect to B satisfies that

Eit∼[n]

[∥∥∥∇BL̂
WAC
it (θt,Bt)

∥∥∥2
1,2,∗

]
=
1

n

n∑
it=1

max {ℓCE (θt; (xit ,yit)) , ℓAC (θt;xit , Ait,1, Ait,2)}
2 ≤ C2

B,∗.

Further, measuring in the distance induced by φB, we have

R2
∆n

2
≜ max

B∈∆n
2

φB (B)− min
B∈∆n

2

φB (B) = 0−
n∑

i=1

2∑
j=1

1

2
log

1

2
= n.

Meanwhile, for θ ∈ Fθ∗ (γ), we consider the norm ∥θ∥F ≜
√
⟨θ, θ⟩F induced by the inner product

that characterizes Fθ, with the associated dual norm ∥·∥F,∗. We use a mirror map φθ : Fθ → R
such that φθ (θ) =

1
2 ∥θ − θ

∗∥2F . By observing that

Dφθ
(θ, θ′) =

1

2
∥θ − θ′∥2F ∀ θ, θ′ ∈ F .

we have φθ being 1-strongly convex with respect to ∥·∥F . With the gradient of φθ,∇φθ(θ) = θ−θ∗,
and that of its Fenchel dual∇φ∗

θ(g) = g + θ∗, at the (t+ 1)-th iteration, we have

θt+1 = ∇φ∗
θ

(
∇φθ (θt)− ηθ · ∇θL̂

WAC
it (θt,Bt+1)

)
= θt − ηθ · ∇θL̂

WAC
it (θt,Bt+1) .

For it ∼ [n] uniformly, the stochastic gradient with respect to f satisfies that

Eit∼[n]

[∥∥∥∇θL̂
WAC
it (θt,Bt+1)

∥∥∥2
F,∗

]
=

1

n

n∑
it=1

∥∥∥∇θL̂
WAC
it (θt,Bt+1)

∥∥∥2
F,∗
≤ C2

θ,∗.

Further, in light of the definition of Fθ∗ (γ), since θ∗ ∈ Fθ∗ (γ), with θ∗ = argminθ∈Fθ∗ (γ)
φθ(θ)

and θ′ = argmaxθ∈Fθ∗ (γ)
φθ(θ), we have

R2
Fθ∗ (γ)

≜ max
θ∈Fθ∗ (γ)

φθ (θ)− min
θ∈Fθ∗ (γ)

φθ (θ) =
1

2
∥θ′ − θ∗∥2F ≤

γ2

2
.

Finally, leveraging Lemma 1 completes the proof.

We recall the standard convergence guarantee for online mirror descent on saddle point problems. In
general, we consider a stochastic function F : U ×V×I → R with the randomness of F (u, v; i) on
i ∈ I. Overloading and notation I both as the distribution of i and as the support, we are interested
in solving the saddle point problem on the expectation function

min
u∈U

max
v∈V

f (u, v) where f (u, v) ≜ Ei∼I [F (u, v; i)] . (11)

Assumption 2. Assuming that the stochastic objective satisfies the following:

(i) For every i ∈ I, F (·, v, i) is convex for all v ∈ V and F (u, ·, i) is concave for all u ∈ U .
(ii) The stochastic subgradients Gu (u, v; i) ∈ ∂uF (u, v; i) and Gv (u, v; i) ∈ ∂vF (u, v; i) with

respect to u and v evaluated at any (u, v) ∈ U × V provide unbiased estimators for some
respective subgradients of the expectation function: for any (u, v) ∈ U × V , there exist some
gu (u, v) ≜ Ei∼I [Gu (u, v; i)] ∈ ∂uf (u, v) and gv (u, v) ≜ Ei∼I [Gv (u, v; i)] ∈ ∂vf (u, v).
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(iii) Let ∥·∥U and ∥·∥V be arbitrary norms that are well-defined on U and V , while ∥·∥U,∗ and
∥·∥V,∗ be their respective dual norms. There exist constants Cu,∗, Cv,∗ > 0 such that

Ei∼I

[
∥Gu (u, v; i)∥2U,∗

]
≤ C2

u,∗ and Ei∼I

[
∥Gv (u, v; i)∥2V,∗

]
≤ C2

v,∗ ∀ (u, v) ∈ U × V.

For the online mirror descent, we further introduce two mirror maps that induce distances on U and
V , respectively.
Assumption 3. Let φu : Du → R and φv : Dv → R satisfy the following:

(i) U ⊆ Du ∪ ∂Du, U ∩ Du ̸= ∅ and V ⊆ Dv ∪ ∂Dv , V ∩ Dv ̸= ∅.
(ii) φu is ρu-strongly convex with respect to ∥·∥U ; φv is ρv-strongly convex with respect to ∥·∥V .

(iii) limu→∂Du ∥∇φu(u)∥U,∗ = limv→∂Dv
∥∇φv(v)∥V,∗ = +∞.

Given the learning rates ηu, ηv , in each iteration t = 1, . . . , T , the online mirror descent samples
it ∼ I and updates

vt+1 = argmin
v∈V

−ηv ·Gv (ut, vt; it)
⊤
v +Dφv

(v, vt) ,

ut+1 = argmin
u∈U

ηu ·Gu (ut, vt+1; it)
⊤
u+Dφu

(u, ut) , (12)

where Dφ (w,w′) = φ(w)− φ(w′)−∇φ(w′)⊤(w − w′) denotes the Bregman divergence.

We measure the convergence of the saddle point problem in the duality gap:

E (uT , vT ) ≜ max
v∈V

f (uT , v)−min
u∈U

f (u, vT )

such that, with

RU ≜
√

max
u∈U∩Du

φu(u)− min
u∈U∩Du

φu(u) and RV ≜
√

max
v∈V∩Dv

φv(v)− min
v∈V∩Dv

φv(v),

the online mirror descent converges as following.
Lemma 1 ((Nemirovski et al., 2009) (3.11)). Under Assumption 2 and Assumption 3, when taking

constant learning rates ηu = ηv = 2
/√

5T
(

2R2
U

ρu
C2

u,∗ +
2R2

V
ρv

C2
v,∗

)
, with uT = 1

T

∑T
t=1 ut and

vT = 1
T

∑T
t=1 vt,

E [E (uT , vT )] ≤ 2

√
10

(
ρvR2

UC
2
u,∗ + ρuR2

VC
2
v,∗

)
ρuρv · T

.

Example 1 (Binary linear pixel-wise classifiers with convex and continuous objectives). We con-
sider a pixel-wise binary classification problem with X = [0, 1]d, augmentations A : X → X for all
A ∼ A, and a class of linear “UNets”,

F =

{
fθ : X → [0, 1]d

∣∣∣∣ fθ (x) = σ
(
θdθ

⊤
e x

)
= ψθ (ϕθ (x)) , ϕθ (x) =

1√
d
θ⊤
e x

}
,

where the parameter space θ = (θe,θd) ∈ Fθ = Sd−1 × Sd−1 is equipped with the ℓ2 norm

∥θ∥F =
(
∥θe∥22 + ∥θd∥

2
2

)1/2

; σ : Rd → [0, 1]d denotes entry-wise application of the sigmoid

function σ(z) = (1 + e−z)−1; and the latent space of encoder outputs (Z, ϱ) is simply the real line.
Given the data distribution Pξ, we recall that θ∗ ≜ argminθ∈Fθ

E(x,y)∼Pξ
[ℓCE (θ; (x,y))] and let

Fθ∗ (γ) = {θ ∈ Fθ | ∥θ − θ∗∥F ≤ γ} for some γ = O
(
1/
√
d
)

. We assume that
∣∣x⊤θ∗

e

∣∣ = O(1)

for all x ∈ X . Then, ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex and continuous in θ for all
(x,y) ∈ X × [K]d, A1, A2 ∼ A2; while Cθ,∗ ≤ max

(
2
√
2, 2λAC

)
and Cβ,∗ ≤ max (O(1), 2λAC).

Rationale for Example 1. Let yk = I {y = k} entry-wisely for k = 0, 1. We would like to show
that, for any given (x,y) ∈ X × [K]d, A1, A2 ∼ A2,

ℓCE (θ) = −
1

d

(
y⊤
1 log σ

(
θdθ

⊤
e x

)
+ y⊤

0 log σ
(
−θdθ⊤

e x
))
,

ℓAC (θ) =
λAC√
d
· (A1(x)−A2(x))

⊤
θe
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are convex and continuous in θ = (θe,θd).

First, we observe that ℓAC (θ) is linear (and therefore convex and continuous) in θ for all x ∈ X ,
A1, A2 ∼ A2, with

∇θe
ℓAC (θ) =

λAC√
d
· (A1(x)−A2(x)) , ∇θd

ℓAC (θ) = 0

such that ∥∇θℓAC (θ)∥F,∗ ≤ 2λAC.

Meanwhile, with z (θ) = θdθ
⊤
e x, we have ℓCE (θ) = − 1

d

(
y⊤
1 log σ (z (θ)) + y⊤

0 log σ (−z (θ))
)

being convex and continuous in z (θ):

∇2
zℓCE (θ) =

1

d
diag (σ (z (θ))) diag (1− σ (z (θ))) ≽ 0.

Therefore, ℓCE (θ) is convex and continuous in θ for all (x,y) ∈ X × [K]d:

∇2
θℓCE (θ)︸ ︷︷ ︸
2d×2d

=

[
xθ⊤

d(
θ⊤
e x

)
Id

](
1

d
diag (σ (z (θ))) diag (1− σ (z (θ)))

)[
xθ⊤

d

(
θ⊤
e x

)
Id
]
≽ 0,

where Id denotes the d× d identity matrix. Further, from the derivation, we have

∇θe
ℓCE (θ) =

1

d
θ⊤
d

(
σ
(
θdθ

⊤
e x

)
− y

)
x, ∇θd

ℓCE (θ) =
θ⊤
e x

d

(
σ
(
θdθ

⊤
e x

)
− y

)
such that ∥∇θℓCE (θ)∥F,∗ =

√
∥∇θeℓCE (θ)∥22 + ∥∇θd

ℓCE (θ)∥22 ≤ 2
√
2.

Finally, knowing ∥∇θℓCE (θ)∥F,∗ ≤ 2
√
2 and ∥∇θℓAC (θ)∥F,∗ ≤ 2λAC, we have∥∥∥∇θL̂

WAC
i (θ,β)

∥∥∥
F,∗
≤ β[i] ∥∇θℓCE (θ)∥F,∗ + (1− β[i]) ∥∇θℓAC (θ)∥F,∗ ≤ max

(
2
√
2, 2λAC

)
for all i ∈ [n], and therefore,

Cθ,∗ ≤ max
(
2
√
2, 2λAC

)
.

Besides, with

ℓAC (θ) ≤ λAC√
d
∥A1(x)−A2(x)∥2 ∥θe∥2 ≤ 2λAC,

and since(
θdθ

⊤
e x

)
[j]
≤
∣∣x⊤θe

∣∣ ≤ ∣∣x⊤ (θe − θ∗
e)
∣∣+ ∣∣x⊤θ∗

e

∣∣ ≤ ∥x∥2 ∥θe − θ∗
e∥2 +O(1)

≤γ
√
d+O(1) = O(1)

for all j ∈ [d], ℓCE (θ) ≤ log
(
1 + eO(1)

)
= O(1), we have

Cβ,∗ ≤ max (O(1), 2λAC) .

C DICE LOSS FOR PIXEL-WISE CLASS IMBALANCE

With finite samples in practice, since the averaged cross-entropy loss (Equation (2)) weights each
pixel in the image label equally, the pixel-wise class imbalance can become a problem. For example,
the background pixels can be dominant in most of the segmentation labels, making the classifier
prone to predict pixels as background.

To cope with such vulnerability, (Chen et al., 2021; Cao et al., 2021; Wong et al., 2018; Taghanaki
et al., 2019b; Yeung et al., 2022) propose to combine the cross-entropy loss with the dice loss—a
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popular segmentation loss based on the overlap between true labels and their corresponding predic-
tions in each class:

ℓDICE (θ; (x,y)) = 1− 1

K

K∑
k=1

DSC
(
fθ (x)[:,k], I {y = k}

)
, (13)

where for any p ∈ [0, 1]d, q ∈ {0, 1}d, DSC (p,q) = 2p⊤q
∥p∥1+∥q∥1

∈ [0, 1] denotes the dice coef-
ficient (Milletari et al., 2016; Taghanaki et al., 2019a). Notice that by measuring the bounded dice
coefficient for each of the K classes individually, the dice loss tends to be robust to class imbalance.

Taghanaki et al. (2019b) merges both dice and averaged cross-entropy losses via a convex combina-
tion. It is also a common practice to add a smoothing term in both the nominator and denominator
of the DSC (Russell & Norvig, 2016).

Combining the dice loss (Equation (13)) with the weighted augmentation consistency regularization
formulation (Equation (5)), in practice, we solve

θ̂WAC, β̂ ∈ argmin
θ∈Fθ∗ (γ)

argmax
β∈[0,1]n

{
L̂WAC (θ,β) ≜

1

n

n∑
i=1

L̂WAC
i (θ,β)

}
(14)

L̂WAC
i (θ,β) ≜ ℓDICE (θ; (xi,yi)) + β[i] · ℓCE (θ; (xi,yi)) + (1− β[i]) · ℓAC (θ;xi, Ai,1, Ai,2)

with a slight modification in Algorithm 1 line 9:

θt ← θt−1 − ηθ ·
(
∇θℓDICE (θt−1; (xit ,yit)) + (βt)[it] · ∇θℓCE (θt−1; (xit ,yit))

+
(
1− (βt)[it]

)
· ∇θℓAC (θt−1;xit , Ait,1, Ait,2)

)
.

On the influence of incorporating dice loss in experiments. We note that, in the experiments,
the dice loss ℓDICE is treated independently of AdaWAC in Algorithm 1 via the standard stochastic
gradient descent. In particular for the comparison with hard thresholding algorithms in Table 2, we
keep the updating on ℓDICE of the original untrimmed batch intact for both trim-train and trim-ratio
to exclude the potential effect of ℓDICE that is not involved in reweighting.

D IMPLEMENTATION DETAILS AND DATASETS

We follow the official implementation of TransUNet9 for model training. We use the same optimizer
(SGD with learning rate 0.01, momentum 0.9, and weight decay 1e-4). For the Synapse dataset, we
train TransUNet for 150 epochs on the training dataset and evaluate the last-iteration model on the
test dataset. For the ACDC dataset, we train TransUNet for 360 epochs in total, while validating
models on the ACDC validation dataset for every 10 epochs and testing on the best model selected
by the validation. The total number of training iterations (i.e., total number of batches) is set to be
the same as that in the vanilla TransUNet (Chen et al., 2021) experiments. In particular, the results in
Table 1 are averages (and standard deviations) over 3 arbitrary random seeds. The results in Table 2,
Table 3, and Table 4 are given by the original random seed used in the TransUNet experiments.

Synapse multi-organ segmentation dataset (Synapse). The Synapse dataset10 is multi-organ ab-
dominal CT scans for medical image segmentation in the MICCAI 2015 Multi-Atlas Abdomen La-
belling Challenge (Chen et al., 2021). There are 30 volumetric CT scans with variable volume sizes
(512 × 512 × 85 − 512 × 512 × 198), and slice thickness ranges from 2.5mm to 5.0mm. We use
the pre-processed data provided by Chen et al. (2021) and follow their train/test split to use 18 vol-
umes for training and 12 volumes for testing on 8 abdominal organs—aorta, gallbladder, left kidney
(L), right kidney (R), liver, pancreas, spleen, and stomach. The abdominal organs were labeled
by experience undergraduates and verified by a radiologist using MIPAV software according to the
information from Synapse wiki page.

9https://github.com/Beckschen/TransUNet
10See detailed description at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
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Automated cardiac diagnosis challenge dataset (ACDC). The ACDC dataset11 is cine-MRI
scans in the MICCAI 2017 Automated Cardiac Diagnosis Challenge. There are 200 scans from
100 patients, and each patient has two volumetric frames with slice thickness from 5mm to 8mm.
We use the pre-processed data also provided by Chen et al. (2021) and follow their train/validate/test
split to use 70 patients’ scans for training, 10 patients’ scans for validation, and 20 patients’ scans
for testing on three cardiac structures—left ventricle (LV), myocardium (MYO), and right ventricle
(RV). The data were labeled by one clinical expert according to the description on ACDC dataset
website.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SAMPLE EFFICIENCY AND ROBUSTNESS OF AdaWAC WITH UNET

In addition to the empirical evidence on TransUNet presented in Table 1, here, we demonstrate that
the sample efficiency and distributional robustness of AdaWAC extend to the more widely used UNet
architecture. In Table 5, analogous to Table 1, the experiments on the full and half-slice datasets
provide evidence for the sample efficiency of AdaWAC compared to the baseline (ERM+SGD) on
UNet. Meanwhile, the distributional robustness of AdaWAC with UNet is well illustrated by the
half-vol and half-sparse experiments.

Table 5: AdaWAC with UNet trained on the full Synapse and its subsets

Training Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

full baseline 74.04 ± 1.52 36.65 ± 0.33 84.93 55.59 77.59 70.92 92.21 55.01 82.87 73.21
AdaWAC 76.71 ± 0.62 30.67 ± 2.85 85.68 55.19 80.15 75.45 94.11 56.19 87.54 81.39

half-slice baseline 73.09 ± 0.10 40.05 ± 4.99 83.23 53.18 74.69 71.51 92.74 52.81 83.85 72.71
AdaWAC 75.12 ± 0.78 29.26 ± 2.16 85.15 55.77 79.29 72.47 93.71 54.93 86.09 73.53

half-vol baseline 63.21 ± 2.53 64.20 ± 4.46 79.46 45.79 55.79 54.91 88.65 41.61 71.68 67.77
AdaWAC 71.09 ± 1.14 39.95 ± 7.76 83.15 49.14 75.74 70.33 90.47 44.81 82.34 72.75

half-sparse baseline 37.30 ± 1.32 69.67 ± 2.89 61.57 8.33 57.45 50.44 60.28 23.51 17.83 18.99
AdaWAC 44.85 ± 1.03 62.40 ± 5.17 71.56 8.40 65.42 62.73 74.02 24.16 36.65 15.88

Implementation details of UNet experiments. For the backbone architecture of experiments in
Table 5, we use a UNet with a ResNet-34 encoder initialized with ImageNet pre-trained weights.
We leverage the implementation of UNet and load the pre-trained model via the PyTorch API for
segmentation models (Iakubovskii, 2019). For training, we use the same optimizer (SGD with learn-
ing rate 0.01, momentum 0.9, and weight decay 1e-4) and the total number of epochs (150 epochs
on Synapse training set) as the TransUNet experiments, evaluating the last-iteration model on the
test dataset. As before, the results in Table 5 are averages (and standard deviations) over 3 arbitrary
random seeds.

E.2 VISUALIZATION OF SEGMENTATION ON ACDC DATASET

As shown in Figure 4, the model trained by AdaWAC segments cardiac structures with more accurate
shapes (column 1), identifies organs missed by baseline TransUNet (column 2-3) and circumvents
the false-positive pixel classifications (i.e., fake predictions of background pixels as organs) suffered
by the TransUNet baseline (column 4-6).

E.3 VISUALIZATION OF SEGMENTATION ON SYNAPSE WITH DISTRIBUTIONAL SHIFT

Figure 5 visualizes the segmentation predictions on 6 Synapse test slices made by models trained via
AdaWAC (ours) and via the baseline (ERM+SGD) with TransUNet (Chen et al., 2021) on the half-
sparse subset of the Synapse training set. We observe that, although the segmentation performances
of both the baseline and AdaWAC are compromised by the extreme scarcity of label-dense samples
and the severe distributional shift, AdaWAC provides more accurate predictions on the relative po-
sitions of organs, as well as less misclassification of organs (e.g., the baseline tends to misclassify
other organs and the background as the left kidney). Nevertheless, due to the scarcity of labels, both
the model trained with AdaWAC and that trained with the baseline fail to make good predictions on
the segmentation boundaries.

11See detailed description at https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Figure 4: Visualization of segmentation results on ACDC dataset. From top to bottom: ground truth,
ours, and baseline method.

Figure 5: Visualization of segmentation predictions made by models trained via AdaWAC (ours) and
via the baseline (ERM+SGD) with TransUNet (Chen et al., 2021) on the half-sparse subset of the
Synapse training set. Top to bottom: ground truth, ours (AdaWAC), baseline.

E.4 EXPERIMENTAL RESULTS ON PREVIOUS METRICS

In this section, we include the results of experiments on Synapse12 dataset with metrics defined in
TransUNet (Chen et al., 2021) for reference. In TransUNet (Chen et al., 2021), DSC is 1 when the
sum of ground truth labels is zero (i.e., gt.sum() == 0) while the sum of predicted labels is nonzero
(i.e., pred.sum()> 0). However, according to the definition of dice scores,DSC = 2|A∩B|/(|A|+
|B|),∀A,B, the DSC for the above case should be 0 since the intersection is 0 and the denominator
is non-zero. In our evaluation, we change the special condition for DSC as 1 to pred.sum == 0 and
gt.sum() == 0 instead, in which case the denominator is 0.

12Note that the numbers of correct metrics and metrics in TransUNet (Chen et al., 2021) on ACDC dataset
are the same.
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Table 6: AdaWAC with TransUNet trained on the full Synapse and its subsets, measured by metrics
in TransUNet (Chen et al., 2021).

Training Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

full baseline 77.32 29.23 87.46 63.54 82.06 77.76 94.10 54.06 85.07 74.54
AdaWAC 80.16 25.79 87.23 63.27 84.58 81.69 94.62 58.29 90.63 81.01

half-slice baseline 76.24 24.66 86.26 57.61 79.32 76.55 94.34 54.04 86.20 75.57
AdaWAC 78.14 29.75 86.66 62.28 81.36 78.84 94.60 57.95 85.38 78.01

half-vol baseline 72.65 35.86 83.29 43.70 78.25 77.25 92.92 51.32 83.80 70.66
AdaWAC 75.93 34.95 84.45 60.40 79.59 76.06 93.19 54.46 84.91 74.37

half-sparse baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AdaWAC 39.68 80.93 76.59 0.00 66.53 62.11 49.69 31.09 12.30 19.11

Table 7: AdaWAC versus hard thresholding algorithms with TransUNet on Synapse, measured by
metrics in TransUNet (Chen et al., 2021).

Method DSC ↑ HD95↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

baseline 77.32 29.23 87.46 63.54 82.06 77.76 94.10 54.06 85.07 74.54
trim-train 77.05 26.94 86.70 60.65 80.02 76.64 94.25 54.20 86.44 77.49
trim-ratio 75.30 28.59 87.35 57.29 78.70 72.22 94.18 52.32 86.31 74.03

trim-train+ACR 76.70 35.06 87.11 62.22 74.19 75.25 92.19 57.16 88.21 77.30
trim-ratio+ACR 79.02 33.59 86.82 61.67 83.52 81.22 94.07 59.06 88.08 77.71
AdaWAC (ours) 80.16 25.79 87.23 63.27 84.58 81.69 94.62 58.29 90.63 81.01

Table 8: Ablation study of AdaWAC with TransUNet trained on Synapse, measured by metrics in
TransUNet (Chen et al., 2021).

Method DSC ↑ HD95↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

baseline 77.32 29.23 87.46 63.54 82.06 77.76 94.10 54.06 85.07 74.54
reweight-only 77.72 29.24 86.15 62.31 82.96 80.28 93.42 55.86 85.29 75.49
ACR-only 78.93 31.65 87.96 62.67 81.79 80.21 94.52 60.41 88.07 75.83
AdaWAC-0.01 78.98 27.81 87.58 61.09 82.29 80.22 94.90 55.92 91.63 78.23
AdaWAC-1.0 80.16 25.79 87.23 63.27 84.58 81.69 94.62 58.29 90.63 81.01
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