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Appendix A Related work

Deep AUC Optimization. In the past few decades, AUC optimization has already achieved remark-
able success in the long-tailed/imbalanced learning task [?%]. A partial list of the related literature
includes [ 13, 5, 35, 17,27, 10, 29, 41]. In recent age, many studies focused on AUC optimization
with stochastic gradient method. For example, on top of the square surrogate loss, [+ ] first proposed
a minimax reformulation of the AUC. With a strongly convex regularizer, [20] improved the con-
vergence rate of the stochastic learning algorithm for AUC to O(1/T). In succession, [21, 14, 47]
proposed some AUC optimization methods that can be applied to nonconvex deep neural networks.

Partial AUC (PAUC) Optimization. [2”] first introduced the concept of PAUC. Earlier studies
related to PAUC only paid attention to the simplest linear models. In [27], the PAUC is first optimized
by a distribution-free rank-based method. [34] developed a non-parametric estimate of the PAUC, and
selected features at each step to build the final classifier. [24] develops a cutting plane algorithm to find
the most violated constraint instance, decomposing PAUC optimization into subproblems and solving
them by an efficient structural SVM-based approach. However, most of the above approaches often
fall into the non-differentiable property or intractable optimization problems, posing a significant
obstacle to the end-to-end implementation. Using the Implicit Function Theorem, [20] formulated a
rate-constrained optimization problem that modeled the quantile threshold as the output of a function
of model parameters. As a milestone study, [39] simplifies the challenging sample-selected problem
involved in PAUC optimization in a bi-level manner and thus facilitates the end-to-end optimization
for PAUC of deep learning. Concretely, the inner-level optimization achieves instances selection,
and the outer-level optimization minimizes the loss. However, their estimation may suffer from an
approximation error with true PAUC. [44, 40] proposed a smooth estimator of PAUC and provided a
sound theoretical convergence guarantee of their algorithm. Nevertheless, their algorithm is limited
by a slow convergence rate, especially for TPAUC.

Generalization Analysis for Partial AUC Optimization. [25] presented the first generalization
analysis for OPAUC and derived a uniform convergence generalization bound. Following their work,
a recent study [39] extended this generalization bound to TPAUC. However, limited by the pair-wise
form of AUC, all of above studies require complicated decomposition. Moreover, their generalization
analysis only hold for hard-threshold functions and VC-dimension. Based on our instance-wise
reformulation, we show that the generalization of partial AUC is as simple as other instance-wise
algorithm and can deal with real-valued score functions by Rademacher complexity.

Appendix B Convergence of the Bias without Regularization

Take OPAUC as an example, we will prove that the approximation induced by 7 has a finite
convergence rate which vanishes when x — oo. For the sake of convenience, we denote the bias as:

min max min & {G” a,b,v,z, s }
F(a,b)E[0,1]2 YEQ, 8'EQ 2~ S op (/50,07 2,5)

—  min  max min E [G a,b,v, z S/}
F.(a,b)€[0,1]2 vEQ, €D,/ 2~S on(f,:6,7,2,5)

Specifically, we can also prove the following convergence condition holds without the regularization
term:

Theorem 5. With the assumption that f(x) € [0, 1], V&, we have the following convergence result:

li i in R [G” b, 2,8 ]
Jm | i e i B\ (fab,7,7,6)
. R (33)
—  min max min E {G ,a,b,v, 2,8 }
F.(b)€[0.1]2 /€S0y 51€0,, 2ms nlfr,0,7 )
=0.
Moreover, we can also obtain a convergence rate:
A, = O(1/k). (34)
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Proof. Denote:

— i in K [G“ b ! }

o e 2 2 B O (b2 s
- i i E |:G b 7b7 ) ? ! :| N
o B B i, K[ Gorlr 007,25
First, we have:
) . log(1+e :
limsup A, < limsup sup 8l xp(r - 9)) - [9]—&-‘ .

K—+00 k—+00 f (a,b)€[0,1]2,7€Q,,s'€Q,/,z~Dz k (36)

(a)

where g = (f(z) — b)? +2(1 + v)f(x) — s’ and [z]+ = max{x,0}. Since g € [—5,5] in the
feasible set, we have:

log(1 .
(a) <limsup sup og(1 +exp(r 7)) _ []+]. 37
K—+00 xE[—5,5] K
Next we prove that
log(1 .
limsup sup [ og(1 +exp(r - 7)) _ [x]+ ] <0. (38)
k=00 z€[—5,5] K
For the sake of simplicity, we denote:
log(1 + exp(k - x
() = |PELH R D)y (39)
It is easy to see that, when z < 0, we have:
log(1 : '
o(z) = ( 0g(1 + exp(x x”) > 0. (40)
K
When = > 0, we have:
log(1 : '
() = ( og(1 + exp(k - x)) _x> <o. @1
K
Hence, the supremum must be attained at x = (0. We thus have:
log(2
(a) < limsup 222 _ ¢, (“2)
K— 400 K
Obviously, the absolute value ensures that:
liminf A, > 0. (43)
K—+00
The result follows from the fact:
0 <liminf A, <limsup A, <0. (44)
K—++00 K—400
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Moreover, from the proof above, we also obtain a convergence rate:

A, = O0(1/k). (45)

Appendix C The Constrained Reformulation

In this section, we will prove that the constrained reformulation which is used in the proof of Thm.2
and Thm.8. Our proof can be established by Lem.2, Lem.3, and Thm.6. Throughout the proof, we
will define:

a* =Equp, [f(z) = E,
b* = Egrnpy[f(2)|f(2) 2 ns(f)]  =E-
b* —a” =AF
@* = Egupp[f(@)|f(2) < 1a(f)] =B,
bt —a* =AF
Ea~pp [(f(2) — a)?] — B, (46)
Eennp [(f(2) = a)?| f(2) < nalf)] = E,
Earnny [(f(®) = 02| f(2') > ns(f)] =B
oy [ (@)% f(@) < 110 (f)] = Fys
Eornpy [f (@) f(2") > ns(f)] =F_,

Lemma 2. (The Reformulation for OPAUC) For a fixed scoring function f, the following two
problems shares the same optimum, given that the scoring function satisfies: f(x) € [0, 1], Va:

(OP1)  min . max Epop,[(f(z) - 0]+ By (@) = b21f(@) 2 ms(f)

+2AE 4 29AE — 2

(OP2) min . max Eeop,[(f(®) - 0)]+ Earn (/) - PIF (') = ms(1)]

(47

+2AF + 2yAE — ~*
Remark 2. (OP1) and (OP2) have the equivalent formulation:

: N2 A2
(OP1) & min  max Eeop, |[(f@)~0)* = 21+ 9)f@)y/p .

[(f(x) = b)* +2(1+7) f(@)] - [(1 = ) p(m)y>n,(n]/[(1 — p)ﬁ]] :

. 2 2
(OP2) & min  max Eoop.|[(f(x) ) —20+2)f(@)ly/p -

[(f(=) = 0)* + 201 + 1) f(@)] - [(1 = 9T s(@y>na0)]/1(1 = p)ﬁ]] :

Proof. From the proof of our main paper, we know that (OP1) has a closed-form minimum:
Eu« + Ey- + (AE)? + 2AE. (50)

Hence, we only need to prove that (O P2) has the same minimum solution. By expanding (O P2),

we have:

i IE ~ o b 7b7 b ) =
(a7b%1£71] ’YEI[Igaéf . 2Dz | F p(f a, 0,7y 77,8(f) z)]

. . on
2AFE + min E,+ min max Fjy
a€l0,1] be[0,1] ve[b—1,1]
where
Fy = Ey + 29yAE — ~? (52)
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Obviously since a is decoupled with b, v, we have:

min E, = F - (53)
a€l0,1]

Now, we solve the minimax problem of Fj. For any fixed feasible b, the inner max problem is a
truncated quadratic programming, which has a unique and closed-form solution. Hence, we first
solve the inner maximization problem for fixed b, and then represent the minimax problem as a
minimization problem for b. Specifically, we have:

O\ [(AR?, AE>b-1
('yer[%%}f,q HAE =y ) N {2(b —1)AE — (b—1)?, otherwise (54)

Thus, we have:

min  max Fy= min F} (55)
bel0,1] ye[b—1,1] be[0,1]

where

— 2 _
P { Fio(b) :=E,+ (AE)2,b— 1< AE (56)

Fi1(b) :=E_5—2bE_+2b—1+2(b— 1)AE, otherwise
It is easy to see that both cases of F} are convex functions w.r.t b. So, we can find the global minimum
by comparing the minimum of F o and F} ;.

* CASE 1: AE > b — 1. Tt is easy to see that b* = F_ € (—o0,1 + AF], by taking the
derivative to zero, we have, the optimum value is obtained at b = E_ for F g.

* CASE 2: AE < b — 1. Again by taking the derivative, we have:
Fi(b) = 2E_ +2+2AFE=2-2E, >0 (57)
We must have:

1 > = > = *
bZ}E_fAEFl,l(b) > Fi(1+AE) = Fio(1+AE) > Fio(E-) = Fio(b*) (58)

* Putting all together Hence the global minimum of Fj is obtained at b* with:

Fi(b*) = Fi0(b*) = Ep- + (AE)? (59)

Hence, we have (O P2) has the minimum value:
Eu + By + (AE)? 4 2AFE (60)
O

Now, we use a similar trick to prove the result for TPAUC:

Lemma 3. (The Reformulation for TPAUC) For a fixed scoring function f, the following two problems
shares the same optimum, given that the scoring function satisfies: f(x) € [0, 1], Va:

(OP3)  min . max Eoupy[(f(®) — a)|f(@) < na(f)]

+Eo oy [(f(2') = b)?| f(2) > 1a(f)]
+2AF + 29AE — ~2.

P4 i Egp- —a)? < g
(OP4) e e it pp [(f () — a)7|f () < na(f)]

HEarpy [(f(x') = 0)?|f () = 15(f)]
+2AF + 29AE — ~%.
Remark 3. (OP3) and (OP4) have the equivalent formulation:

(OP3) & min  max Esp. |[(f(2) =) =20+ 9)f@)] W@ <n.)l/p -

(61)

[(f(x) = 0)* +2(1+ ) f(@)] - [(1 = Y p(@)>n, )/ 11 — p)m}
(62)
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(OP4) & Eevp, [[(/(@) = 0)* = 201+ ) f(@)] - W) 2n ) )/7

min max
(a,b)€[0,1]? yE[max{—a,b—1}1]

[(f(=) = 0)* + 201+ ) f(@)] - [(1 = ) @)>nsn]/[(1 = p)B] = 72} :
(63)

Proof. Again, (OP3) has the minimum value:

Es- + By + (AE)? + 2AE (64)
We proof that (O P4) ends up with the minimum value. By expanding (O P4), we have:

OP4) = 2AE i F.
( ) + (a,br)Iél[I(,)l,l]2 "/E[lnaxr{n—afb—l},l] 3 (65)

where 5 _ -
F3:=E, + Ey, + 2AF 4+ 2yAFE — ~? (66)

For any fixed feasible a, b, the inner max problem is a truncated quadratic programming, which has a
unique and closed-form solution. Specifically, define ¢ = max{—a,b — 1}, we have:

- AE)? AE > ¢
2YAE —~? | = (AE), =
<wrg[%§] 7 K ) {ZCAE —¢?, otherwise ©7)
Thus, we have:
min  max F3= min F}y (68)
(a,b)€[0,1] y€e,1] (a,b)€10,1]

where
Fyo(a,b) = E,+ E, + (AE)Q, c < AFE
Fy={ Fyi(a,b):=FE,+FE_5—20E_ +2(b—1)AE+2b—1,b—1>AE, —a<b—1
Fys(a,b) :=Epy+ Eq 5 — 2aE+ —2aAE,—a>AE,b—1< —a
69
It is easy to see that both cases of Fj are convex functions w.r.t b. So, we can find the global minirr(lurrz
by comparing the minimum of F; ¢ and F7 ;.

« CASE 1: AE > max{—a,b— 1}.

It is easy to check that when a = E+, b= FE_, wehave —a < AFE andb—1 < AFE. Ttis
easy to see that a, b are decoupled in the expression of Fy ¢(a, b). By setting:
O0F410(a,b)
da
OFy(a,b)
0b

We know that the minimum solution is attained at a = a*, b = b*. Then the minimum value
of Fy o(a,b) at this range becomes:

Ei + Ep- + (AE)? (71)

Moreover, we will also use the fact that 3~ and Ej« are also the global minimum for E,
and E}, respectively.

=0,
(70)

¢« CASE2: b—1>AE, —a<b-—1.

It is easy to see that £, > FEj~ in this case. According to the same derivation as in Lem.2
CASE 2, we have:

E_5—2bE_+2(b—1)AE +2b—1> Ey + (AE)? (72)

holds when b — 1 > AFE. Recall that CASE 2 is include in the condition b — 1 > AE. So,
under the condition of CASE 2:

Fyi1(a,b) > Eae + Ey + (AE)? (73)
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« CASE3: —a>AE,b—1< —a
In this case, we have E, > Ej-. It remains to check:
gla) = —2aE, — 2aAE (74)
By taking derivative, we have:
g (a) = —2F, —2AE = —2E_<0. (75)
Similar as the proof of CASE 2, when —a > AE, we have:
gla) > Ese + (AE)? (76)

and thus
Fyo(a,b) > Eae + Eye + (AE)? (77)

holds. Since the condition of CASE 3 is included in the set —a > AF:
Fy2(a,b) > Ea- 4 Ep + (AE)? (78)
holds under the condition of CASE 3.
* Putting altogether: The minimum value of (OP4) reads:
Ea + Ey- + (AE)? + 2AF (79)
which is the same as (OP3).

O

Finally, since for each fixed f (OP3) = (OP4), and (OP1) = (OP2) . We can then claim the
following theorem:

Theorem 6. (Constrainted Reformulation)

m}n(OPl) = mfin(OPQ)7 mfin(OPS) = m}n(OP4) (80)

Remark 4. Since the calculation is irelevant to the definition of the expectation, the replace the
population-level expectation with the empirical expectation over the training data.

Remark 5. By applying Theorem 1, we can get the reformulation result in Theorem 2

for OPAUC

i E ~ Go ) ab7 il ! 8]
oo 2By J, Bz Conl ) 003,25 &b

where
GOP(ﬁa’ b77’ Z, 5/) = [(f(:l?) - a>2 - 2(1 + ’y)f(w)]y/p - ’72

+ (85 + [(f(@) — b2 + 20+ @) — 1, ) L =)/1B0L=p).

for TPAUC
EZNDZ [th(f’a7b7’yazasasl)] (83)

min max min
f.(a,b)€[0,1]2 yE[max{—a,b—1},1] s€Qs,s' €N

where

th(f,a,b,%z,s,s/) = (OéS + T ((f(m) - )2 - 2(1 +’}/)f($) - S)) y/(ap) - 72

+ (B + s ((f(z) =) +2(1+9)f(x) — &) (1 —y)/[B(1 —p)}(-84)
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Appendix D Reformulation for TPAUC

According to Eq.(5), given a surrogate loss ¢ and the finite dataset S, maximizing TPAUC and
AUC, s(f,S) is equivalent to solving the following problems, respectively:

min Ra,5(f) = Eonvpandy L@ (n)  I@zas - (@) = f@)], @5

min R o(1.5) iz (S @) f(‘”[jﬂ)_

=1 j=1

Similar to OPAUC, we have the following theorem shows an 1nstance-wise reformulation of the
TPAUC optimization problem:

Theorem 7. Assuming that f(x) € [0,1], V& € X, Fy,(f,a,b,7,t,t', 2) is defined as:
Ftp(f7aa b577t7t/a Z) = (f(m) - a)2yﬂf(:c)§t/(ap) + (f(CC) - b)2(1 - y)Hf(m’)zt'/[ﬂ(l 7p)]
21+ f (@) (1 = 9)j@ze /B = p)] = 201 +7) f(@)y/Ply@)<t/(ap) =2,

(86)

(87)

where y = 1 for positive instances, y = 0 for negative instances and we have the following
conclusions:

(a) (Population Version.) We have:

in R i E [F b7, ma(f), 1 2)]5 88
win Rap(f) &  min , max B Fp(f,a0,90.(f).15(f), 2)] (88)

where 1 (f) = arg min, cr [IEENDP Lf(z)< n.) = a] and  ng(f) =
arg miny, er (B (52> n,] = B]-

(b) (Empirical Version.) Moreover, given a training dataset S with sample size n, denote:
EZNS[Ftp(f7 a, b,% ﬁw(f) 773<f Z Ftp fa a b7 e 7](1 (f)? f]!’?(f% Z),

where 1), () and 115([) are the empirical quantile of the positive and negative instances in S,
respectively. We have:

'7%& ,S<:> i E F 2@y 0,77, 7o s 5(f), s 89
win Ra,p(f,5) & win , wmex B [Fp(f,a.b700(1)75(1) 2)] (89)

Thm.7 provides a support to convert the pair-wise loss into instance-wise loss for TPAUC. Actually,
for Ry 5(f), we can just reformulate it as an Average Top-k (ATk) loss. Denote ¢4 () = (f(x) —

a)? —2(1+7)f(x)and £_(z') = (f(x') — b)? + 2(1 + ) f(z'). In the proof of the next theorem,
we will show that /. () is an decreasing function and /_ (2') is an increasing function w.r.t. f(x)
and f(x’), namely:

.1
Eenppli@)<na(p) - 6+(@)] = min — - Eanpy [as + [0 (@) = s]4 ], (90)

1
By [Ip@)2ns(s) - £~ (@')] = min B Eg oy [88 + [0 (2') — s']4], 91)

The similar result holds for R, s(f, S). Then, we can reach to Thm.8
Theorem 8. Assuming that f(x) € [0,1], for all x € X, we have the equivalent optimization for

TPAUC: . e
f(a b)) velot) zNDz[ (@07 1a(1),15(1), 2)] ©2)
&  min max  min E [Gu(f,a,b,v,2,s,8)],
f(a,b)€[0,1]2 vEQ, 5€025,5'€Q 2~Dz
i E F b «a ) Ai' A )
famin max B [Fp(f 0,07, 70(f), 1), 2)] 0

min max min G a,b,v,2,8,8
FA@B)E[0,1]2 YEDy sEQ,5 QL ZNS[ tp(f7 s )]
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where Q0 = [max{b — 1, —a}, 1], Qs = [-4,1], Qy = [0, 5] and

Guplfra,b,7,2,5,5') = (as+ [(f(@) = ) = 201+ 7)f(@) — 5], ) v/ (ap)

(94)
+ (85 + [(f@) 0% + 201+ ) (@)~ 5],) (1 = 9)/180 - p)] = 7.

Similar to OPAUC, we can get a regularized non-convex strongly-concave TPAUC optimization
problem:

min  max min E Gyl < min max E [G7],  (95)
f,(a,b)€[0,1]2 vEQ, s€Q5,8'€Q,r 2~Dz fi(a,b)€[0,1]2,5€Q,,s'€Q,s 7EQ, 2~Dz
min _ max  min E [G&Y] & min max E [G7],  (96)
FA(@B)EI0,1]2,5€Q 5/ €Q,) 7ED, 25

F(ab)e0,1]? 7€, s€Q.,5'€Q, 25T P

where G = G7 (f,a,b,7, 2,8, 8).

Appendix E Experiment Details

E.1 Dataset

Binary CIFAR-10-Long-Tail Dataset. The CIFAR-10 dataset contains 60,000 images, each of 32 *
32 shapes, grouped into 10 classes of 6,000 images. The training and test sets contain 50,000 and
10,000 images, respectively. We construct the binary datasets by selecting one super category as
positive class and the other categories as negative class. We generate three binary subsets composed
of positive categories, including 1) birds, 2) automobiles, and 3) cats.

Binary CIFAR-100-Long-Tail Dataset. The original CIFAR-100 dataset has 100 classes, with each
containing 600 images. In the CIFAR-100, there are 100 classes divided into 20 superclasses. By
selecting a superclass as a positive class example each time, we create CIFAR-100-LT by following
the same process as CIFAR-10-LT. The positive superclasses consist of 1) fruits and vegetables, 2)
insects, and 3) large omnivores and herbivores, respectively.

Binary Tiny-ImageNet-200-Long-Tail Dataset. There are 100,000 256 * 256 color pictures in the
Tiny-ImageNet-200 dataset, divided into 200 categories, with 500 pictures per category. We chose
three positive superclasses to create binary subsets: 1) dogs, 2) birds, and 3) vehicles.

All data are divided into training, validation, and test sets with proportion 0.7 : 0.15 : 0.15. In each
class, sample sizes decay exponentially, and the ratio of sample sizes of the least frequent to the most
frequent class is set to 0.01.

Table 4: Details of dataset.

Dataset Pos. Class ID Pos. Class Name #Pos #Neg
CIFAR-10-LT-1 2 birds 1,508 8,907
CIFAR-10-LT-2 1 automobiles 2,517 7,898
CIFAR-10-LT-3 3 birds 904 9,511
CIFAR-100-LT-1 6,7,14,18,24 insects 1,928 13,218
CIFAR-100-LT-2 0,51,53,57,83 fruits and vegatables 885 14,261
CIFAR-100-LT-3 15,19,21,32,38 large omnivores herbivores 1,172 13,974
Tiny-ImageNet-200-LT-1  24,25,26,27,28,29 dogs 2,100 67,900
Tiny-ImageNet-200-LT-2  11,20,21,22 birds 1,400 68,600
1,94,107,111,116,121
Tiny-ImageNet-200-LT-3 70,81,94,107,111,116,121, vehicles 4,200 65,300

133,145,153,164,166

22



et)

St
m‘f‘s;;-»:

OPAUC (training s

- AUCM == AUCM -
AGD-SBCD 02 AGD-SBCD 02 AGD-SBCD

(a) CIFAR-10-LT-1 (b) CIFAR-10-LT-2 (c) CIFAR-10-LT-3
Figure 4: Convergence of OPAUC optimization.

(a) CIFAR-10-LT-1 (b) CIFAR-10-LT-2 (c) CIFAR-10-LT-3

Figure 5: Convergence of TPAUC optimization.

E.2 Implementation Details

All experiments are conducted on an Ubuntu 16.04.1 server equipped with an Intel(R) Xeon(R) Silver
4110 CPU and four RTX 3090 GPUs, and all codes are developed in Python 3.8 and pytorch
1.8.2 environment. We use the ResNet-18 as a backbone. With a Sigmoid function, the output is
scaled into [0, 1]. The batch size is set as 1024. Following the previous studies [29, 43, 4], we warm
up all algorithms for 10 epochs with CELoss to avoid overfitting. All models are trained using SGD as
the basic optimizer.

E.3 Competitors

We compare our algorithm with 6 baselines: the approximation algorithms of PAUC, which are
denoted as AUC-poly [39] (poly calibrated weighting function) and AUC-exp [37] (exp calibrated
weighting function); the DRO formulation of PAUC, which are denoted as SOPA [4] (exact estimator)
and SOPA-S [44] (soft estimator); the large-scale PAUC optimization method, which is denoted
AGD-SBCD [40]; the naive mini-batch version of empirical partial AUC optimization, which is
denoted as MB [!£]; the AUC minimax [+ ] optimization, which is denoted as AUC-M; the binary
CELoss; and our method, which is denoted as PAUCI.

E.4 Parameter Tuning

The learning rate of all methods is tuned in [1072,107°]. Weight decay is tuned in [1073,107°].
Specifically, Ej for AUC-poly and AUC-exp is searched in {3,5,8,10,12,15,18,20}. For
AUC-poly, v is searched in {0.03,0.05,0.08,0.1,1,3,5}. For AUC-exp, v is searched in
{8,10, 15,20, 25,30}. For SOPA-S, we tune the KL-regularization parameter A in {0.1,1.0,10},
and we fix 8y = 81 = 0.9. For PAUCI, k is tuned in [1, 10], , A,c1, ¢z are tuned in [0, 1], m is tuned
in [10, 100], & is tuned in [2, 6] and w is tuned in [0, 4].

E.5 Per-iteration Acceleration

We conduct some experiments for per-iteration complexity with a fixed epoch with varying nf and
nB. All experiments are conducted on an Ubuntu 16.04.1 server with an Intel(R) Xeon(R) Silver
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4110 CPU. For every method, we repeat running 10000 times and record the average running time.
We only record the loss calculation time and use the python package time.time() to calculate the
running time. Methods with * stand for the pair-wise estimator, while methods with ** stand for the
instance-wise estimator. Here is the result of the experiment. We see the acceleration is significant
when the data is large.

Table 5: Pre-Iteration time complexity experiments for OPAUC (FPR < 0.3):
n? =64 nf =128 nf =256 nf =512 nf=1024 n? =2048

unitms nB=64 nP=128 nP=256 nf=512 nf=1024 n®=2048
SOPA* 0.075 0.205 1.427 5.053 20.132 86.779
SOPA-S* 0.063 0.165 0.946 4.003 15.815 62.031
AUC-poly* 0.062 0.178 1.086 3.553 14.266 56.637
AUC-exp* 0.063 0.182 0.985 3.513 14.155 55.689
AGD-SBCD*  0.061 0.145 1.040 3.413 13.273 54.954
MB* 0.121 0.174 0.468 1.713 6.393 25.663
PAUCT** 0.026 0.029 0.033 0.043 0.072 0.107
AUC-M** 0.025 0.028 0.031 0.040 0.059 0.104
CE** 0.018 0.020 0.026 0.036 0.055 0.096

Table 6: Pre-Iteration time complexity experiments for TPAUC (FPR < 0.5, TPR > 0.5):
nf =64 nf =128 nf =256 nf =512 nf=1024 nf =2048

unitms nB=64 nf=128 nf =256 n®=512 n®=1024 nB =2048
SOPA* 0.079 0.206 1.439 5.197 20.556 88.314
SOPA-S* 0.065 0.153 0.947 3.940 15.388 62.541
AUC-poly*  0.062 0.180 1.175 3.573 14.440 56.469
AUC-exp* 0.059 0.206 1.154 3.558 14.080 56.566
MB* 0.173 0.198 0.491 1.955 6.554 29.369
PAUCT** 0.030 0.030 0.038 0.045 0.071 0.109
AUC-M#** 0.025 0.027 0.033 0.043 0.059 0.104
CE** 0.018 0.021 0.026 0.037 0.0535 0.096

Appendix F  Proofs for Section 3

F.1 Proof for Lemma 1

Remainder of Lemma 1. Zle x[y) is a convex function of (x1,- -+ ,x,) where x; is the top-i
element of a set {x1,xa, - ,x,}. Furthermore, for x;,i = 1,--- ,n, we have %Zf:l Ty =
ming{s+ + 31", [z; — 5]+ }, where [a]+ = max{0, a}. The population version is B[z - 1,5, (a)] =
ming LE,[as + [z — s]4], where n(a) = arg min,cg[Eq [Io>,] = al.

Proof. For the summation case, please see Lemma 1 in [V] for the proof. We only proof the
expectation case here. Specifically, calculating the sub-differential of the term E,[as 4 [x — s]4]
w.rt., s, we get:

a—Eylly>s] € 9 (Eofas + & — s]4]) O

Since s is convex for as + [z — ] » 80 we can get the optimal s by letting the it be 0:
E;[l;>s] = (98)
It’s’ clear that optimal s achieves top — « quantile. O
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F.2 Proofs for OPAUC
F.2.1 Step1
Remainder of Theorem 1. Assuming that f(x) € [0,1], Y& € X, F,,(f,a,b,v,t, z) is defined as:

Fop(fra,b,7,t,2) =[(f(x) — a)® = 2(1 +7) f(2)ly/p — 7*
[(f(z) = b)* +2(1+ ) f(@)](1 = y)p(@)>e/(1 = p)/B,

where y = 1 for positive instances, y = 0 for negative instances and we have the following
conclusions:

99)

(a) (Population Version.) We have:

inRs(f) < i E [F b 100
win Rp(f) & win | max B [Fop(f,a.b,7m5()),2)], (100)

where nﬁ(f) = argmin,, cg Ea/ Dy [Hf(w’)Z ng B]
(b) (Empirical Version.) Moreover, given a training dataset S with sample size n, denote:

ES[ op(fvabv')/v’li(f ZFOP faab%’/i(f) )

2z~
i=1
where 7)5(f) is the empirical quantile of the negative instances in S. We have:

o D E A, 101
win Rs(f,8) & wmin | max £ [Fop(f,a0,7,75(/), )], (101)

Proof. Firstly, we give a reformulation of OPAUC:

min R(f) = min Benpp any (L@ zna(n) -4 (@) = f(@)]
= mfin Exnpp anpy U(f(x) = f(@)|f(®) >0s(f)]- P [f(x) >ns(f)]

x/~Dyr

= min Bgpy, arpy [(f(2) - fF@If (") = ns(f)]- B

= B -min Eepp arnpy [UF () = F(2))If () 2 15(F)]-
(102)
Applying the surrogate loss (1 — x)? to the estimator of OPAUC, we have:

E (= (fx) = f(@)))?|f(') > ns(f)]

x, @' ~Dp , D

—1+ E [f@+ E @) 2n()-2 E /@)
(

mep x NDN

+2 E [f@)f@) =N -2 E @) E [/@)f@)>n5(/)
E If e - JE U@P+E [f@PI5@) > na(/)]

~Dp

- E [f(w’)2|f( ) =ns(HF -2 E @l+2 B [f@)If () 2 0s(f)]

x' ~Dar

+(E [f@)]-_E [f@)f(@)>ns(H)*

x~Dp D N
Note that

(103)

~

x

E [f(z)’]— E [f(x)]?= min E [(f(x)—a)?, (104)

x~Dp x~Dp ae[O,l] x~Dp
where the minimization is achieved by:

a*= E [f(z)], (105)

where a* € [0, 1]. Likewise,

E [f@)?f(') = ns(f)] -

x'~Dar

JE @If@) zns(f)] =
min [(f(=') = )If( ") = ns(f)];

be[0,1] a’ N’DN

(106)
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where the minimization is get by:

vr=_E [f(@)|f(x') = ns(f)]. (107)

x/~Dyr

where b* € [0, 1]. It’s notable that

<m/lEDN[f($')f($/)Z%(f)} E [f(w)o _

T (108)
max {Q’Y <EIEEDN[f(:1:’)|f(:c’) >ng(f)] — m~]ED7,[f(x)]> _ 72} ’
where the maximization can be obtained by:
7= w,jEDN[f(fB’)If(w’) 20N~ E [f()] (109)

It’s clear that v* = b* — a*. Then we can constraint v with range [—1, 1] and get the equivalent
optimization formulation:

(1= (f(x) = F@)))If (&) = ns(f)] &

x,x'~Dp , Dy

i E —a)? -2 1 — 2
(a’b?élﬁ(},l]zvgﬁ?ﬁf”m@?[(ﬂx) a)” =2(v+1)f(x)] —v (110)

+ B C[(f(z) = b)* +2(y + D f (@) (@) = ns(f)].

x’'~Dpr

Taking expectation w.r.t., z, we have:

min Rp(f) & min max B [Fop(f,a,b,7:m5(f), 2)]; (111)

and the instance-wise function Fop,(f, a,b,v,ns(f), 2) is defined by:

Fop(fra,b,7,t,2) =[(f(x) — a)® = 2(1 +7) f(2)]y/p — 7

2 (112)
[(f(z) = b)" +2(1 + ) (@)1 = Y)]f@)>:/(1 —p)/B,

where p = Pr[y = 1]. The same result holds for empirical version IAES_ [Fop(f,a,b,7,15(f),z)]. O

F.2.2 Step 2

First we need the following proposition to complete the proof in this subsection.

Proposition 1. Ify € Q, = [b—1,1], {_(z') = (f(z') — b)? + 2(1 + ) f(2') is an increasing
Sfunction w.r.t. f(x') when &’ ~ Dy and f(x') € [0, 1].

Proof. We have:
ol_(x')
of(x')
Assuming that f(x’) € [0, 1], then the feasible solution of b is nonnegative. When v € [b — 1, 1],

the negative loss function’s partial derivative 9¢_ (x’)/0f(x’) > 0. Then ¢_ (') is an increasing
function w.r.t. f(z').

=2(f(&) —b+1+7). (113)

Remark 6. For negative instances, if the loss function is an increasing function w.r.t. the score
f (&), then the top-ranked losses are equivalent to the losses of top-ranked instances.

Reminder of Theorem 2. Assuming that f(x) € [0,1], for all x € X, we have the equivalent
optimization for OPAUC:

i E [F, b & i in E [G b '
ain e LB Fop(fya:0,,15(f), 2)] fain | max min LB [Gop(fia,b,7, 2, )],
(114)

i E Fo ) 7b7 7'A A7 And i i ]E GO ) 7b7 » < ! )
o Ey sl Pt L2 S T A, L lCen (b 2,50
(115)
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where 0, = [b—1,1], Qy = [0,5] and

Gupl. 07,2, = (@) o) 201+ ) @/~ 116
+ (34 (0@ 02 420 £ f@) - 1,) (- )/ 130 p)].

Proof. According to the Thm.6 in Appendix.C, when we constraint y in range Q, = [b — 1, 1], we
have:

min max E,.p.|F,,| <
Fab)el01? vel 1] Dz For]

i E..p.|F, 117
F(ab)eb A et ) 2z For) i
According to Thm.1, we have:
E [Fop(f,a,0,7,m5(f),2)] & E [(f(x)—a)® —2(1+7)f(x)] —~°
ZN'DZ :IZN'DP

o / (118)
+.E ([(f(&") =) + 21 +7) f(®)] - Tf@)y>ns(r)) /B-

We denote /_(x') = (f(z') — b)? + 2(1 + ) f(z'). The Prop.1 ensures that the negative loss
function ¢_ (') is an increasing function when v € [b — 1, 1]. Then we can get:

1
Ew~DNWﬂwpmMﬁ'ﬂ4wﬁ]=ngnBEy~DNWS+ﬂ&in—SML

(119)
Applying Lem.1 to negative loss function, then we have:
E [Fplf.a,b,7m5(0)2)] = min_E_[(/() = a)? = 2(1+9)f(@)] —~°
/ AN AY AN
+ B (B + (@) b + 20+ f(a) - 7], ) /8.
(120)
Then, we get:
LE [Foplf,a.0,7:m5(f), 2)] = Joim ZNI%Z[Gop(f,a,bﬁY,%S/)], (121)

where

Gop(fa:b,7,2,5') = [(F(@) — a)* = 201 +7)f @)}y /p — 7
) ) (122)
+ (85 + [(F@) = )2+ 20+ (@) - 1, ) (1= 5)/[801 - p)].

We have the equivalent optimization for OPAUC:

i E FO 9 7b7 b b <:>
fmgﬁﬂhgguw%[pﬁa v,mp(f), 2)]

. . (123)
E GO b b) b7 b b ! b)
f@gngﬁgﬁgﬂva o(f:0,5,7,2, 5]

where 0, = [b—1,1], Q¢ = [0,5], p = Ply = 1]. The same result holds for empirical version
E [Gop(fa a, b7 v z, 8/)}'

~

O
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F.3 Proofs for TPAUC

F3.1 Step1
Reminder of Theorem 7. Assuming that f(x) € [0,1], V& € X, Fy,(f,a,b,7,t,t', z) is defined as:

Fop(fra,by, 8.t 2) = (f(@) = a)*ylj@)<i/ (0p) + (f(®) = 0)*(1 = 9y /[B(1 — p)]

)
+2(14+ ) @)1 = )y@nze/[B(1 = p)] = 201+ ) f (@)Yl (@)<:/ (ap) — 7(j’z4>

where y = 1 for positive instances, y = 0 for negative instances and we have the following
conclusions:

(a) (Population Version.) We have:

i RO( i ]:E F ) 7b? ? (63 9 ) ) 125
win Rap(f) & min , max B F(f,a0,70.().m5(f), 2)] (125)

where 1, (f) = argmin,,, eg Ex~pp [Lf(2)< 1. = o] and ns(f) =
arg min,,cr B/ oy [Lf(2)> 5, = Bl.

(b) (Empirical Version.) Moreover, given a training dataset S with sample size n, denote:
. 1 <
B Fup(f,0,6,5,700 (1), 15(F): 2)] = = 3 Fup(f, 00,7001, 115(f), 2)
’ i=1

where 1, (f) and 115([) are the empirical quantile of the positive and negative instances in S,
respectively. We have:

min Ro,p(f,9) &  win max B [Fip(f, a0 5,00 (f):05(f), )], (126)

Proof. Firstly, we give a reformulation of TPAUC:

min Rap(f) = min Bopp @ ~Dy [T @y<na ) L@nznacr) LS (@) = f(2))]
= min Boopp ornpy [H(f(2) - FENf (@) =2 ns(f), f(@) < na(f)]
P @) =] B [f(@) < naf)]

. x’'~Dpr
= min Bopp arnpy [UF () = F(@)If () 2 15(F), f(2) < a(F)] - af
= af -min o, oy [((f(2) = £(2))IF(2) 2 05(f), F(x) < na(f)]-
(127)

Similar to the proof of Thm. 1, using the square surrogate loss, we can get the equivalent optimization
formulation:

mfin Ra,ﬂ(f) < max E [Ftp(faa7b7’yana(f)7nﬁ(f)7z)]a (128)

min
f.(a,b)€[0,1]2 v€[-1,1] 2~Dz

and the instance-wise function Fi,(f, a,b,v,1.(f),ng(f), 2) is defined by:

Ftp(f7 a, ba e noé(f)’ nﬁ(f)7 z)
= (f(x) — a)*ylp@)<nap)/ (@p) + (f(2) = 0)*(1 = Y)f(@)>n, (1) /[B(1 — p)]

+2(1+7) f(@) (1 = )@y s, (0 /1B = )] = 20+ 7) F(@) YL (@) <na )/ (D) — 7(?29)

The same result holds for empirical version H:Zg[Ftp(f, a,b,v, M. (f),15(f), 2)]. O

28



F.3.2 Step 2

First we need the following proposition to complete the proof in this subsection.

Proposition 2. If v € Q, = [max{b — 1,—a},1], {4(z) = (f(x) —a)? = 2(1 + ) f(x) isa
decreasing function w.r.t. f(x) when x ~ Dp and f(x) € [0,1

Proof. We have:
oy ()
of (@)
Assuming that f(z) € [0, 1], then the feasible solution of a is nonnegative. When v € [max{b —

1, —a}, 1], the positive loss function’s partial derivative 9¢ (x)/Jf(x) < 0. Then ¢, (x) is an
decreasing function w.r.t. f(x). O

=2(f(x) —a—1-7). (130)

Remark 7. For positive instances, if the loss function is an decreasing function w.r.t. the score f(x),
then the top-ranked losses are equivalent to the losses of bottom-ranked instances.

Reminder of Theorem 8. Assuming that f(x) € [0,1] for all x € X, we have the equivalent
optimization for TPAUC:

i E |[F b al) ) )
fv(a,Il;()uer[lOJ]z fyg[l—aifl] ZNDZ[ tp(fa a, 0,7, (f) 77/3(f) Z)]

i in E [G b / (b
< fy(a,rbr)uer[lo,l]2 vnel%z}i SGQT;’I'I’EQS/ Z~Dz[ w(f> 0,7, 2,5, )],
i E F; s aba 7A<v aAf sz
F(@b)el0,1]? Ae[o11] B E(fra,0.7,700 (1) 115 (), 2)] (132)

min  max min E [Gp(f,a,b,7,2,5,8
£,(a,b)€[0,1]2 YEQ, s€Q4,8'Q, z'\/S[ P(f7 y 0,75 %, 8, )]a

where Q0 = [max{b — 1, —a}, 1], Q; = [-4,1], Q¢ = [0, 5] and

Gup(f.a,b.7.2,5,8) = (as + [(f(@) = a)? =201 +7)f(@) = 5], ) y/(ap)

(B + [(f(@) = b + 20+ (@)~ 5] ) (1= 9)/[B0 = p)] =72
(133)

Proof. According to the Thm.6 in Appendix.C, when we constraint +y in range ., = [max{—a, b —
1}, 1], we have:

max E [F,] <

min b min max E [Fy) (134)
FA(ab)E0,1]2 €[ 1,1] 2~D £.(a,b)€[0,1]2 7€ [max{—a,b—1},1] z~Ds

According to the Thm.8, we have:

E [Fp(f.abvma(Nms(f) 2]« B ([(f(@) - a)* =20 +)f(@)] - L@)<nan) /o

z~Dz x~D
m,lEDN ([(f (&) = b)* + 2(L+ ) f(@)] - Lp@rsnaip)) /B — 7
(135)
When we constraint +y in range €2, = [max{b— 1, —a}, 1], Prop.1 and Prop.2 ensure that the positive

and negative loss functions are monotonous. Then we can get:

1

Eonp [ @)<na(f) - £+(2)] = min ~ " Eanpy [as + [l (x) — s]4], (136)
1

B~ [l@)zns () - €= (@)] = min 5 - Borp o [f5” + [0 (2) — 5] ]. (137)
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Applying the Lem.1 to positive and negative loss, we have:

E [Fip(f,0,0,%,ma(F)ms(f), 2)] @ min B (as+ [(f(@) —a)* =201 +7)f(@) 5], ) Ja— 7

z~Dz s,s’ &€~Dp

E (85 + [(f@) b’ + 20+ Df(@) 5], /8,

x'~Dpr
(138)
Then, we get:
9 3 !
zNEDz [Ftp(fa a, ba v, r]oz(f)a 7]5(f)7 Z)] = SGQIST,ISI’HGQS/ ZNEDZ [th(fa a, b7 v, %2,8,8 )] (139)
where Q, = [max{b—1,—a}, 1], Qs = [-4,1], Qv =[0,5], p =Ply = 1] and
Guplfrab,71,2,5, ) = (a5 + [(F() ~ 0)* ~ 201+ ) f() 5], ) v/ (ap) o
+ (B85 + [(F@) = )2+ 201 +9)/ (@) - 5], ) (1= 9)/[B(01 - p)] - 7>
we have the equivalent optimization for TPAUC:
i E F K ’b7 y o ) 9,
famin o max B 1F(fa 57,0 () np(f), 2)]
i i E [Gip(f,a,b,7,2,5,5)] (14D
< f,(a,rg)ner[lo,uz 'Iylé%}.(y seQmsl’neQ s D 0 208, S
The same result is hold for empirical version Eg[th(f, a,b,vy,z,s,8")). O
Appendix G Proof of Generalization Bound
First we need the following lemma to complete the proof in this subsection.
Lemma 4.
max () — max g(x') < max f(x) — g(x)
T T z,x’'=x (142)

min f(z) —min g(z’) < max f(z) —g(x).

Proof. Since the difference of suprema does not exceed the supremum of the difference, we have:

max f(z) — max g(z') < max minf(z) - g(2’) < max f(x) - g(x). (143)

For min f(z) — min g(2') < max f(x) — g(x), we have:
min f(z) — min g(2') < min max f(z) — g(2')

=z

= max min f(z) - g(2’) < max f(z) - g(z).
O
Lemma 5. (Talagrand’s lemma [3]]) Let ¢, - - , ¢, be I-Lipschitz functions from R to R and

01, ,0m be Rademacher random variables. Then, for any hypothesis set H of real-valued
functions, the following inequality holds:

1 - l = S
—FE |su 0; (®;0h) (z; < —FE |su oih(x;)| =IRg(H). (145)
22 oop S o) a0 | < L 3=t ] = Rt
In particular, if ¢; = ¢ for all i € [m), then the following holds:
Rg (P o H) < IRs(H). (146)
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Lemma 6. Let o be Rademacher random variables. Then, for any hypothesis set F of real-valued
functions, the following inequality holds:

sup oif(@)|| < 2R (F (147)
E|sup | = Z +(F)
1 «— .
E |sup |— Y o;f(@))|| <2R_(F) (148)
o | feF |- =
Proof. Assuming that 0 € F, then for any o we have
1 n4 1 ny
sup — ; ) > — 0= 149
buanr;sz(xz) = n+;Uz ( )
Similarly, for any o we have:
ny n4
bup—zaz ;) z—zaz 0=0 (150)

where —F = {—fi(- )}‘}—l and f;(-) € F. Then we have the following inequality:

1 1
lsup Zal x;) max{sup Zaif(aci), sup — Zaif(wi)
[t [t

o

) . R (151)
SRy(S)FR(S)
=20, (/)
() is due to the fact that max{a,b} < a + b when a > 0, b > 0. The same result holds for negative
instances. O

Lemma 7. Let o be Rademacher random variables. Then, for any hypothesis set F of real-valued
functions, the following inequality holds:

- [ sup —Za,

acl0,1]+ 5

= (1) , (152)
ViE

a sup—ZU]b2 = <\/71T)’ (153)

be[0,1] T

Proof. Using the Cauchy inequality, we have:

sup — oa”| < | sup |a
a601]n+7z; ' ] <e[0,1] ) °

o

(154)

(r) is due to the fact /() is concave and the Jensen’s inequality. The same result holds for negative
instances. O
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G.1 OPAUC

Reminder of Theorem 4. For any § > 0, with probability at least 1 — § over the draw of an i.i.d.
sample set S of size n, for all f € F we have:

min max min [E [G a,b,7v,2,) < min max min E [G a,b,v,z,s
(a,b)€[0,1]2 YEQ, 5 €Q,, ZNDZ[ Op(fa 0,7, %, )] _(a,b)E[O,l]Q’YEQWS’EQS/ wa[ Ol)(fv 9,75 %, )]

+ORL(F) +R_(F) + 0@+ 5 a2,

Proof. According to the Lem.4, we have:
su min max min E [G.,(f,a,b,7, 2,5
rer ((a,b)e[o,u‘z Ve s'eﬂs/zwz[ onlfra,by )

— min  max min E [G ,a,b,v, 2,8
(a,b)€]0,1]2 vEQ,, s/egs,ws[ on(f v )])

< sup (max min = E [Gop(f,a,b,7,2,8)] — max min E [Gop(f,a,b,'y,z,sl)]>

fEF (a,b)€[0,1]2 \VESys'€Q 2Dz YEQ, ' EQ 2~ S
< sup (min E [Gop(f,a,b,7,2,5')] — min E [G, (f,a,b,v,z,s’))
fEF,(a,b)€[0,1]2,7€Q, 8’6523/2~Dz[ i ] s/eﬂs/ws[ P ]
< sup (LB, (b2 = B [Goplfrabornz,s)])
FEF,(a,b)€[0,1]2,5'€Q, veQ, \#~DPz z~S
< sup ( (f7a Y, ) - E P(f7a7pyami))
fEF.agl0,1],yeQ, \T~DP zi~P
+ sup E N(fby,@,s)— E N(fbya}s)|.
fEFbE[0,1],5'€Q,,vER, \ & ~DPN x~N
(155)
where P(f7a577m) = (f(:]}) - CL)2 - 2(1 + V)f(m) and N(f7 b’Va ml7S/) = (/88/ +

[(f(x") = b)? +2(1+7)f(x') — s’]+)/6. According to the Thm 3.3 in [31], with probability
atleast 1 — §(0 > 0) we have:

sup (zpr (f,C(, Y, ) - w‘IAEPP(fva’aVami)>

feEF,a€(0,1],7€Q,

+ sup < E N(fbvy,a' s)— K N(f,b,v,a:}s'))
feFbeE[0,1],5'€Q,1 veR, \ &' ~DPN z~N
log 4
= 2E | fEF, ae[o 1] YEQ, E ;UZ (Fra i) + 2nf (156)
(1)
+2IE sup —ZUJ (f; by, +1—5 %
fe]-‘ b€[0,1],5' €9,/ ,YEQ, B 2n_

(2
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For term (1), we have:

]E - Uz fv 577‘731)
Lef ae[ Z ]

Ol]veﬂ ny 3

sup Lz:az () =21+~ +a) f(x:) + a?)

fEF,acl0,1],yeQ, TV+ i—1

up - z oif (@)

JEFT4 5

:E

—~

9
<E +E

o

+E sup—zol —2f(x:))

feFn+

sup 1 i o; (aQ)]

a€l0,1] M+ 15

(a) (©) ()

n4
sup i (=27 f(x;) sup i (—2af(x;))| -
Lo MZ i i Z i i

feF,aco, 1+

—I—IE —HE

(d) (e)
(157)
(s) is due to the fact that sup,, , @ + b < supa + sup b. Assuming that f(x) € [0,1],0 € F. For

term (a), according to the Lem.5 and the fact that 22 is 2-Lipschitz continuous within [0, 1], we get:

7L+
5up— aif (x| < E bup— oif(x;) = 2R (F). (158)

Using the fact that o; and —o; are distributed in the same way, we can write the term (b) as:

lsupZal —2f(x;))

= 2R, (F). (159)
feF+ i

= 2E | sup— oif(x;)
LCEFTHZZ; ' '

For term (c¢), according to the Lem.7, we have:

1 1
E| sup — o (a®)| = O( ) . (160)
7 |a€l0,1] 1+ ; ( >] AVALES

For term (d), we have:

E sup i (=27f(x:))| < E o; (—=27f(x))
feEF ,vEQ, ny ; fe]: ’YEQ ny ;
1 &
<E| sup |[=29] |— ) oif(z)
7 [reFae, "+ ; (161)
1
< 2E |sup |— oif(x;
)
< 4§R+(]:)a

where () follows from the Lem.6. Similarly, for term (e), we have:

El sup Zaz —2af(x;) ]§4§f€+(}') (162)

feF,acl0,1] "+ i

Combining terms (a), (b), (c), (d), (e), then we get:

]E

—Zm (f, ry,mz)] < 12§f%+(}')+0(1) (163)

feF, aE[O 1],769 ny i3 VALES
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For term (2), we have:

E sup _ gj fﬂ a,7y, T
9 | fEF,bE[0,1],5'€Q, ,yEQ, TV— Z ’ )
1 n_
=FE sup Zoj<[f2( ;-)+2(1+’y—b)f(w;-)+b2—s/]++ﬁs’)
7 | feF.bel0,1],s'€, yeQ,

T =1

(") 1 1
’ i) o)
fefbe[01 sEQx,’yeQ n— Z ! ( )f(@;) ]+ T
(l) sup —ZU (F2(@)) + 21+ = b) f()) +b* — &) +O< ! )
fEF,bE[0,1],s'€Q 1, vEQ, ] /N
1 e—
sup — oif*(@;)| +E [sup— o;2f(x)| +E sup — o
feFn— j=1 ! 7 | feFn —Z ! g SEQ/bE[Ol]n—Z !
() ()
+E — Zaﬂ’yf +E sup inz_aj (=2bf(x)) | +O <1 ) .
“ fEF veﬂ n— 7 | feFpelon) - V-
" ) (164)

(o) follows from the Lem.7 and the fact that sup,, , < supa + supb. (') follows from the Lem.5

and the fact that []; is 1-Lipschitz continuous. For terms (a’), (b'), (¢), (d'), (¢/), we have the
similar results as terms (a), (b), (c), (d), (e). So we can get:

fEF,bE[0,1],5'€Q,s ,vEQ, TV —

- 1
E sup onJ (Fuboy. ) o) <12%(f>+0(ﬁ) (165)

and

sw (B P(ra, >m,@PP<f7a,v,mi>)

fEF,a€l0,1],7€Q

+ sup ( E N(f.b,v.2',s") — ,N N(f,b,7,x; ))

feF be[0,1],5'€,veQ, \ &' ~Dx (166)
A 1 ) 1 og% 15 og 5
2112 12R_ 12
( %+(}')+O( n+)+ R (]-")+O( — ) + 2n+ o

= O(Ry(F) + R_(F)) +O(n*+ p~'n= "%

For any 6 > 0, with probability at least 1 — § over the draw of an i.i.d. sample .S of positive instances
size n4 (negative n_ resp.), each of the following holds for all f € F:

min max min [E [G a,b,v,z,s
(a,b)€]0,1]2 ¥R, s'€Q,/ ZNDZ[ on(f> 0,07, 2, 5)]

< i in & ! R IR
S (o fin oDoax min L Gop(fr a0, 2, 8)] + OR4(F) + 57 R-(F))

+0(n; —1/2 ﬂ,lnzl/z).
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G.2 TPAUC

Theorem 9. For any § > 0, with probability at least 1 — § over the draw of an i.i.d. sample set S of
size n, for all f € F we have:
min max min
(a,b)€[0,1]2 vE€Q,5€Q,,8'€Q s 2~Dz

E [th(f,@,b,’Y,Z S,8 )] <
@ b)e[o - Wrggféegrsr’gneg E [th(f,a b7, 2, 8,8)]
+O(3%+( )+8‘L( ) + O« n+

Proof. According to Lem.4, we have

L +ﬁ_1n_1/2).
sup ( min m
fer )

ax min
(a,b)€[0,1]2 Y€, s€Q5,8'€Q2~Dz

E [th(faaaba’)/wz S, 8 )]
— min max min
(a,b)€[0,1]2 vEQ

-

s€Q,,8'€Qz~S
max min
feF,(a,b)€[0,1]2

B (GiplJ.0.0.7.2.5.)] )
FEQ, sEQ,,s €Q ,z~EDZ[th(f’ a,b,7,2,5,5)]

—max  min
<

G b

YEQ,5EQ;,8'EQ, /z~s[ w(f,a,0,7,2,5,s )])
Sup ( min

fEF (a,b)€[0,1]2,v€Q,

s€Q;,8'€Q 1 2~Dz

]E [th(f7a7ba77z S S)]

<

(167)
e, JE [th(ﬁa b7, 2,5,5 )])
sup < E [Gyp(f,a,b,7,2,s,5")]
FEF (a,b)€[0,1]2,5€Q,5'€Q7EQ, \#~D2
- [th(f7a7b777za3a8/)]>
< sup
fEF,a€]0,1],5€Qv€Q

(MP (fav.@,5) = B _P(f,a,7.@; ))
+

sup E N(f.bv.2',s) -
feFbe[0,1],s'€Q,,,veQ, \ &' ~DPx
where P(f,a,~,x,s)

IE N(f,b 7,:33,5')) )
(as + [(f(x) — a)® = 2(1 + ) f (=)
(Bs'+[(f(2) = b)* +2(1 +7) f(a') —
atleast 1 — §(4 > 0) we have

]+)/a and N(f,b,v,2',s')
]..)/B. According to the Thm 3.3 in [ 1], with probability

sup
feF,a€(0,1],s€Qsv€Q

(MP (fa,7,@,5) = B_P(f,a,7,2; >)
_|_

sup E N(f,by,x',s") -
feFbeE[0,1],5'€Q,1,veQ, \ &' ~DPN

E N 7b7 9 /'7 !
e (f 0,7, ; 8)>
12 [log 4
§2E sup o J’L f7 a,”,Ti, S ) - >
| fEF, a€[0,1],s€Q,,7€Q Z [0} 2Tl+ (168)
(3)
15 log 4
+2E Sup —_ o; N f’ , Vs & ) ey 6
f6]~‘ be[0,1],s' €,/ ,yEQ, Z ! B\ 2n_"
4)
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For term (3), we have:

Sup 720—1 fa a,”,&i, S )]

]E

fEF,a€l0,1],5€Qs,v€Q, T+ i—1

=E sup 72%( (i) —2(1+~y+a)f(z )+a2—3}+—|—a5)
7 | fEF,a€(0,1],5€Q, ,v€Q, M
(O<*)E ! ni [f2(z;) — 21+~ +a) f(z;) + a® — 5] +O< L )
< sup — oi( x;) — y4+a)f(x;)+a—s )
FEF a€l0,1],5€0,7EQ, ”+i 1 + N
e Z 201+ +a)f(x:) + a* — s) +0( ! )
< sup — 01 a:l — vy+a)f(x;)+a* —s
9 | fEF,a€l0,1],5€Q,,7€Q, T \/H
(s)
S sup— o f*(x;) —I—IE sup— oi(=2f(x;))| +E sup o a® —5)
feFn4 ; feFn4+ Zz; ) 7 |a€l0,1],5€0, 0+ ;

(ax) (b*) (e*)

sup ZO’Z —2vf(x;)) +0 (\/%) .

feF yeQ, M+ i

-HE sup ZUZ —2af(x;))

fEF,ac[0,1]+ i

() ()
(169)
(0*) is similar to (o). (I*) follows from the Lem.5 and the fact that [-] . is 1-Lipschitz continuous.
For terms (a*), (b*), (¢*), (d*), (¢*), we have the similar results as terms (a’), (b'), (), (d'), (¢/).
So we can get:

. 1
E sup — o P(f,a,v,x;,8)| <128 (.F)+O( ) (170)
Lef a€l0,1],s€Q,,7€Q, Z * i
and
Sup ( E P<f7a’”77$’8>_ ]E P(faavryawzﬁs))
fEF,a€l0,1],5€Q,7€Q, \&~DP x;~P
+ sup E N(f,bv,a',s)— E N(fb7v,,s)
feF,bel0,1],5'eQ,, e, \ &' ~Pn x~N (171)

A 1 N 1 12 log % 15 log %
2 <123R+(f) +0 (\/nj) +12R_(F)+0 (ﬁ)) += \/2n+ + 5 5
— Oy (F)+R_(F) +O(a ;> + g~ n="?).

For term (4), the same result holds as term (2). For any § > 0, with probability at least 1 — & over

the draw of an i.i.d. sample S of positive instances size n (negative n_ resp.), each of the following
holds for all f € F:

. . !
oD max min LB (Gip(f5a,0,7, 2,8,8)]
. R .
(a, bI)rél[Io1 qb?é%}jbeam:neﬂ / ZNS[th(f’a b:2,5,8)] + O+ (F) + R-(F))
+O0(a™? ny 4B 1 _1/2)
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