
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LAYER-WISE PERFORMANCE-AWARE SPARSITY AL-
LOCATION FOR EFFICIENT LLM INFERENCE

Anonymous authors
Paper under double-blind review

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use Claude 4 Sonnet and ChatGPT 5 for grammar checking, spelling correction, and translation
assistance in both the main text and appendix of this paper.

RELATED WORK

Recent advances in LLM compression have significantly improved inference efficiency while pre-
serving model capabilities. Structured pruning techniques eliminate entire components like attention
heads or layers (Dutta et al., 2024; Muralidharan et al., 2024), with approaches like TVAPrune lever-
aging variational information bottleneck principles to compress model representations (Dutta et al.,
2024). Weight quantization methods such as GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2024a),
and OmniQuant (Shao et al., 2023) enable 4-bit weight representation with minimal performance
degradation. Knowledge distillation approaches like MiniLLM (Gu et al., 2023) and GKD (Agar-
wal et al., 2024) transfer knowledge from larger teacher models to smaller students, with the latter
introducing on-policy distillation to address train-inference distribution mismatch. Combined ap-
proaches leveraging pruning with distillation have yielded state-of-the-art results (Sreenivas et al.,
2024; Muralidharan et al., 2024).

Building upon these structural approaches, unstructured pruning enhances LLM compression by
flexibly removing weights, often achieving higher accuracy at high sparsity levels compared to struc-
tured methods (Lee et al., 2024). Recent advancements in this field include post-training one-shot
pruning techniques such as SparseGPT (Frantar & Alistarh, 2023), which leverages second-order
approximations to prune over 50% of weights in a 175B model while maintaining performance with
minimal loss, and Wanda (Sun et al., 2023), which simplifies the pruning process through activation-
aware magnitude pruning for efficient sparsity. Other notable contributions in this category, such as
OWL (Yin et al., 2023), Tyr-the-Pruner (Li et al., 2025), and GBLM-Pruner (Das et al., 2023),
further refine sparsity allocation and incorporate gradient correction to enhance pruning outcomes.
Additionally, optimization-based methods like ALPS (Meng et al., 2024) approach pruning as a
constrained optimization problem, while DSnoT (Zhang et al., 2023) iteratively refines weights to
optimize results over multiple steps.

Beyond pruning techniques, model quantization is essential for deploying LLMs efficiently, reduc-
ing memory and computation by lowering the precision of weights and activations (Gong et al.,
2024). However, the ‘outlier’ problem, where a few large values dominate the quantization range,
poses a significant challenge (Ashkboos et al., 2024b). Early solutions like LLM.int8() (Dettmers
et al., 2022) addressed this by retaining some activations in higher precision. Recent advancements
include GPTQ (Frantar et al., 2022), which uses second-order information for accurate 4-bit weight
quantization, and AWQ (Lin et al., 2024a), which protects key weights based on activation statistics.
For activation quantization, SmoothQuant (Xiao et al., 2023) redistributes outliers to enable 8-bit
quantization, while QuaRot (Ashkboos et al., 2024b) and QuIP (Chee et al., 2023) employ rotation
transformations for 4-bit and 2-bit quantization, respectively. Additionally, QUIK (Ashkboos et al.,
2023) and QServe (Lin et al., 2024b) combine quantization with system optimizations for practi-
cal deployment. Other notable methods include PrefixQuant (Chen et al., 2024a) and MergeQuant
(Wang et al., 2025) for efficient static quantization.

With models compressed through the aforementioned techniques, large language model infer-
ence faces significant computational challenges that researchers address through various optimiza-
tion approaches. Recent work has focused on KV cache management techniques such as Page-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

dAttention (Kwon et al., 2023), which treats cache as virtual memory to reduce fragmentation,
SpeCache (Jie et al., 2025), which intelligently prefetches needed keys, and QuaRot (Ashkboos
et al., 2024b) for outlier-free 4-bit inference. Algorithmic optimizations like Cascade Specu-
lative Drafting (Chen et al., 2024b) leverage a tiered approach where smaller models draft for
larger ones, while N-gram masked self-attention Chelba et al. (2020) truncates attention win-
dows. Memory efficiency improvements include SWAT (Fu et al., 2025) for sliding window at-
tention and Inf-MLLM (Ning et al., 2024) for streaming inference via attention saddle patterns.
Architecture innovations explore MoE approaches like Read-ME (Cai et al., 2024) which refac-
tors dense models into router-decoupled experts, and Dynamic-LLaVA (Huang et al., 2024) which
sparsifies vision-language contexts. System-level optimizations include operator fusion in Faster-
Transformer (Aminabadi et al., 2022), FlashAttention’s IO-aware computation (Dao et al., 2022),
FlashDecoding++ (Hong et al., 2024) with asynchronous softmax, and specialized schedulers like
Sarathi-Serve (Agrawal et al., 2024), vLLM (Kwon et al., 2023), and Llumnix (Sun et al., 2024) that
balance throughput and latency through innovative resource management strategies.

APPENDIX A.1: MOTIVATION

Figure 1: Decode-stage TPS with adaptive sparsity allocation across layer groups, based on 4-bit
QuaRot quantization. Task and hardware: left-to-right language-model generation, each run takes a
2048-token prompt from the WikiText-103 validation set, allowing Llama-2-7B to autoregressively
generate the next 256 tokens, and runs on a single NVIDIA RTX 3090 GPU. Variants on the X-axis
denote different layer group sparsity configurations: A0: baseline, no sparsity applied (96 tokens/s);
A1: 20% adaptive sparsity applied to layers 1-8 (early attention layers, 101 tokens/s); A2: 20%
adaptive sparsity applied to layers 9-16 (middle attention layers, 105 tokens/s); A3: 20% adaptive
sparsity applied to layers 17-24 (middle-late layers, 109 tokens/s); A4: 20% adaptive sparsity ap-
plied to layers 25-32 (late transformer layers, 107 tokens/s); A5: 20% adaptive sparsity applied to
layers 1-8 and 17-24 simultaneously (118 tokens/s); A6: 20% adaptive sparsity applied to layers 9-
16 and 25-32 simultaneously (121 tokens/s); A7: 20% adaptive sparsity applied to layers 1-8, 9-16,
and 17-24 (124 tokens/s); A8: 20% adaptive sparsity applied to all layer groups 1-32 (119 tokens/s).
Y-axis: measured tokens-per-second during decode phase. Higher is better.

In the deployment of LLMs, quantization and pruning have evolved as independent acceleration
techniques with minimal integration. In our explorations, we conduct a series of attempts to investi-
gate the combination of both techniques. Figure 1 demonstrates the inference acceleration achieved
on the Llama-2-7B model in a language generation task, after applying 50% random dropout to
various weight combinations and weight matrices at 8-bit precision. We observe a significant im-
provement in model inference speed. Figure 2 shows the model’s performance across different
quantization and pruning configurations. As the bit-width of quantization decreases and the sparse
ratio increases, the perplexity rises substantially, indicating a clear trade-off between efficiency and
performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Performance of quantization and adaptive layer-group sparsity allocation on Llama-2-7B.
Task and hardware: left-to-right language-model evaluation on the WikiText-2 validation subset.
The evaluation uses approximately 1 000 passages, each with a sequence length of 2048, running on
a single NVIDIA RTX 3090 GPU with 4-bit QuaRot quantization applied to all weights. Variants
on the X-axis denote different layer group sparsity configurations: B0: 4-bit quantized baseline, no
additional sparsity (5.47 perplexity); B1: 4-bit quantization + 20% adaptive sparsity on layers 1-8
(8.52 perplexity, 55.8% degradation); B2: 4-bit quantization + 20% adaptive sparsity on layers 9-16
(8.89 perplexity, 62.5% degradation); B3: 4-bit quantization + 20% adaptive sparsity on layers 17-24
(9.05 perplexity, 65.4% degradation); B4: 4-bit quantization + 20% adaptive sparsity on layers 25-32
(8.71 perplexity, 59.2% degradation); B5: 4-bit quantization + 20% adaptive sparsity on layers 1-8
and 17-24 (12.78 perplexity, 133.5% degradation); B6: 4-bit quantization + 20% adaptive sparsity
on layers 9-16 and 25-32 (13.42 perplexity, 145.2% degradation); B7: 4-bit quantization + 20%
adaptive sparsity on layers 1-8, 9-16, and 17-24 (13.65 perplexity, 149.5% degradation); B8: 4-bit
quantization + 20% adaptive sparsity on all layer groups (12.95 perplexity, 136.7% degradation).
Y-axis: measured perplexity on WikiText-2 (↓). Lower is better.

A.1.1 LAYER-GROUP SENSITIVITY ANALYSIS

The experimental results reveal distinct sensitivity patterns across different layer groups in the
Llama-2-7B architecture under 20% sparsity allocation. Early layers (1-8) demonstrate moderate
resilience to sparsification, with configuration A1 achieving 5.2% throughput improvement while
B1 exhibits 55.8% perplexity degradation. This substantial degradation, even in early layers, high-
lights the critical nature of all computational pathways in modern LLMs.

Middle layers show varying sensitivity patterns: layers 9-16 (A2/B2) achieve 9.4% throughput gains
with 62.5% quality degradation, while layers 17-24 (A3/B3) demonstrate the highest single-group
acceleration of 13.5% with 65.4% perplexity increase. These middle-late layers exhibit the most
severe single-group degradation, suggesting their critical role in semantic processing.

Late layers (25-32) show a balanced pattern with A4 achieving 11.5% throughput improvement
while B4 incurs 59.2% quality loss. This pattern suggests that while late layers contain exploitable
computational redundancy, their sparsification significantly impacts final output quality, though less
severely than middle-late layers.

A.1.2 MULTI-GROUP SENSITIVITY ANALYSIS

The multi-group configurations (A5-A8, B5-B8) reveal the catastrophic nature of naive sparsity
combination strategies. Configuration A5, combining layers 1-8 and 17-24 with 20% sparsity each,
achieves 22.9% throughput improvement but incurs 133.5% perplexity degradation (B5). This rep-
resents a fundamental phase transition where the cumulative effect far exceeds the sum of individual
impacts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The most aggressive multi-group configuration A7 (layers 1-8, 9-16, 17-24) demonstrates maxi-
mum throughput gains of 29.2% but suffers catastrophic quality collapse with 149.5% perplexity
degradation (B7). Paradoxically, the all-groups configuration A8 shows slightly reduced accelera-
tion (24.0%) and degradation (136.7%), suggesting complex non-linear interactions when the entire
model undergoes simultaneous sparsification.

APPENDIX A.2: QUANTIZATION FRAMEWORK

Figure 3: Low-bit quantization pipeline for a feed-forward network block with quantization and
rotation.

In the framework illustrated in Figure 3, the hidden state X is first multiplied by a random orthogonal
matrix R stored in FP(m) precision. Because R⊤R = I , this transformation preserves Euclidean
norms and inner products, i.e. (RX)⊤(RY) = X⊤Y (Ashkboos et al., 2024b). Consequently,
substituting X 7→ RX and W 7→ R⊤W leaves each linear layer’s output unchanged:

XW︸︷︷︸
original

= (RX)
(
R⊤W

)︸ ︷︷ ︸
rotated

. (1)

This computational invariance (Ashkboos et al., 2024a) enables the framework to redistribute heavy-
tailed activation energy across dimensions before quantization, thereby mitigating the ”outlier” prob-
lem that hampers uniform low-bit encodings (Ashkboos et al., 2024b).

After rotation, the activations are quantized to INT(n). The feed-forward weights Wgate and Wup

are premultiplied by R⊤ and rescaled by diag(α) (RMSNorm) (Zhang & Sennrich, 2019). The
non-linearity σ is applied, followed by an on-the-fly Hadamard transform H; this matrix is also
orthogonal, so fusing H into the down-projection Wdown preserves functional equivalence while
further flattening variance. A second INT(n) quantization converts the output back to low precision
before casting to FP(m).

Because every orthogonal transform is absorbed into adjacent linear layers during an offline pre-
processing step, the run-time kernel sequence matches that of the baseline network while operating
entirely on 4-bit integers. Combined with per-channel GPTQ calibration (Frantar et al., 2022), this
rotation–quantize–fuse pipeline achieves end-to-end INT4 inference without mixed-precision fall-
backs, all while guaranteeing mathematical equivalence to the original FP16 model.

APPENDIX A.3: DYNAMIC PROGRAMMING BACKGROUND

A.3.1 ALGORITHMIC PARADIGM

Dynamic programming is both a mathematical optimization method and an algorithmic paradigm
developed by Richard Bellman in the 1950s (Bellman, 1957). The approach simplifies complex
problems by breaking them down into simpler subproblems in a recursive manner, then combining
their solutions to solve the original problem (Cormen et al., 2009).

The paradigm applies when a problem exhibits two fundamental properties: optimal substructure
and overlapping subproblems. Unlike divide-and-conquer algorithms, which solve entirely inde-
pendent subproblems, dynamic programming exploits the fact that subproblems are not indepen-
dent—the same subproblems arise repeatedly during the recursive solution process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Illustration of dynamic programming approach showing problem decomposition into sub-
problems.

The essence of dynamic programming lies in avoiding redundant computation by storing solutions
to subproblems for later reuse. This memoization strategy transforms algorithms with exponential
time complexity into polynomial-time solutions (Dasgupta et al., 2006).

A.3.2 OPTIMAL SUBSTRUCTURE PROPERTY

A problem exhibits optimal substructure if an optimal solution can be constructed efficiently from
optimal solutions of its subproblems (Cormen et al., 2009). This property is fundamental because it
ensures that solving subproblems optimally contributes to the global optimum.

Mathematically, optimal substructure can be expressed as a functional relationship. For a problem
P , if OPT(P) represents the optimal solution, then:

OPT(P) = f(OPT(P1),OPT(P2), . . . ,OPT(Pk)), (2)

where f is a function that combines optimal solutions of subproblems {Pi} to yield the optimal
solution of the original problem.

The canonical example demonstrating optimal substructure is the shortest path problem. If the
shortest path from vertex u to vertex v passes through intermediate vertex w, then this path must
consist of the shortest path from u to w concatenated with the shortest path from w to v. Any
deviation from this principle would contradict the optimality of the overall path (Cormen et al.,
2009).

Verification of optimal substructure typically employs proof by contradiction. If a subproblem
within an alleged optimal solution were not itself optimal, then substituting the actual optimal sub-
solution would improve the overall solution, contradicting the assumption of optimality.

A.3.3 OVERLAPPING SUBPROBLEMS PROPERTY

The overlapping subproblems property distinguishes dynamic programming from divide-and-
conquer approaches. This property requires that the space of subproblems be small relative to the
total number of recursive calls, meaning the same subproblems are solved repeatedly (Cormen et al.,
2009).

In problems with overlapping subproblems, naive recursive implementations typically exhibit ex-
ponential time complexity due to redundant calculations. The Fibonacci sequence computation
illustrates this phenomenon: calculating F (n) requires computing F (n − 1) and F (n − 2), where
F (n−1) itself requires F (n−2) and F (n−3), leading to multiple evaluations of the same Fibonacci
numbers.

The mathematical characterization of this property can be expressed through the recurrence tree
structure. If T (n) represents the number of subproblems of size n solved during the recursive
process, and S(n) represents the number of distinct subproblems of size n, then overlapping sub-
problems exist when T (n) >> S(n) for sufficiently large n.

Dynamic programming exploits this overlap through memoization, storing computed solutions in
a table for subsequent lookup. This technique reduces the time complexity from exponential to
polynomial by ensuring each distinct subproblem is solved exactly once (Dasgupta et al., 2006).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

A.3.4 MATHEMATICAL FORMULATION

Dynamic programming algorithms follow a general mathematical structure based on the principle
of optimality. The fundamental recurrence relation takes the form:

OPT[i] = min
j∈J (i)

{OPT[j] + Cost(j, i)} , (3)

where OPT[i] represents the optimal solution value for subproblem i, J (i) denotes the set of feasible
predecessor states, and Cost(j, i) represents the immediate cost of transitioning from state j to state
i.

The state space design constitutes a critical component of dynamic programming formulations.
States must encapsulate sufficient information to make optimal decisions while maintaining compu-
tational tractability. The dimensionality of the state space directly affects both algorithm correctness
and efficiency.

Boundary conditions provide the foundation for recursive computations. These base cases corre-
spond to trivial subproblems that can be solved directly without further decomposition:

OPT[0] = base value. (4)

The optimization objective varies depending on the problem context. Minimization problems seek
minj , maximization problems use maxj , and counting problems sum over all valid transitions. Each
formulation requires careful consideration of how subproblem solutions combine.

A.3.5 IMPLEMENTATION STRATEGIES

Dynamic programming algorithms can be implemented using two primary approaches: top-down
memoization and bottom-up tabulation (Cormen et al., 2009).

Top-down memoization preserves the natural recursive structure while avoiding redundant com-
putations through result caching. The algorithm begins with the original problem and recursively
decomposes it into subproblems, storing computed results in a memoization table:

memo[i] =
{

computed value if already solved,
recursive solve(i) otherwise.

(5)

Bottom-up tabulation systematically solves subproblems in order of increasing size, building solu-
tions iteratively from base cases to the final answer. This approach typically follows the pattern:

for i = 1 to n : OPT[i] = f(OPT[0], . . . ,OPT[i− 1]). (6)

The choice between these approaches depends on several factors. Memoization proves advantageous
when only a subset of all possible subproblems requires solution, while tabulation offers better cache
locality and predictable memory access patterns for dense subproblem spaces.

Space optimization techniques can significantly reduce memory requirements. Common optimiza-
tions include maintaining only the most recently computed results when the recurrence relation
depends on a fixed number of previous values, reducing space complexity from O(n) to O(1) in
many cases.

APPENDIX A.4: ASAF FRAMEWORK VISUAL ILLUSTRATION

A.4.1 COARSE-GRAINED OPTIMIZATION PHASE

Figure 5 illustrates the coarse-grained optimization phase of the ASAF framework, which addresses
the fundamental challenge of determining optimal layer grouping strategies and sparsity interval
refinement. The process begins with individual transformer layers L1, L2, . . . , Lp from the large
language model, where each layer is represented as an independent computational unit with specific
FLOPs characteristics ϕl.

The grouping transformation process aggregates these individual layers into cohesive groups
G1, G2, . . . , Gn, where each group Gi contains a set of consecutive layers Li = {l(i)start, l

(i)
start +

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Coarse-grained optimization process in the ASAF framework. The phase transforms in-
dividual LLM layers L1, L2, . . . , Lp into optimal grouping configurations G1, G2, . . . , Gn while
simultaneously refining sparsity search intervals from the initial range [α, β] to narrowed intervals
{[Imin

i , Imax
i]} for each group, where G∗ = n denotes the optimal number of groups. The optimiza-

tion process employs iterative interval refinement strategies I∗1 , I∗2 , . . . , I∗n to achieve computational
efficiency while maintaining sensitivity constraints.

1, . . . , l
(i)
end}. This grouping strategy ensures that layers within each group can be managed col-

lectively while preserving the sequential structure of the transformer architecture.

The simultaneous sparsity interval refinement process transforms the initial broad search space [α, β]
into narrowed, group-specific intervals {[Imin

i , Imax
i]}. This refinement mechanism employs dy-

namic programming principles to systematically reduce the search complexity while maintaining
optimality guarantees. The refinement process utilizes the RefineIntervals(·) and NarrowInterval(·)
functions to achieve progressive convergence toward optimal sparsity allocations.

The optimization trajectory shown in the figure demonstrates how the algorithm iteratively nar-
rows the search space through successive refinements I∗1 , I∗2 , . . . , I∗n, where each iteration produces
tighter bounds on feasible sparsity rates. This process continues until convergence criteria are satis-
fied, yielding the optimal number of groups G∗ and their corresponding refined sparsity intervals.

A.4.2 FINE-GRAINED OPTIMIZATION PHASE

Figure 6 depicts the fine-grained optimization phase, which performs precise decision-making
within the framework established by the coarse-grained phase. This phase receives as input the
optimal number of groups G∗ and the refined sparsity intervals {[Imin

i , Imax
i]} determined in the

previous phase.

The layer allocation component systematically determines the exact number of consecutive lay-
ers assigned to each group. This process involves solving the optimization problem {j∗, s∗}i =
argminj,s{T [i][j][s]} for each group i, where T [i][j][s] represents the total FLOPs cost for group i
containing j consecutive layers with sparsity rate s. The allocation process ensures complete cover-
age of all transformer layers while respecting continuity constraints.

The sparsity selection component operates in parallel with layer allocation, determining optimal
sparsity rates from the discretized candidate sets generated by the Discretize(·) function. For each
group i, the algorithm evaluates sparsity candidates Scand = {Imin

i + k∆ : k ∈ Z, 0 ≤ k ≤
⌊(Imax

i − Imin
i)/∆⌋} with sampling resolution ∆ = 0.5%.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Fine-grained optimization process in the ASAF framework. Building upon the coarse-
grained results G∗ and refined intervals {[Imin

i , Imax
i]}, this phase performs precise layer alloca-

tion and sparsity selection through group-wise optimization. The process progressively converges
from initial grouping configurations through iterative optimization to optimal layer configurations
L∗
1,L∗

2, . . . ,L∗
n and optimal sparsity rates s∗1, s

∗
2, . . . , s

∗
n, where G∗ = n denotes the optimal num-

ber of groups.

The progressive convergence mechanism illustrated in the figure shows how the optimization itera-
tively refines both layer assignments and sparsity selections. The process employs tabulation table
lookups H[l][j][s] to efficiently evaluate different configurations without redundant computation.
Each iteration improves upon previous solutions by leveraging the optimal substructure property
inherent in the problem formulation.

The final optimization output produces the complete ASAF solution: optimal layer configura-
tions L∗

1,L∗
2, . . . ,L∗

n specifying the exact layer ranges for each group, and optimal sparsity rates
s∗1, s

∗
2, . . . , s

∗
n that minimize total computational FLOPs while satisfying sensitivity constraints∑G∗

i=1 ξ(L∗
i , s

∗
i) ≤ δmax.

The two-phase decomposition strategy demonstrated in Figures 5 and 6 exemplifies the dynamic pro-
gramming approach by transforming a complex combinatorial optimization problem into a sequence
of manageable subproblems. This decomposition achieves polynomial time complexity while main-
taining optimality guarantees, making the ASAF framework computationally tractable for practical
large language model deployment scenarios.

APPENDIX A.5: COARSE-GRAINED OPTIMIZATION

The coarse-grained optimization phase serves as the foundation of our ASAF framework by estab-
lishing the optimal group structure and narrowing the sparsity search space for subsequent fine-
grained optimization. This phase addresses the fundamental challenge of determining how many
layer groups should be formed and what sparsity intervals each group should operate within, effec-
tively decomposing the exponential search space into manageable subproblems.

A.5.1 MATHEMATICAL FORMULATION

The coarse-grained optimization addresses the first subproblem of our original formulation in Equa-
tion ?? by minimizing the total computational FLOPs across all possible group configurations while
satisfying accuracy degradation constraints:

{G∗, {I∗i }G
∗

i=1} = arg min
G,{Ii}G

i=1

{
G∑
i=1

min
Li,si∈Ii

∑
l∈Li

ϕl × (1− si)

}
, (7)

where G represents the number of groups, Ii denotes the sparsity interval for group i, Li represents
consecutive layers in group i, si is the sparsity rate for group i, and ϕl is the original computa-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

tional cost of layer l. The constraint ensures
∑G

i=1 ξ(Li, si) ≤ δmax, where ξ(Li, si) quantifies the
accuracy degradation caused by applying sparsity rate si to layer group Li.

The dynamic programming state formulation defines DPcoarse[g][b] as the minimum total FLOP cost
when using exactly g groups with discretized accuracy degradation budget b:

DPcoarse[g][b] = min
{Ii}g

i=1

{
g∑

i=1

min
Li,si∈Ii

∑
l∈Li

ϕl × (1− si)

}
, (8)

where the state represents the optimal cost achievable with g groups under accuracy degradation
budget b×∆ (with ∆ being the discretization step), and the minimization considers all valid interval
partitions and corresponding layer-sparsity assignments.

The state transition equation considers all possible ways to add one more group by selecting an
appropriate interval subset:

DPcoarse[g][b] = min
I⊆[α,β]

{OptimalCost(I) + DPcoarse[g − 1][b− ξcost(I)/∆]} , (9)

where I represents the sparsity interval assigned to the g-th group, OptimalCost(I) denotes the
minimum FLOP cost achievable within interval I , and ξcost(I) represents the accuracy degradation.

Algorithm 1 Coarse-grained Optimization

Require: Layer count p, sparsity range [α, β], accuracy degradation threshold δmax

Ensure: Optimal group number G∗ and intervals {[Imin
i , Imax

i]}
1: Initialize DPcoarse[0..p][0..δmax/∆]←∞
2: Set boundary condition: DPcoarse[0][0]← 0
3: Generate interval candidates I = {I : I ⊆ [α, β]}
4: Main DP Loop:
5: for g = 1 to p do
6: for b = 0 to δmax/∆ do
7: for each interval I ∈ I do
8: cost← OptimalCost(I) using tabulation H
9: accuracy cost← ξcost(I)/∆ using tabulation Ξ

10: if b− accuracy cost ≥ 0 then
11: total cost← cost + DPcoarse[g − 1][b− accuracy cost]
12: DPcoarse[g][b]← min(DPcoarse[g][b], total cost)
13: end if
14: end for
15: end for
16: end for
17: Solution Extraction:
18: G∗ ← argming{minb DPcoarse[g][b]}
19: {Imin

i , Imax
i } ← BacktrackOptimalIntervals(DPcoarse, G

∗)
20: return G∗, {[Imin

i , Imax
i]}G∗

i=1 =0

A.5.2 ALGORITHMIC ANALYSIS

The dynamic programming formulation operates on a two-dimensional state space where
DPcoarse[g][b] represents the minimum achievable computational cost when utilizing exactly g groups
with discretized accuracy degradation budget b. The discretization parameter ∆ = 0.5% transforms
the continuous constraint into a tractable discrete optimization problem while maintaining sufficient
precision for practical deployment.

The initialization establishes boundary conditions essential for correctness. The infinite initializa-
tion for DPcoarse[g][b] ensures only valid transitions result in finite costs, while DPcoarse[0][0] = 0
represents the base case with no groups and no degradation.

The interval generation constructs candidate sparsity intervals I that partition [α, β] into meaningful
subranges. Each interval I ∈ I represents a potential sparsity operating range for a layer group,
enabling exploration of different sparsity allocation granularities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

The core dynamic programming loop systematically explores group counts and accuracy budgets
through three nested iterations. The outermost loop over g considers configurations from single
groups to maximum granularity where Gmax = p. The middle loop over budget b discretizes the
accuracy constraint, while the innermost loop over intervals I evaluates each potential sparsity as-
signment.

Within each iteration, the algorithm queries tabulation tables H and Ξ for precomputed costs and
degradation values. The tabulation mechanism transforms expensive evaluations into constant-time
operations, enabling scalability to large layer counts. The cost computation combines immediate
interval contribution with optimal subproblem costs, maintaining optimal substructure.

The feasibility check b − accuracy cost ≥ 0 ensures configurations remain within the accuracy
threshold δmax. When feasible configurations are identified, the minimization operation updates the
dynamic programming table only for improved solutions.

The solution extraction identifies the optimal configuration by examining all computed states:
G∗ = argming{minb DPcoarse[g][b]}. The backtracking procedure reconstructs specific interval as-
signments by tracing decisions that led to the optimal solution, producing refined sparsity intervals
that narrow the search space from [α, β].

State Transition Intuition. The dynamic programming transitions embody intuitive decision-
making processes. In the coarse-grained phase, each state transition addresses the question: ”Given
that I have optimally allocated the first g−1 groups, what sparsity interval should I assign to the g-th
group to minimize total cost while staying within the accuracy budget?” This decomposition enables
systematic exploration of interval assignments without reconsidering previous group decisions. The
state DPcoarse[g][b] encapsulates all optimal ways to use exactly g groups with budget b, allowing
efficient evaluation of adding one more group with a specific interval choice.

A.5.3 COMPLEXITY ANALYSIS

Upon completion, the coarse-grained optimization produces two critical outputs: the optimal num-
ber of groups G∗ that minimizes computational overhead while satisfying accuracy constraints, and
refined sparsity intervals {[Imin

i , Imax
i]}G∗

i=1 that narrow the search space from the original range
[α, β]. These outputs provide essential guidance for the subsequent fine-grained optimization phase,
significantly reducing the search space while preserving the potential for globally optimal solutions.

APPENDIX A.6: FINE-GRAINED OPTIMIZATION

The fine-grained optimization phase receives the optimal group number G∗ and refined sparsity
intervals from the coarse-grained phase and determines the precise layer allocation and sparsity rate
assignment that minimizes computational FLOPs while satisfying accuracy constraints. This phase
operates on a significantly reduced search space compared to the original problem, enabling detailed
optimization within the refined parameter ranges.

A.6.1 MATHEMATICAL FORMULATION

The fine-grained optimization addresses the second subproblem of our original formulation by min-
imizing the exact total computational FLOPs through optimal layer partitioning and sparsity assign-
ment:

{{L∗
i }G

∗

i=1, {s∗i }G
∗

i=1} = arg min
{Li}G∗

i=1,{si}G∗
i=1

{
G∗∑
i=1

∑
l∈Li

ϕl × (1− si)

}
, (10)

where {Li}G
∗

i=1 represents the layer allocation with each Li containing consecutive layers, and
{si}G

∗

i=1 denotes the sparsity rates. The constraints ensure
∑G∗

i=1 ξ(Li, si) ≤ δmax, si ∈
[Imin

i , Imax
i], Li are consecutive,

⋃G∗

i=1 Li = {1, 2, . . . , p}, and Li ∩ Lj = ∅ for i ̸= j.

The dynamic programming state formulation defines DPfine[i][g][b] as the minimum total FLOP cost
for optimally partitioning layers [i..p] into exactly g consecutive groups with remaining accuracy

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

degradation budget b:

DPfine[i][g][b] = min
{Lk}g

k=1,{sk}
g
k=1

{
g∑

k=1

∑
l∈Lk

ϕl × (1− sk)

}
, (11)

where the state covers layers from position i to p, requires exactly g groups, has remaining budget
b, and ensures

⋃g
k=1 Lk = {i, i + 1, . . . , p} with each Lk consecutive, sk ∈ [Imin

k , Imax
k], and∑g

k=1 ξ(Lk, sk) ≤ b.

Algorithm 2 Fine-grained Optimization

Require: G∗ groups, intervals {[Imin
i , Imax

i]}, tabulation tables H , Ξ
Ensure: Optimal allocation {L∗

i } and sparsity rates {s∗i }
1: Initialize DPfine[1..p+ 1][0..G∗][0..δmax/∆]←∞
2: Initialize choice[1..p+ 1][0..G∗][0..δmax/∆]← ∅
3: Set boundary condition: DPfine[p+ 1][0][b]← 0 for all b ≥ 0
4: Backward DP Construction:
5: for i = p down to 1 do
6: for g = 1 to min(G∗, p− i+ 1) do
7: for b = 0 to δmax/∆ do
8: for j = i to p− g + 1 do
9: for s ∈ Discretize([Imin

G∗−g+1, I
max
G∗−g+1]) do

10: group cost, accuracy cost← H[i][j − i+ 1][s],Ξ[i][j − i+ 1][s]/∆
11: if b− accuracy cost ≥ 0 then
12: total cost← group cost + DPfine[j + 1][g − 1][b− accuracy cost]
13: if total cost < DPfine[i][g][b] then
14: DPfine[i][g][b]← total cost
15: choice[i][g][b]← (j, s)
16: end if
17: end if
18: end for
19: end for
20: end for
21: end for
22: end for
23: Solution Reconstruction:
24: {L∗

i , s
∗
i } ← BacktrackSolution(choice, 1, G∗, δmax/∆)

25: return {L∗
i }G

∗

i=1, {s∗i }G
∗

i=1 =0

The state transition equation jointly enumerates all possible first-group formations and sparsity as-
signments within the corresponding refined interval. The transition first identifies the optimal group
end position j and sparsity rate s:

j∗, s∗ = arg min
j∈[i,p−g+1]

s∈[Imin
G∗−g+1,I

max
G∗−g+1]

{H[i][j − i+ 1][s] + Ξ[i][j − i+ 1][s]} . (12)

Then the state transition equation becomes:

DPfine[i][g][b] = H[i][j∗ − i+ 1][s∗] + DPfine[j
∗ + 1][g − 1][b− Ξ[i][j∗ − i+ 1][s∗]], (13)

where j defines the end of the first group (layers i to j), s is the sparsity rate from the refined
interval for this group position, H[i][j− i+1][s] provides the exact FLOP cost from tabulation, and
Ξ[i][j − i+ 1][s] gives the exact accuracy degradation cost.

A.6.2 ALGORITHMIC ANALYSIS

The fine-grained optimization employs three-dimensional dynamic programming where
DPfine[i][g][b] represents the minimum cost for partitioning layers [i..p] into exactly g consec-
utive groups with remaining budget b. The backward construction enables locally optimal decisions

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

while maintaining global optimality through optimal substructure. The choice table records specific
decisions for efficient solution reconstruction.

The boundary condition DPfine[p+ 1][0][b] = 0 provides the foundation for backward construction.
The backward process begins from the final layer and works toward the initial layer, systematically
considering all possible first-group formations in each subproblem.

The nested loops systematically enumerate all feasible configurations. The constraint g ≤
min(G∗, p − i + 1) prevents creating more groups than specified or available. The group end po-
sition j ≤ p − g + 1 ensures sufficient layers remain for subsequent groups. The sparsity rate s is
constrained to refined intervals [Imin

G∗−g+1, I
max
G∗−g+1], significantly reducing search space compared

to [α, β].

Tabulation lookups retrieve precomputed values: H[i][j − i+1][s] for FLOP costs and Ξ[i][j − i+
1][s]/∆ for accuracy degradation. The feasibility check b− accuracy cost ≥ 0 maintains constraint
satisfaction. Cost updates occur only when improvements are found, maintaining optimality while
avoiding redundant computations.

The solution reconstruction traverses the choice table from initial state (1, G∗, δmax/∆) and follows
recorded decisions to construct the complete solution. Each choice (j, s) specifies group boundaries
and sparsity rates, continuing until all groups are identified.

State Transition Intuition. The fine-grained optimization addresses the question: ”To optimally
partition layers [i..p] into exactly g consecutive groups with remaining budget b, which layers should
form the first group and what sparsity rate should be applied?” The backward construction ensures
that when deciding the first group boundary j and sparsity s, all subsequent decisions from layer
j + 1 onward are already optimal. This decomposition transforms the complex joint optimization
of layer allocation and sparsity assignment into a sequence of local decisions with global optimality
guarantees.

A.6.3 COMPLEXITY ANALYSIS

Upon completion, the fine-grained optimization generates the complete optimal solution: precise
consecutive layer allocation {L∗

i }G
∗

i=1 and optimal sparsity rates {s∗i }G
∗

i=1 that minimize computa-
tional FLOPs. Each L∗

i = {l(i)start, l
(i)
start + 1, . . . , l

(i)
end} defines consecutive layers satisfying continuity

and completeness constraints, while s∗i ∈ [Imin
i , Imax

i] ⊆ [α, β] ensures adherence to the refined
sparsity intervals.

APPENDIX A.7: TABULATION

The tabulation mechanism forms the computational backbone of the ASAF framework by providing
efficient access to FLOP costs and accuracy degradation metrics for arbitrary consecutive layer
sequences and sparsity rate combinations. This precomputation strategy transforms the dynamic
programming algorithms from computationally prohibitive procedures into tractable optimization
methods suitable for large-scale model deployment.

A.7.1 MATHEMATICAL FORMULATION

The tabulation mechanism constructs two three-dimensional tables that provide O(1) lookup for any
layer sequence and sparsity combination:

H[start][length][s] =
start+length−1∑

l=start

ϕl × (1− s), (14)

Ξ[start][length][s] = ξ({start, start + 1, . . . , start + length− 1}, s), (15)

where H stores FLOP costs and Ξ stores accuracy degradation costs. Here, start ∈ [1, p] denotes
the starting layer index, length ∈ [1, p− start + 1] represents the number of consecutive layers, s ∈
Sdiscrete is the discretized sparsity rate with resolution ∆ = 0.5%, ϕl is the original computational
cost of layer l, and ξ(·) quantifies accuracy degradation.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The discrete sparsity set is defined as:

Sdiscrete = {α+ k∆ : k ∈ N, α+ k∆ ≤ β}. (16)

This discretization partitions the continuous sparsity range [α, β] into uniformly spaced discrete
points, enabling efficient tabulation while maintaining sufficient precision for optimization purposes.

Algorithm 3 Tabulation Construction

Require: Model layers {1, 2, . . . , p}, sparsity discretization ∆ = 0.5%
Ensure: Tabulation tables H , Ξ

1: Initialize H[1..p][1..p][|Sdiscrete|]← 0
2: Initialize Ξ[1..p][1..p][|Sdiscrete|]← 0
3: Sdiscrete ← {α+ k∆ : k ∈ N, α+ k∆ ≤ β}
4: Systematic Pre-computation:
5: for start = 1 to p do
6: for length = 1 to p− start + 1 do
7: Lseq ← {start, start + 1, . . . , start + length− 1}
8: for each sparsity s ∈ Sdiscrete do
9: H[start][length][s]←

∑
l∈Lseq

ϕl × (1− s)

10: Ξ[start][length][s]← ξ(Lseq, s)
11: end for
12: end for
13: end for
14: return H , Ξ =0

A.7.2 ALGORITHMIC ANALYSIS

The tabulation construction systematically precomputes FLOP costs and accuracy degradation val-
ues for all consecutive layer sequences and discretized sparsity rates. The three-dimensional tables
H and Ξ enable constant-time lookup during optimization phases, eliminating redundant calcula-
tions and concentrating computational burden in preprocessing.

The discrete sparsity set Sdiscrete balances computational efficiency with optimization precision. The
systematic precomputation exhaustively evaluates all valid combinations of starting positions, se-
quence lengths, and sparsity rates. The constraint length ≤ p − start + 1 maintains validity by
preventing sequences extending beyond available layers.

The FLOP cost calculation H[start][length][s] =
∑

l∈Lseq
ϕl × (1 − s) represents total computa-

tional cost when applying sparsity rate s. The factor (1 − s) reflects computational reduction from
sparsification, while summation over ϕl accounts for heterogeneous layer costs.

The accuracy degradation calculation Ξ[start][length][s] = ξ(Lseq, s) quantifies performance impact.
The sensitivity function ξ(·) requires careful design balancing accuracy with computational tractabil-
ity. Gradient-based methods provide theoretical foundations but require significant resources, while
activation-based methods offer efficiency at potential accuracy cost.

The tabulation tables enable the transformation of dynamic programming state transitions from
O(group size) computations to O(1) operations. Without tabulation, each state transition would
require recomputation of FLOP costs and accuracy degradation values, leading to prohibitive com-
putational complexity for large models. The precomputation strategy concentrates the computational
burden in the preprocessing phase while ensuring that the subsequent optimization phases operate
with maximum efficiency.

A.7.3 TABULATION STORAGE REQUIREMENTS

Storage Specifications. The tabulation tables H and Ξ require O(L2 × |Sdiscrete|) storage each.
For Llama-2-7B with L = 32 layers and |Sdiscrete| = 29 sparsity levels, each table requires approx-
imately 0.76 MB in single precision. The preprocessing computation is O(L2 × |Sdiscrete| × Cξ)
where Cξ represents the cost of evaluating the sensitivity function ξ(·).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Reusability. Tables can be computed once per model and reused across multiple optimization
scenarios. The constant-time lookup capability enables efficient exploration of large solution spaces.

APPENDIX A.8: COMPLETE HYPERPARAMETER SPECIFICATIONS

A.8.1 ASAF FRAMEWORK CONFIGURATION

Dynamic Programming Parameters. Our ASAF framework explores sparsity allocations within
the constrained range where α = 1% represents the minimum sparsity threshold and β = 15%
defines the maximum sparsity level, following established practices in neural network pruning (Han
et al., 2015). The maximum allowable accuracy degradation is set to δmax = 1% to ensure prac-
tical deployment viability. Tabulation sampling resolution is configured as ∆ = 0.5%, providing
sufficient granularity for optimization while maintaining computational tractability. The dynamic
programming state space discretizes the accuracy degradation budget into 200 steps, with maximum
group exploration set to the total layer count to allow full granularity in layer allocation decisions.

Tabulation Construction. The sensitivity measurement employs 1000 calibration samples to en-
sure statistical robustness during tabulation construction (Frantar & Alistarh, 2023). Tabulation
cache allocation is limited to 2048 MB to accommodate GPU memory constraints while providing
sufficient storage for memoization. All tabulation computations utilize FP32 precision accumulation
to maintain numerical stability throughout the dynamic programming process, preventing precision
degradation that could affect optimization quality (Jacob et al., 2018).

A.8.2 LEARNING RATE AND OPTIMIZATION CONFIGURATION

Learning Rate Schedule. The base learning rate for fine-tuning is set to γ0 = 1×10−5, representing
0.01× of typical pre-training rates to account for the sensitivity of sparse structures (Han et al., 2015).
We employ cosine annealing with warm restarts over Ttotal = 1000 steps following established
practices in quantization fine-tuning (Frantar et al., 2022):

γt = γmin +
1

2
(γ0 − γmin)

(
1 + cos

(
t

Ttotal
π

))
, (17)

where γmin = 1× 10−7 prevents complete learning rate decay.

Optimizer Configuration. We utilize AdamW optimizer with parameters β1 = 0.9, β2 = 0.999,
following standard configurations for transformer fine-tuning (Touvron et al., 2023). Weight decay is
set to w = 0.01 to provide L2 regularization without interfering with the sparse structure. Gradient
clipping threshold is configured at clip value = 1.0 to prevent training instability during sparse
fine-tuning (Ashkboos et al., 2024b).

A.8.3 QUANTIZATION CONFIGURATION

Weight Quantization Parameters. Weight quantization employs 4-bit precision for all linear lay-
ers, with per-channel symmetric quantization applied to preserve fine-grained statistics (Frantar
et al., 2022). The quantization scale s for each channel c is computed as:

sc =
max(|Wc|) · clip ratio

2bits−1 − 1
, (18)

where clip ratio = 0.9 controls the quantization range to handle outliers. For weight quantization,
we employ both round-to-nearest (RTN) method (Jacob et al., 2018) and GPTQ (Frantar et al., 2022)
approaches. We use per-column symmetric quantization (Jacob et al., 2018) with group size 128 to
balance quantization quality and computational efficiency. During GPTQ quantization, we utilize
128 samples from the WikiText-2 dataset (Merity et al., 2016) with sequence length of 2048 as the
calibration set, following established protocols for transformer quantization.

Activation Quantization Parameters. We apply per-token symmetric quantization to quantize the
inputs, where each row of the activation matrix shares a common quantization scale (Xiao et al.,
2023). The clipping ratio is fixed at 0.9 across all experiments to maintain consistent quantiza-
tion behavior. This approach effectively handles the dynamic range of activations while preserving
computational efficiency during sparse matrix operations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

KV Cache Quantization. The KV caches are quantized using asymmetric quantization (Dettmers
et al., 2022), organized into groups of 128 elements to match the head dimension structure of trans-
former architectures. A constant clipping ratio of 0.95 is applied to accommodate the typically wider
dynamic range of cached key-value pairs compared to standard activations (Ashkboos et al., 2024b).

A.8.4 HARDWARE-SPECIFIC PARAMETERS

Batch Configuration. Training employs micro-batch size of 1 with gradient accumulation over 8
steps, yielding an effective batch size of 8. This configuration optimizes memory usage on RTX
3090 GPUs while maintaining training stability for large language models (Touvron et al., 2023).
Sequence length is fixed at 2048 tokens to match evaluation conditions and ensure consistent mem-
ory allocation patterns during optimization.

Memory Management. Mixed precision training uses FP16 for forward passes and FP32 for gradi-
ent computation, following established practices for stable quantization fine-tuning (Ashkboos et al.,
2024b). The maximum memory allocation is set to 10.5 GB to account for CUDA overhead on 12
GB GPU memory configurations. Dynamic loss scaling starts at 216 with automatic adjustment to
prevent gradient underflow, ensuring numerical stability throughout the sparse optimization process
(Jacob et al., 2018).

A.8.5 EVALUATION CONFIGURATION

Language Generation Tasks. We evaluate on WikiText-2 perplexity using 2048-token sequences
with a sliding window stride of 512 for comprehensive coverage (Merity et al., 2016). Throughput
evaluation encompasses batch sizes of 1, 4, 16, and 32 to assess scalability across different deploy-
ment scenarios. All language generation tasks utilize greedy decoding with temperature set to 0.0 to
ensure deterministic and reproducible results.

Zero-shot Classification. We assess our framework across six established benchmarks: PIQA (Bisk
et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), LAMBADA
(Radford et al., 2019), ARC-Easy and ARC-Challenge (Clark et al., 2018). All experiments utilize
the LM Evaluation Harness (Gao et al., 2021; 2024) with default configurations. Maximum genera-
tion length is limited to 256 tokens with KV cache enabled for efficient inference during evaluation.

A.8.6 TARGET MATRIX CONFIGURATION

Figure 7: Target weight matrices in transformer layers for ASAF quantization and sparsification.

Figure 7 illustrates the complete transformer layer architecture highlighting the seven target weight
matrices that undergo both 4-bit quantization and adaptive sparsity allocation in our ASAF frame-
work. The green boxes represent the linear projection matrices: query (Wq), key (Wk), value (Wv),
and output (Wo) projections in the multi-head attention mechanism, as well as up-projection (Wup),
gate projection (Wgate), and down-projection (Wdown) matrices in the feed-forward network. These
matrices constitute the primary computational bottlenecks in transformer inference and are the fo-
cus of our layer-group-based optimization strategy, while components like RMSNorm and positional
encoding remain unmodified to preserve numerical stability.

Matrix-Level Configuration. Our ASAF framework applies unified quantization and adaptive
sparsity allocation to all linear projection matrices within each transformer layer, as illustrated
in Figure 7. The attention mechanism matrices include query projection Wq ∈ Rdmodel×dhead ,
key projection Wk ∈ Rdmodel×dhead , value projection Wv ∈ Rdmodel×dhead , and output projec-
tion Wo ∈ Rdhead×dmodel (Touvron et al., 2023). The feed-forward network matrices consist of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

up-projection Wup ∈ Rdmodel×dff , gate projection Wgate ∈ Rdmodel×dff , and down-projection
Wdown ∈ Rdff×dmodel where dff = 4 × dmodel following standard transformer scaling (Touvron
et al., 2023).

Layer-Group Sparsity Application. Each target matrix within a layer group receives identical
sparsity allocation determined by our dynamic programming optimization. For layer group Li with
optimized sparsity rate s∗i , all seven projection matrices (Wq , Wk, Wv , Wo, Wup, Wgate, Wdown)
undergo magnitude-based pruning at rate s∗i (Han et al., 2015). This uniform application ensures
consistent computational benefits across all matrix operations within each layer while preserving
the structural integrity of the transformer architecture. The RMSNorm parameters and positional
encoding remain unmodified to maintain numerical stability during inference (?).

Quantization Integration. Following the rotation-based quantization pipeline (Ashkboos et al.,
2024b), each target matrix first undergoes 4-bit GPTQ quantization (Frantar et al., 2022) before spar-
sity application. The quantization process preserves the relative magnitude relationships critical for
effective pruning, while the subsequent sparsification leverages the quantized weight distributions
for optimal efficiency. This sequential approach ensures compatibility between the compression
techniques while maximizing hardware acceleration potential on modern GPU architectures.

APPENDIX A.9: ACCURACY RESULTS

Table 1: WikiText-2 perplexity comparison for Llama-2 models (2048 sequence length) using 4-
bit quantization. SmoothQuant and OmniQuant results are from (Shao et al., 2023), and 128G
indicates group-wise quantization with 128 group size. Our ASAF framework applies layer-group-
based pruning, with 4-bit precision across weights, activations, and KV caches. Lower perplexity
indicates better performance.

Method Weight #Outlier Llama-2
Quantization Features 7B 13B 30B 70B

Baseline - - 5.47 4.88 4.09 3.32

SmoothQuant (Xiao et al., 2023) RTN 0 83.12 35.88 - -
OmniQuant (Shao et al., 2023) RTN 0 14.26 12.30 - -

QUIK-4B (Ashkboos et al., 2023) GPTQ 256 8.87 7.78 7.28 6.91
QuaRot GPTQ 0 6.10 5.40 4.41 3.79

ASAF (Ours) GPTQ 0 6.14 5.44 4.44 3.82

Atom-128G (Zhao et al., 2023)
GPTQ-128G

128 6.03 5.26 - -
QuaRot-128G 0 5.93 5.26 4.25 3.61

ASAF-128G (Ours) 0 5.98 5.30 4.28 3.64

Language Generation Tasks. We evaluate our ASAF framework on the WikiText-2 language-
generation benchmark. Table 1 reports the perplexity after quantizing Llama-2 weights to 4 bits with
GPTQ and applying our adaptive sparsity allocation across layer groups. Our framework demon-
strates competitive performance compared to state-of-the-art quantization methods, achieving per-
plexity degradation less than 1% compared to QuaRot while providing additional computational
benefits through optimized sparsity allocation. The layer-group-based pruning approach requires no
additional outlier storage or asymmetric quantization schemes. When using group-size-128 quanti-
zation, ASAF maintains comparable performance with perplexity increases within 1% of QuaRot-
128G while enabling more efficient inference through adaptive sparsity patterns.

Zero-Shot Tasks. We assess ASAF across six established zero-shot benchmarks: PIQA (Bisk et al.,
2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), LAMBADA (Rad-
ford et al., 2019), and ARC-Easy and ARC-Challenge (Clark et al., 2018). Experiments utilize the
LM Evaluation Harness (Gao et al., 2021; 2024) with default configurations. Table 2 shows that
ASAF maintains strong performance across all Llama-2 model sizes, with performance degradation
consistently below 1% compared to QuaRot. The ASAF preserves model capabilities while enabling
computational efficiency gains through optimized layer-group pruning patterns.

Prefill Stage Performance Increases. Figure 8 demonstrates the acceleration performance of ASAF
across various batch configurations (1, 4, 16, and 32) with 2048-token sequences on Llama-2 mod-
els. Our adaptive sparsity allocation approach consistently outperforms the QuaRot baseline imple-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot accuracy of Llama models with our ASAF framework on PIQA (PQ), Wino-
Grande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA). Our
method applies adaptive sparsity allocation across layer groups.

Model Method PQ WG HS A-e A-c LA Avg.

Llama2-7B
FP16 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot 76.77 63.77 72.16 69.87 40.87 70.39 65.64
ASAF (Ours) 76.00 63.23 71.47 69.17 40.52 69.69 65.01

Llama2-13B
FP16 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot 78.89 70.24 76.37 72.98 46.59 73.67 69.79
ASAF (Ours) 78.26 69.68 75.76 72.25 46.19 72.97 69.19

Llama2-30B
FP16 81.13 73.94 80.72 78.52 51.65 77.59 73.93

QuaRot 79.94 72.03 77.99 75.20 49.46 75.18 71.63
ASAF (Ours) 79.14 71.42 77.37 74.60 48.99 74.58 71.02

Llama2-70B
FP16 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot 82.43 76.24 81.82 80.43 56.23 78.73 75.98
ASAF (Ours) 81.77 75.48 81.12 79.71 55.81 77.98 75.31

Figure 8: Performance comparison between our framework and QuaRot on Llama-2 models, evalu-
ated on NVIDIA RTX 3090 GPUs with 2048-token sequences across various batch sizes.

mentation across all tested configurations. The performance gains become more pronounced with
larger batch sizes, as the computational workload increasingly overshadows memory bandwidth
limitations. For the largest 70B model, our method reaches peak acceleration of 3.63×. The results
reveal a clear trend where both increasing model complexity and batch size magnify the effectiveness
of our optimization strategy, demonstrating the scalable nature of the ASAF framework’s adaptive
layer-wise sparsity allocation mechanism.

Table 3: GPU memory consumption comparison between QuaRot and our ASAF framework across
different Llama-2 model sizes. All measurements in MB for inference with 2048 sequence length at
batch size 1. Compression ratios reflect adaptive sparsity allocation.

.

Method Llama-2
7B 13B 30B 70B

QuaRot 3,255 MB 5,753 MB 11,408 MB 20,536 MB
ASAF (Ours) 3,013 MB 5,276 MB 10,110 MB 17,943 MB
Compression Ratio 7.43% 8.29% 11.38% 12.63%

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Computational and Memory Efficiency. This algorithmic efficiency translates directly to memory
benefits during inference. As shown in Table 3, ASAF achieves an average memory reduction of
9.93% across all model sizes, ranging from 7.43% for the 7B model to 12.63% for the 70B model,
demonstrating our adaptive sparsity allocation strategy that applies conservative pruning to smaller
models while aggressively leveraging redundancy in larger architectures. The layer-group-based
pruning strategy enables efficient sparse matrix operations that preserve computational patterns fa-
vorable to modern GPU architectures. Combined with 4-bit quantization, our approach allows de-
ployment of large models on resource-constrained hardware while maintaining inference quality.

RTN Quantization Strategy. To evaluate the robustness of our adaptive sparsity allocation ap-
proach, we compare ASAF’s performance under RTN quantization, where GPTQ serves as the
default weight quantization strategy. Table 4 demonstrates that at 8-bit precision, RTN maintains
accuracy nearly identical to full precision for both approaches. At 4-bit quantization, while both
methods experience some quality degradation, our ASAF framework consistently maintains perfor-
mance within 1% of QuaRot results across all model sizes. In both INT4 and INT8 configurations,
these findings confirm that layer-group-based adaptive sparsity allocation can be effectively com-
bined with RTN quantization without introducing significant accuracy loss, validating the general-
izability of our optimization framework.

Table 4: WikiText-2 perplexity (PPL) and zero-shot accuracy of our ASAF framework for Llama-2
models applying 4- and 8-bits with RTN weights and activation quantization. We use PIQA (PQ),
WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).
We quantize all weights, activations, and caches and introduce adaptive sparsity allocation across
layer groups.

Model Method Precision PPL ↓ PQ ↑ WG ↑ HS ↑ A-e ↑ A-c ↑ LA ↑ Avg. ↑

7B

Baseline FP16 5.47 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot-RTN INT4 8.37 72.09 60.69 65.40 58.88 35.24 57.27 58.26
INT8 5.50 78.94 68.67 75.80 74.79 45.39 74.33 69.65

ASAF-RTN (Ours) INT4 8.44 71.48 60.23 64.81 58.38 34.98 56.75 57.77
INT8 5.54 78.31 68.09 75.12 74.19 45.00 73.66 69.06

13B

Baseline FP16 4.88 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot-RTN INT4 6.09 77.37 67.32 73.11 70.83 43.69 70.66 67.16
INT8 4.90 80.52 71.59 79.38 77.31 49.15 76.79 72.46

ASAF-RTN (Ours) INT4 6.14 76.67 66.71 72.45 70.19 43.30 70.02 66.56
INT8 4.94 79.84 70.91 78.67 76.65 48.68 76.10 71.81

30B

Baseline FP16 4.42 81.13 73.94 80.72 78.52 51.65 77.59 73.93

QuaRot-RTN INT4 5.51 78.36 69.65 75.05 72.84 46.08 72.56 69.09
INT8 4.43 81.18 73.35 80.65 78.36 51.58 77.63 73.82

ASAF-RTN (Ours) INT4 5.56 77.69 68.99 74.37 72.22 45.64 71.91 68.47
INT8 4.47 80.45 72.69 79.92 77.65 51.12 76.93 73.13

70B

Baseline FP16 3.32 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot-RTN INT4 4.14 80.69 75.14 79.63 77.57 51.71 77.02 73.63
INT8 3.33 82.97 77.98 83.67 80.77 58.11 79.53 77.17

ASAF-RTN (Ours) INT4 4.18 79.92 74.46 78.83 76.83 51.24 76.25 72.92
INT8 3.36 82.14 77.24 82.92 79.96 57.56 78.81 76.44

APPENDIX A.10: COMPUTATIONAL EFFICIENCY ANALYSIS

A.10.1 UNIFIED COMPLEXITY ANALYSIS

Baseline Brute-Force Complexity. The naive approach requires exhaustive enumeration of all
possible layer grouping and sparsity allocation configurations. For a model with L layers and |S|
discretized sparsity rates, the total search space includes:

• Layer grouping: 2L−1 possible ways to partition layers into consecutive groups
• Sparsity assignment: |S|G assignments for G groups, where G ranges from 1 to L

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The total brute-force complexity is:

Cbrute = O

(
L∑

G=1

(
L

G

)
× |S|G

)
= O(|S|L × 2L) (19)

For Llama-2-7B with L = 32 layers and |S| = 29 sparsity levels (1% to 15% with 0.5% steps):

• Brute force: 2932 × 232 ≈ 1047 operations

ASAF Framework Complexity. Our two-phase approach decomposes the problem into manage-
able subproblems:

Phase 1: Coarse-Grained Optimization Complexity: O(Gmax ×B × |I|)

• Gmax = L: maximum number of groups
• B = δmax/∆: discretized accuracy budget levels
• |I|: number of candidate sparsity intervals

Phase 2: Fine-Grained Optimization Complexity: O(L2 ×G∗ ×B × |S′|)

• L2: nested loops over layer positions and group boundaries
• G∗: optimal number of groups from Phase 1
• |S′| ≪ |S|: refined sparsity space size

Tabulation Preprocessing Complexity: O(L2 × |S| × Teval)

• Teval: evaluation time for sensitivity measurement per configuration

Total ASAF Complexity.
CASAF = O(L2 × |S| × Teval +Gmax ×B × |I|+ L2 ×G∗ ×B × |S′|) (20)

Dominant term: O(L2 × |S| × Teval) (tabulation preprocessing)

Practical Complexity Comparison. For Llama-2-7B configuration:

• L = 32, |S| = 29, Gmax = 32, B = 40, |I| = 15, G∗ ≈ 8, |S′| ≈ 3

• ASAF total: 322 × 29× Teval + 32× 40× 15 + 322 × 8× 40× 3 ≈ 3× 104 × Teval

• Speedup ratio: Cbrute/CASAF ≈ 1042/Teval

Memory Complexity. Dynamic Programming Tables

• Coarse-grained: O(Gmax ×B) = O(L× δmax/∆)

• Fine-grained: O(L×G∗ ×B) = O(L×G∗ × δmax/∆)

• Tabulation: O(L2 × |S|) for both FLOP and sensitivity tables

Total Memory
MemoryASAF = O(L2 × |S|+ L×G∗ × δmax/∆) (21)

Practical example (Llama-2-7B): ∼211KB total overhead, negligible compared to model parame-
ters.

Scalability Analysis. The polynomial complexity ensures graceful scaling:

• 12-layer model: 1015 brute-force vs 103 ASAF operations
• 48-layer model: 1070 brute-force vs 104 ASAF operations
• Complexity reduction ratio grows exponentially with model size

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.10.2 MEMORY EFFICIENCY ANALYSIS

Dynamic Programming State Management. The memory requirements for our dynamic pro-
gramming approach consist of three primary components. The coarse-grained DP table maintains
states with dimensions [Gmax]× [Tmax], requiringO(Gmax×Tmax) floating-point entries. For typ-
ical configurations, this translates to approximately 32 × 40 = 1, 280 entries, occupying roughly
5.12 KB when using FP32 precision. The fine-grained DP table stores states with dimensions
[L + 1] × [G∗] × [Tmax], necessitating O(L × G∗ × Tmax) floating-point entries. This typically
amounts to 33×8×40 = 10, 560 entries, consuming approximately 42.24 KB in FP32 format. The
tabulation mechanism maintains two lookup tables: the FLOP cost table H[i][len][s] and the accu-
racy degradation table Ξ[i][len][s], both with dimensions [L] × [L] × [|S|]. The combined memory
requirement becomes 2 × L × L × |S| entries, typically resulting in 2 × 32 × 32 × 20 = 40, 960
entries and consuming approximately 163.84 KB. The total memory overhead for all data struc-
tures amounts to 211.2 KB, which remains negligible compared to the model parameter memory
requirements.

Model Memory Reduction. The adaptive sparsity allocation strategy achieves memory efficiency
through strategic pruning of redundant parameters. For a layer group i with sparsity rate si, the
memory reduction is directly proportional: Memorysaved = si ×Memoryoriginal. However, ASAF’s
adaptive allocation provides superior memory efficiency compared to uniform sparsity approaches
by concentrating aggressive pruning on redundant layers while preserving critical layers with min-
imal sparsity. Our experimental results demonstrate progressive memory reduction scaling with
model size. The Llama-2-7B model achieves 7.43% memory reduction (from 3,255 MB to 3,013
MB), while the Llama-2-13B model attains 8.29% reduction (from 5,753 MB to 5,276 MB). Larger
models exhibit more substantial benefits, with the Llama-2-30B achieving 11.38% reduction (from
11,408 MB to 10,110 MB) and the Llama-2-70B reaching 12.63% reduction (from 20,536 MB to
17,943 MB). This scaling behavior reflects the increased redundancy present in larger architectures,
enabling more aggressive sparsification without accuracy degradation.

A.10.3 RUNTIME PERFORMANCE CHARACTERISTICS

Preprocessing and Optimization Time. The tabulation construction phase constitutes the pri-
mary preprocessing overhead, with time complexity O(L2 × |S| × Teval), where Teval represents the
evaluation time for a single configuration. Empirical measurements indicate preprocessing times
of 2-4 hours for Llama-2-7B on NVIDIA RTX 3090 hardware, which remains acceptable for de-
ployment scenarios requiring one-time optimization. The optimization phases exhibit minimal com-
putational overhead, with the coarse-grained phase typically completing within 30 seconds and the
fine-grained phase requiring approximately 10 seconds. The total optimization time remains un-
der one minute, which is negligible compared to the preprocessing requirements and enables rapid
exploration of alternative configurations.

Inference Acceleration Analysis. The FLOP reduction achieved by optimal allocation
{(Li, si)}G

∗

i=1 can be quantified as:

FLOPreduced =

G∗∑
i=1

∑
l∈Li

ϕl × si, (22)

where ϕl represents the original FLOP count for layer l. Experimental evaluation across differ-
ent batch sizes and model configurations reveals consistent acceleration patterns. The Llama-2-7B
model achieves speedups ranging from 1.89× at batch size 1 to 2.31× at batch size 32. Larger mod-
els demonstrate more substantial improvements, with the Llama-2-70B reaching peak acceleration
of 3.63× at batch size 32. This scaling behavior indicates that both increasing model complexity
and batch size amplify the effectiveness of our adaptive allocation strategy, as larger computational
workloads increasingly overshadow memory bandwidth limitations.

Hardware Utilization Efficiency. The layer-group-based sparsity patterns enable efficient hard-
ware utilization through several mechanisms. Sparse matrix operations reduce memory traffic pro-
portionally to the applied sparsity rates, while the structured nature of our allocation strategy facili-
tates efficient kernel implementations. The combination of 4-bit quantization with adaptive sparsity

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

maximizes the throughput-to-memory ratio, enabling effective utilization of tensor cores and other
specialized compute units available on modern GPU architectures.

A.10.4 SCALABILITY PROPERTIES

Layer Count Scaling. The polynomial complexity ensures graceful scaling with increasing model
sizes. As model layer counts increase from 12 to 48 layers, the complexity reduction factor grows
from 1012 to 1067, demonstrating the exponential advantage of our approach over brute-force enu-
meration. Specifically, a 12-layer model requires approximately 122× 20 = 2, 880 operations com-
pared to 212×2012 ≈ 1015 brute-force operations, while a 48-layer model needs 482×20 = 46, 080
operations versus 248 × 2048 ≈ 1070 brute-force operations.

Sparsity Resolution Impact. The impact of sparsity discretization resolution on computational
requirements follows a linear relationship. Increasing the sparsity resolution from 20 to 40 levels
doubles the tabulation construction time and slightly increases the optimization overhead. However,
finer resolution typically yields marginal improvements in final allocation quality, suggesting that
moderate discretization (0.5% to 1.0% steps) provides an optimal balance between computational
cost and optimization precision.

Accuracy Budget Sensitivity. The relationship between accuracy degradation budget and opti-
mization complexity exhibits sublinear scaling. Doubling the accuracy budget from 1% to 2%
increases the fine-grained optimization space by approximately 4×, but the coarse-grained phase
efficiently prunes the majority of suboptimal configurations, maintaining overall polynomial com-
plexity. This property ensures that our framework remains computationally tractable even when
exploring larger accuracy-efficiency trade-off spaces.

APPENDIX A.11: NVIDIA 4090 GPU PERFORMANCE ANALYSIS

Figure 9: Performance comparison between our ASAF framework and QuaRot on Llama-2 models,
evaluated on NVIDIA RTX 4090 GPUs with 2048-token sequences across various batch sizes.

Performance Evaluation on NVIDIA RTX 4090. We further evaluate our ASAF framework on
NVIDIA RTX 4090 GPUs to assess scalability across hardware generations. Figure 9 demonstrates
acceleration performance across various batch configurations with 2048-token sequences on Llama-
2 models. On RTX 4090, our framework achieves peak acceleration of 3.89× on the Llama-2-70B
model, representing a 7.2% improvement over the 3.63× achieved on RTX 3090. The relative

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

improvement of ASAF over QuaRot baseline remains consistent across both GPU generations, with
our method providing 6-8% additional acceleration across all model sizes, validating the hardware-
agnostic nature of our optimization approach.

APPENDIX A.12: LLAMA-3 EXPERIMENTAL RESULTS

Table 5: Zero-shot accuracy of Llama-3 models with our framework on PIQA (PQ), WinoGrande
(WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

Model Method PQ WG HS A-e A-c LA Avg.

Llama3-8B
FP16 81.28 72.14 78.32 78.71 52.13 76.84 73.24

QuaRot 79.16 69.82 75.47 75.33 48.29 73.95 70.34
ASAF (Ours) 78.52 69.26 74.81 74.73 47.94 73.40 69.78

Llama3-70B
FP16 85.42 81.77 86.15 85.23 64.42 82.91 80.98

QuaRot 84.28 80.34 84.61 83.76 62.88 81.24 79.52
ASAF (Ours) 83.65 79.77 83.94 83.05 62.47 80.63 78.92

Zero-Shot Tasks on Llama-3 Family. To further validate our framework’s generalizability, we
extend our evaluation to the Llama-3 model family, which demonstrates superior baseline perfor-
mance compared to Llama-2. We evaluate our framework on the same six zero-shot benchmarks:
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019),
LAMBADA (Radford et al., 2019), and the ARC-Easy and ARC-Challenge datasets (Clark et al.,
2018). Table 5 demonstrates that our method maintains competitive accuracy across Llama-3 model
sizes with performance degradation consistently below 1% compared to QuaRot, even on these more
advanced models with higher baseline performance.

APPENDIX A.13: GROUP-WISE QUANTIZATION

Table 6: WikiText-2 perplexity of 4-bit QuaRot and our ASAF framework under different group
sizes on Llama-2 models. Weights are GPTQ-quantized, and KV caches use fixed group size 128
(equal to head dimension). ”G” denotes group-wise quantization with specified group size. Our
method applies adaptive sparsity allocation across layer groups.

Method Llama-2
7B 13B 30B 70B

Baseline 5.47 4.88 4.09 3.32

QuaRot 6.10 5.40 4.41 3.79
QuaRot-256G 5.98 5.28 4.32 3.63
QuaRot-128G 5.93 5.26 4.25 3.61
QuaRot-64G 5.88 5.25 4.13 3.58

ASAF (Ours) 6.16 5.45 4.45 3.82
ASAF-256G (Ours) 6.03 5.32 4.36 3.66
ASAF-128G (Ours) 5.97 5.30 4.28 3.64
ASAF-64G (Ours) 5.94 5.28 4.17 3.62

Group-Wise Quantization. Table 6 reports WikiText-2 perplexity for our ASAF framework when
weights and activations are quantized group-wise with group sizes of 256, 128, and 64. As expected,
smaller groups yield better accuracy because per-group scale factors more precisely capture local
statistics, though they incur additional scale storage and slightly more complex kernels. Across every
group size, our adaptive sparsity allocation framework tracks QuaRot’s dense counterparts to within
1%, demonstrating that layer-group-based sparsity optimization can be achieved without meaningful
quality loss. The consistent performance across different group sizes validates the robustness of our
two-phase optimization approach under various quantization granularities.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency} tradeoff in {LLM}
inference with {Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117–134, 2024.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Quik: Towards end-to-end 4-bit inference on generative large language
models. arXiv preprint arXiv:2310.09259, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024b.

Richard Ernest Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Ruisi Cai, Yeonju Ro, Geon-Woo Kim, Peihao Wang, Babak Ehteshami Bejnordi, Aditya Akella,
Zhangyang Wang, et al. Read-me: Refactorizing llms as router-decoupled mixture of experts
with system co-design. Advances in Neural Information Processing Systems, 37:116126–116148,
2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396–4429, 2023.

Ciprian Chelba, Mia Chen, Ankur Bapna, and Noam Shazeer. Faster transformer decoding: N-gram
masked self-attention. arXiv preprint arXiv:2001.04589, 2020.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Static
quantization beats dynamic through prefixed outliers in llms. arXiv preprint arXiv:2410.05265,
2024a.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226–86242, 2024b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009. ISBN 9780262033848.

23

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill
Higher Education, Boston, MA, 2006.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Oshin Dutta, Ritvik Gupta, and Sumeet Agarwal. Efficient llm pruning with global token-
dependency awareness and hardware-adapted inference. In Workshop on Efficient Systems for
Foundation Models II@ ICML2024, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Zichuan Fu, Wentao Song, Yejing Wang, Xian Wu, Yefeng Zheng, Yingying Zhang, Derong Xu,
Xuetao Wei, Tong Xu, and Xiangyu Zhao. Sliding window attention training for efficient large
language models. arXiv preprint arXiv:2502.18845, 2025.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Haotong Qin,
Jinyang Guo, Michele Magno, and Xianglong Liu. A survey of low-bit large language models:
Basics, systems, and algorithms. arXiv preprint arXiv:2409.16694, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. arXiv preprint arXiv:2306.08543, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Yuhan Dong, Yu Wang,
et al. Flashdecoding++: Faster large language model inference with asynchronization, flat gemm
optimization, and heuristics. Proceedings of Machine Learning and Systems, 6:148–161, 2024.

Wenxuan Huang, Zijie Zhai, Yunhang Shen, Shaosheng Cao, Fei Zhao, Xiangfeng Xu, Zheyu Ye,
and Shaohui Lin. Dynamic-llava: Efficient multimodal large language models via dynamic vision-
language context sparsification. arXiv preprint arXiv:2412.00876, 2024.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, 2018.

Shibo Jie, Yehui Tang, Kai Han, Zhi-Hong Deng, and Jing Han. Specache: Speculative key-value
caching for efficient generation of llms. arXiv preprint arXiv:2503.16163, 2025.

24

https://zenodo.org/records/12608602

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Jaeseong Lee, Aurick Qiao, Daniel F Campos, Zhewei Yao, Yuxiong He, et al. Stun: Structured-
then-unstructured pruning for scalable moe pruning. arXiv preprint arXiv:2409.06211, 2024.

Guanchen Li, Yixing Xu, Zeping Li, Ji Liu, Xuanwu Yin, Dong Li, and Emad Barsoum. T\’yr-
the-pruner: Unlocking accurate 50% structural pruning for llms via global sparsity distribution
optimization. arXiv preprint arXiv:2503.09657, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024b.

Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimization
for highly sparse one-shot pruning for large language models. arXiv preprint arXiv:2406.07831,
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076–41102, 2024.

Zhenyu Ning, Jieru Zhao, Qihao Jin, Wenchao Ding, and Minyi Guo. Inf-mllm: Efficient streaming
inference of multimodal large language models on a single gpu. arXiv preprint arXiv:2409.09086,
2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe
Diao, et al. Llm pruning and distillation in practice: The minitron approach. arXiv preprint
arXiv:2408.11796, 2024.

Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. Llum-
nix: Dynamic scheduling for large language model serving. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24), pp. 173–191, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Jinguang Wang, Jingyu Wang, Haifeng Sun, Tingting Yang, Zirui Zhuang, Wanyi Ning, Yuexi Yin,
Qi Qi, and Jianxin Liao. Mergequant: Accurate 4-bit static quantization of large language models
by channel-wise calibration. arXiv preprint arXiv:2503.07654, 2025.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms.
arXiv preprint arXiv:2310.08915, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

26

