Under review as a conference paper at ICLR 2026

LLAYER-WISE PERFORMANCE-AWARE SPARSITY AL-
LOCATION FOR EFFICIENT LLLM INFERENCE

Anonymous authors
Paper under double-blind review

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use Claude 4 Sonnet and ChatGPT 5 for grammar checking, spelling correction, and translation
assistance in both the main text and appendix of this paper.

RELATED WORK

Recent advances in LLM compression have significantly improved inference efficiency while pre-
serving model capabilities. Structured pruning techniques eliminate entire components like attention
heads or layers (Dutta et al.|[2024; Muralidharan et al.| | 2024), with approaches like TVAPrune lever-
aging variational information bottleneck principles to compress model representations (Dutta et al.,
2024])). Weight quantization methods such as GPTQ (Frantar et al., [2022), AWQ (Lin et al.| 2024a)),
and OmniQuant (Shao et al.l 2023) enable 4-bit weight representation with minimal performance
degradation. Knowledge distillation approaches like MiniLLM (Gu et al., |[2023) and GKD (Agar-
wal et al.| [2024) transfer knowledge from larger teacher models to smaller students, with the latter
introducing on-policy distillation to address train-inference distribution mismatch. Combined ap-
proaches leveraging pruning with distillation have yielded state-of-the-art results (Sreenivas et al.|
2024; Muralidharan et al., [2024)).

Building upon these structural approaches, unstructured pruning enhances LLM compression by
flexibly removing weights, often achieving higher accuracy at high sparsity levels compared to struc-
tured methods (Lee et al.| [2024). Recent advancements in this field include post-training one-shot
pruning techniques such as SparseGPT (Frantar & Alistarh, [2023), which leverages second-order
approximations to prune over 50% of weights in a 175B model while maintaining performance with
minimal loss, and Wanda (Sun et al.,|2023)), which simplifies the pruning process through activation-
aware magnitude pruning for efficient sparsity. Other notable contributions in this category, such as
OWL (Yin et al., 2023), Tyr-the-Pruner (Li et al., 2025), and GBLM-Pruner (Das et al., |2023)),
further refine sparsity allocation and incorporate gradient correction to enhance pruning outcomes.
Additionally, optimization-based methods like ALPS (Meng et al., 2024) approach pruning as a
constrained optimization problem, while DSnoT (Zhang et al., 2023 iteratively refines weights to
optimize results over multiple steps.

Beyond pruning techniques, model quantization is essential for deploying LLMs efficiently, reduc-
ing memory and computation by lowering the precision of weights and activations (Gong et al.,
2024). However, the ‘outlier’ problem, where a few large values dominate the quantization range,
poses a significant challenge (Ashkboos et al., |2024b). Early solutions like LLM.int8() (Dettmers
et al.l 2022)) addressed this by retaining some activations in higher precision. Recent advancements
include GPTQ (Frantar et al.| 2022)), which uses second-order information for accurate 4-bit weight
quantization, and AWQ (Lin et al.|[2024a), which protects key weights based on activation statistics.
For activation quantization, SmoothQuant (Xiao et al., [2023) redistributes outliers to enable 8-bit
quantization, while QuaRot (Ashkboos et al., 2024b) and QuIP (Chee et al.,[2023) employ rotation
transformations for 4-bit and 2-bit quantization, respectively. Additionally, QUIK (Ashkboos et al.,
2023) and QServe (Lin et al.l 2024b) combine quantization with system optimizations for practi-
cal deployment. Other notable methods include PrefixQuant (Chen et al.l [2024a) and MergeQuant
(Wang et al.}2025) for efficient static quantization.

With models compressed through the aforementioned techniques, large language model infer-
ence faces significant computational challenges that researchers address through various optimiza-
tion approaches. Recent work has focused on KV cache management techniques such as Page-

Under review as a conference paper at ICLR 2026

dAttention (Kwon et al) 2023), which treats cache as virtual memory to reduce fragmentation,
SpeCache (Jie et al., [2025), which intelligently prefetches needed keys, and QuaRot
2024b) for outlier-free 4-bit inference. Algorithmic optimizations like Cascade Specu-
lative Drafting (Chen et all, 2024b) leverage a tiered approach where smaller models draft for
larger ones, while N-gram masked self-attention (2020) truncates attention win-
dows. Memory efficiency improvements include SWAT for sliding window at-
tention and Inf-MLLM (Ning et all, 2024) for streaming inference via attention saddle patterns.
Architecture innovations explore MoE approaches like Read-ME which refac-
tors dense models into router-decoupled experts, and Dynamic-LLaVA (Huang et al., [2024) which
sparsifies vision-language contexts. System-level optimizations include operator fusion in Faster-

Transformer (Aminabadi et al., 2022), FlashAttention’s I0-aware computation (Dao et al, 2022]),
FlashDecoding++ (Hong et al.l[2024) with asynchronous softmax, and specialized schedulers like

Sarathi-Serve (Agrawal et al.| 2024), vLLM (Kwon et al.,[2023)), and Llumnix 2024) that

balance throughput and latency through innovative resource management strategies.

APPENDIX A.1: MOTIVATION

Llama-2-7B Decode-stage TPS with Adaptive Sparsity Allocation

B Baseline
B 20% Single Group 124

. 20% Multi-Groups
121

120 118 . 119

109

-
[
o

107

Tokens /s

105

101

100
96

A0 Al A2 A3 A4 A5 A6 A7 A8
Different Layer Group Configurations

Figure 1: Decode-stage TPS with adaptive sparsity allocation across layer groups, based on 4-bit
QuaRot quantization. Task and hardware: left-to-right language-model generation, each run takes a
2048-token prompt from the WikiText-103 validation set, allowing Llama-2-7B to autoregressively
generate the next 256 tokens, and runs on a single NVIDIA RTX 3090 GPU. Variants on the X-axis
denote different layer group sparsity configurations: AQ: baseline, no sparsity applied (96 tokens/s);
Al: 20% adaptive sparsity applied to layers 1-8 (early attention layers, 101 tokens/s); A2: 20%
adaptive sparsity applied to layers 9-16 (middle attention layers, 105 tokens/s); A3: 20% adaptive
sparsity applied to layers 17-24 (middle-late layers, 109 tokens/s); A4: 20% adaptive sparsity ap-
plied to layers 25-32 (late transformer layers, 107 tokens/s); AS5: 20% adaptive sparsity applied to
layers 1-8 and 17-24 simultaneously (118 tokens/s); A6: 20% adaptive sparsity applied to layers 9-
16 and 25-32 simultaneously (121 tokens/s); A7: 20% adaptive sparsity applied to layers 1-8, 9-16,
and 17-24 (124 tokens/s); A8: 20% adaptive sparsity applied to all layer groups 1-32 (119 tokens/s).
Y-axis: measured tokens-per-second during decode phase. Higher is better.

In the deployment of LL.Ms, quantization and pruning have evolved as independent acceleration
techniques with minimal integration. In our explorations, we conduct a series of attempts to investi-
gate the combination of both techniques. Figure [[|demonstrates the inference acceleration achieved
on the Llama-2-7B model in a language generation task, after applying 50% random dropout to
various weight combinations and weight matrices at 8-bit precision. We observe a significant im-
provement in model inference speed. Figure 2] shows the model’s performance across different
quantization and pruning configurations. As the bit-width of quantization decreases and the sparse
ratio increases, the perplexity rises substantially, indicating a clear trade-off between efficiency and
performance.

Under review as a conference paper at ICLR 2026

Llama-2-7B Performance with Adaptive Sparsity Allocation

15
mmm Baseline

B 20% Single Group 13.65
s 20% Multi-Groups 1342

13 1278 12.95

-
=

8.89 9.05

Perplexity {

8.71

©

8.52

5.47

BO Bl B2 B3 B4 B5 B6 B7 B8
Different Layer Group Configurations

Figure 2: Performance of quantization and adaptive layer-group sparsity allocation on Llama-2-7B.
Task and hardware: left-to-right language-model evaluation on the WikiText-2 validation subset.
The evaluation uses approximately 1 000 passages, each with a sequence length of 2048, running on
a single NVIDIA RTX 3090 GPU with 4-bit QuaRot quantization applied to all weights. Variants
on the X-axis denote different layer group sparsity configurations: BO: 4-bit quantized baseline, no
additional sparsity (5.47 perplexity); B1: 4-bit quantization + 20% adaptive sparsity on layers 1-8
(8.52 perplexity, 55.8% degradation); B2: 4-bit quantization + 20% adaptive sparsity on layers 9-16
(8.89 perplexity, 62.5% degradation); B3: 4-bit quantization + 20% adaptive sparsity on layers 17-24
(9.05 perplexity, 65.4% degradation); B4: 4-bit quantization + 20% adaptive sparsity on layers 25-32
(8.71 perplexity, 59.2% degradation); BS5: 4-bit quantization + 20% adaptive sparsity on layers 1-8
and 17-24 (12.78 perplexity, 133.5% degradation); B6: 4-bit quantization + 20% adaptive sparsity
on layers 9-16 and 25-32 (13.42 perplexity, 145.2% degradation); B7: 4-bit quantization + 20%
adaptive sparsity on layers 1-8, 9-16, and 17-24 (13.65 perplexity, 149.5% degradation); B8: 4-bit
quantization + 20% adaptive sparsity on all layer groups (12.95 perplexity, 136.7% degradation).
Y-axis: measured perplexity on WikiText-2 (|). Lower is better.

A.1.1 LAYER-GROUP SENSITIVITY ANALYSIS

The experimental results reveal distinct sensitivity patterns across different layer groups in the
Llama-2-7B architecture under 20% sparsity allocation. Early layers (1-8) demonstrate moderate
resilience to sparsification, with configuration Al achieving 5.2% throughput improvement while
B1 exhibits 55.8% perplexity degradation. This substantial degradation, even in early layers, high-
lights the critical nature of all computational pathways in modern LLMs.

Middle layers show varying sensitivity patterns: layers 9-16 (A2/B2) achieve 9.4% throughput gains
with 62.5% quality degradation, while layers 17-24 (A3/B3) demonstrate the highest single-group
acceleration of 13.5% with 65.4% perplexity increase. These middle-late layers exhibit the most
severe single-group degradation, suggesting their critical role in semantic processing.

Late layers (25-32) show a balanced pattern with A4 achieving 11.5% throughput improvement
while B4 incurs 59.2% quality loss. This pattern suggests that while late layers contain exploitable
computational redundancy, their sparsification significantly impacts final output quality, though less
severely than middle-late layers.

A.1.2 MULTI-GROUP SENSITIVITY ANALYSIS

The multi-group configurations (A5-A8, B5-B8) reveal the catastrophic nature of naive sparsity
combination strategies. Configuration A5, combining layers 1-8 and 17-24 with 20% sparsity each,
achieves 22.9% throughput improvement but incurs 133.5% perplexity degradation (BS). This rep-
resents a fundamental phase transition where the cumulative effect far exceeds the sum of individual
impacts.

Under review as a conference paper at ICLR 2026

The most aggressive multi-group configuration A7 (layers 1-8, 9-16, 17-24) demonstrates maxi-
mum throughput gains of 29.2% but suffers catastrophic quality collapse with 149.5% perplexity
degradation (B7). Paradoxically, the all-groups configuration A8 shows slightly reduced accelera-
tion (24.0%) and degradation (136.7%), suggesting complex non-linear interactions when the entire
model undergoes simultaneous sparsification.

APPENDIX A.2: QUANTIZATION FRAMEWORK

Input Layer ; RMSNorm Layer FeedForward Network Output Layer

RTdiag(a)WW,,c

XR
FP

HW ;,,.R

YR
FP

down

Hadamard

R'diag(a)W,,

INT

Figure 3: Low-bit quantization pipeline for a feed-forward network block with quantization and
rotation.

In the framework illustrated in Figure[3] the hidden state X is first multiplied by a random orthogonal
matrix R stored in FP(m) precision. Because R' R = I, this transformation preserves Euclidean
norms and inner products, i.e. (RX)"(RY) = X'Y (Ashkboos et al., 2024b). Consequently,
substituting X ~— RX and W ~ R' W leaves each linear layer’s output unchanged:

XW = (RX)(R"W). 1
W (RX) (R W) (1)
original rotated

This computational invariance (Ashkboos et al.,[2024a) enables the framework to redistribute heavy-
tailed activation energy across dimensions before quantization, thereby mitigating the "outlier” prob-
lem that hampers uniform low-bit encodings (Ashkboos et al., 2024b).

After rotation, the activations are quantized to INT(n). The feed-forward weights Wy and Wy,
are premultiplied by R and rescaled by diag(a)) (RMSNorm) (Zhang & Sennrich, 2019). The
non-linearity o is applied, followed by an on-the-fly Hadamard transform H; this matrix is also
orthogonal, so fusing H into the down-projection Wyo, preserves functional equivalence while
further flattening variance. A second INT(n) quantization converts the output back to low precision
before casting to FP(m).

Because every orthogonal transform is absorbed into adjacent linear layers during an offline pre-
processing step, the run-time kernel sequence matches that of the baseline network while operating
entirely on 4-bit integers. Combined with per-channel GPTQ calibration (Frantar et al., 2022), this
rotation—quantize—fuse pipeline achieves end-to-end INT4 inference without mixed-precision fall-
backs, all while guaranteeing mathematical equivalence to the original FP16 model.

APPENDIX A.3: DYNAMIC PROGRAMMING BACKGROUND

A.3.1 ALGORITHMIC PARADIGM

Dynamic programming is both a mathematical optimization method and an algorithmic paradigm
developed by Richard Bellman in the 1950s (Bellman), [1957). The approach simplifies complex
problems by breaking them down into simpler subproblems in a recursive manner, then combining
their solutions to solve the original problem (Cormen et al.l 2009).

The paradigm applies when a problem exhibits two fundamental properties: optimal substructure
and overlapping subproblems. Unlike divide-and-conquer algorithms, which solve entirely inde-
pendent subproblems, dynamic programming exploits the fact that subproblems are not indepen-
dent—the same subproblems arise repeatedly during the recursive solution process.

Under review as a conference paper at ICLR 2026

Main Problem

OPT(P) Subproblem

Subproblem
OPT(Py) OPT(P2)
subproblem subproblem
OPT([j] OPT[j]

®Compute M) @Store WMp @ Function Call

Gain Efficiency

Subproblem
Global Optimality

OPT(P2)

N A

subproblem subproblem subproblem subproblem eoe
OPT[1] OPT[j] OPT[n] OPT[j]

Subproblem
OPT(P:)

subproblem
OPT[k]

Subproblem I

Overlaping
Subproblems

Figure 4: Illustration of dynamic programming approach showing problem decomposition into sub-
problems.

The essence of dynamic programming lies in avoiding redundant computation by storing solutions
to subproblems for later reuse. This memoization strategy transforms algorithms with exponential
time complexity into polynomial-time solutions (Dasgupta et al., [2006).

A.3.2 OPTIMAL SUBSTRUCTURE PROPERTY

A problem exhibits optimal substructure if an optimal solution can be constructed efficiently from
optimal solutions of its subproblems (Cormen et al.,[2009)). This property is fundamental because it
ensures that solving subproblems optimally contributes to the global optimum.

Mathematically, optimal substructure can be expressed as a functional relationship. For a problem
P, if OPT(P) represents the optimal solution, then:

OPT(P) = f(OPT(P,),OPT(P,),...,OPT(F})), 2)

where f is a function that combines optimal solutions of subproblems {P;} to yield the optimal
solution of the original problem.

The canonical example demonstrating optimal substructure is the shortest path problem. If the
shortest path from vertex w to vertex v passes through intermediate vertex w, then this path must
consist of the shortest path from u to w concatenated with the shortest path from w to v. Any
deviation from this principle would contradict the optimality of the overall path (Cormen et al.,
2009).

Verification of optimal substructure typically employs proof by contradiction. If a subproblem
within an alleged optimal solution were not itself optimal, then substituting the actual optimal sub-
solution would improve the overall solution, contradicting the assumption of optimality.

A.3.3 OVERLAPPING SUBPROBLEMS PROPERTY

The overlapping subproblems property distinguishes dynamic programming from divide-and-
conquer approaches. This property requires that the space of subproblems be small relative to the
total number of recursive calls, meaning the same subproblems are solved repeatedly (Cormen et al.,
2009).

In problems with overlapping subproblems, naive recursive implementations typically exhibit ex-
ponential time complexity due to redundant calculations. The Fibonacci sequence computation
illustrates this phenomenon: calculating F'(n) requires computing F'(n — 1) and F'(n — 2), where
F(n—1) itself requires F'(n—2) and F'(n—3), leading to multiple evaluations of the same Fibonacci
numbers.

The mathematical characterization of this property can be expressed through the recurrence tree
structure. If T'(n) represents the number of subproblems of size n solved during the recursive
process, and S(n) represents the number of distinct subproblems of size n, then overlapping sub-
problems exist when T'(n) >> S(n) for sufficiently large n.

Dynamic programming exploits this overlap through memoization, storing computed solutions in
a table for subsequent lookup. This technique reduces the time complexity from exponential to
polynomial by ensuring each distinct subproblem is solved exactly once (Dasgupta et al.,[2006).

Under review as a conference paper at ICLR 2026

A.3.4 MATHEMATICAL FORMULATION

Dynamic programming algorithms follow a general mathematical structure based on the principle
of optimality. The fundamental recurrence relation takes the form:
OPT[i] = min) {OPT[j] + Cost(4,7)}, 3)

JET(i

where OPT|[i] represents the optimal solution value for subproblem ¢, 7 (¢) denotes the set of feasible
predecessor states, and Cost(j, ¢) represents the immediate cost of transitioning from state j to state
i.

The state space design constitutes a critical component of dynamic programming formulations.
States must encapsulate sufficient information to make optimal decisions while maintaining compu-
tational tractability. The dimensionality of the state space directly affects both algorithm correctness
and efficiency.

Boundary conditions provide the foundation for recursive computations. These base cases corre-
spond to trivial subproblems that can be solved directly without further decomposition:

OPT[0] = base_value. 4)

The optimization objective varies depending on the problem context. Minimization problems seek
min;, maximization problems use max;, and counting problems sum over all valid transitions. Each
formulation requires careful consideration of how subproblem solutions combine.

A.3.5 IMPLEMENTATION STRATEGIES

Dynamic programming algorithms can be implemented using two primary approaches: top-down
memoization and bottom-up tabulation (Cormen et al., {2009).

Top-down memoization preserves the natural recursive structure while avoiding redundant com-
putations through result caching. The algorithm begins with the original problem and recursively
decomposes it into subproblems, storing computed results in a memoization table:

computed_value if already solved,
recursive_solve(i) otherwise.

memo|i] = { &)
Bottom-up tabulation systematically solves subproblems in order of increasing size, building solu-
tions iteratively from base cases to the final answer. This approach typically follows the pattern:

fori=1ton: OPT[i] = f(OPT[0],...,OPT[i —1]). (6)

The choice between these approaches depends on several factors. Memoization proves advantageous
when only a subset of all possible subproblems requires solution, while tabulation offers better cache
locality and predictable memory access patterns for dense subproblem spaces.

Space optimization techniques can significantly reduce memory requirements. Common optimiza-
tions include maintaining only the most recently computed results when the recurrence relation
depends on a fixed number of previous values, reducing space complexity from O(n) to O(1) in
many cases.

APPENDIX A.4: ASAF FRAMEWORK VISUAL ILLUSTRATION

A.4.1 COARSE-GRAINED OPTIMIZATION PHASE

Figure |S|illustrates the coarse-grained optimization phase of the ASAF framework, which addresses
the fundamental challenge of determining optimal layer grouping strategies and sparsity interval
refinement. The process begins with individual transformer layers L1, Ly, ..., L, from the large
language model, where each layer is represented as an independent computational unit with specific
FLOPs characteristics ¢;.

The grouping transformation process aggregates these individual layers into cohesive groups
G1,Ga,...,G,, where each group GG; contains a set of consecutive layers £; = {lgé)m l§f§n +

Under review as a conference paper at ICLR 2026

[a, B]
1
Gy |1 I I I B & L1 | L
L ! . > <
== = 3
L]
Ly 1] (|
L, =G, [] Y I N < | | | | |
I 75 T
L, [- : ’
L, O ~, ([
G, [[T S R TR N I
(= T Z,
LLM Grouping - min 7max Narrow Initial Sparsity
Layers Configuration G* and {[I7™", I"*]} Interval Range

Figure 5: Coarse-grained optimization process in the ASAF framework. The phase transforms in-
dividual LLM layers L1, Lo, ..., L, into optimal grouping configurations G, G>, ..., G, while
simultaneously refining sparsity search intervals from the initial range [, 8] to narrowed intervals
{[Imin | [max]} for each group, where G* = n denotes the optimal number of groups. The optimiza-
tion process employs iterative interval refinement strategies Z,Z5, . . ., Z; to achieve computational
efficiency while maintaining sensitivity constraints.

1,..., lé;g} This grouping strategy ensures that layers within each group can be managed col-
lectively while preserving the sequential structure of the transformer architecture.

The simultaneous sparsity interval refinement process transforms the initial broad search space [,]
into narrowed, group-specific intervals {[I™", [™2X]}. This refinement mechanism employs dy-
namic programming principles to systematically reduce the search complexity while maintaining
optimality guarantees. The refinement process utilizes the Refinelntervals(-) and NarrowInterval(-)
functions to achieve progressive convergence toward optimal sparsity allocations.

The optimization trajectory shown in the figure demonstrates how the algorithm iteratively nar-
rows the search space through successive refinements 77, 75, . . . , Z*, where each iteration produces
tighter bounds on feasible sparsity rates. This process continues until convergence criteria are satis-
fied, yielding the optimal number of groups G* and their corresponding refined sparsity intervals.

A.4.2 FINE-GRAINED OPTIMIZATION PHASE

Figure [6] depicts the fine-grained optimization phase, which performs precise decision-making
within the framework established by the coarse-grained phase. This phase receives as input the
optimal number of groups G* and the refined sparsity intervals {[I™® JM2X]} determined in the
previous phase.

The layer allocation component systematically determines the exact number of consecutive lay-
ers assigned to each group. This process involves solving the optimization problem {j*, s*}; =
arg min; ({T'[¢][j][s]} for each group %, where T'[¢][j][s] represents the total FLOPs cost for group 4
containing j consecutive layers with sparsity rate s. The allocation process ensures complete cover-
age of all transformer layers while respecting continuity constraints.

The sparsity selection component operates in parallel with layer allocation, determining optimal
sparsity rates from the discretized candidate sets generated by the Discretize(-) function. For each
group i, the algorithm evaluates sparsity candidates Scang = {I;“i“ + kA k€ Z,0 < k <
| (Imax — min) /A |} with sampling resolution A = 0.5%.

Under review as a conference paper at ICLR 2026

Layer Allocation h G* and { P"‘" [‘“ ”‘ } ﬁ Sparsity selection

A

Initial [] [] [| - Refined

Grouping Gy |l 1| Gl I| eee G|l] Intervals
[] [] [] x
* * + J___I_Lzl oo J_I_I_I_LIn
[] [] []
Group-wise [] [| I | l vee Progressive
Op ion I | G, . G, |l] 1] Convergence
[] [|
[]
Optimal Layer * * * 'I‘ oo * Optimal Sparsity
Configuration LY L5 eoe Lk | st sp Configuration

Figure 6: Fine-grained optimization process in the ASAF framework. Building upon the coarse-
grained results G* and refined intervals {[I™", I™2%]}, this phase performs precise layer alloca-
tion and sparsity selection through group-wise optimization. The process progressively converges
from initial grouping configurations through iterative optimization to optimal layer configurations

1, L5, ..., L} and optimal sparsity rates s}, s3, . .. where G* = n denotes the optimal num-
ber of groups.

)ny

The progressive convergence mechanism illustrated in the figure shows how the optimization itera-
tively refines both layer assignments and sparsity selections. The process employs tabulation table
lookups H[]|[7][s] to efficiently evaluate different configurations without redundant computation.
Each iteration improves upon previous solutions by leveraging the optimal substructure property
inherent in the problem formulation.

The final optimization output produces the complete ASAF solution: optimal layer configura-
tions L7, E;, LY specifying the exact layer ranges for each group, and optimal sparsity rates
51,52, N that minimize total computational FLOPs while satisfying sensitivity constraints

Zz 16(7 l)<5max

The two-phase decomposition strategy demonstrated in Figures[5|and[f]exemplifies the dynamic pro-
gramming approach by transforming a complex combinatorial optimization problem into a sequence
of manageable subproblems. This decomposition achieves polynomial time complexity while main-
taining optimality guarantees, making the ASAF framework computationally tractable for practical
large language model deployment scenarios.

APPENDIX A.5: COARSE-GRAINED OPTIMIZATION

The coarse-grained optimization phase serves as the foundation of our ASAF framework by estab-
lishing the optimal group structure and narrowing the sparsity search space for subsequent fine-
grained optimization. This phase addresses the fundamental challenge of determining how many
layer groups should be formed and what sparsity intervals each group should operate within, effec-
tively decomposing the exponential search space into manageable subproblems.

A.5.1 MATHEMATICAL FORMULATION
The coarse-grained optimization addresses the first subproblem of our original formulation in Equa-

tion ?? by minimizing the total computational FLOPs across all possible group configurations while
satisfying accuracy degradation constraints:

G {1} = 1—s)p, 7
{G" ALY = argG{HIu}n {iZLfEI?Z@X 8)} @)

where G represents the number of groups, I; denotes the sparsity interval for group ¢, £; represents
consecutive layers in group 4, s; is the sparsity rate for group 4, and ¢; is the original computa-

Under review as a conference paper at ICLR 2026

tional cost of layer [. The constraint ensures Z ~ 1 &(Li,81) < dmax, Where (L5, s;) quantifies the
accuracy degradation caused by applying sparsity rate s; to layer group L;.

The dynamic programming state formulation defines DPoure[g][] as the minimum total FLOP cost
when using exactly g groups with discretized accuracy degradation budget b:

g9
DPeosselgl[t] = min {Zcfzi&iz‘“x“_si)}’ N

i=1"" leL;
where the state represents the optimal cost achievable with g groups under accuracy degradation

budget b x A (with A being the discretization step), and the minimization considers all valid interval
partitions and corresponding layer-sparsity assignments.

The state transition equation considers all possible ways to add one more group by selecting an
appropriate interval subset:

DPourse[g][0] = s g[linﬂ] {OptimalCost(I) 4+ DPcoarse[g — 1][b — &eost (1) /A]}, 9

where I represents the sparsity interval assigned to the g-th group, OptimalCost(I) denotes the
minimum FLOP cost achievable within interval I, and £ () represents the accuracy degradation.

Algorithm 1 Coarse-grained Optimization

Require: Layer count p, sparsity range [, 3], accuracy degradation threshold 0pax
Ensure: Optimal group number G* and intervals {[I™", I™*¥]}
1: Initialize DP¢ogrse [0..p][0..0max /A] < 00

2: Set boundary condition: DP,se[0][0] <— 0

3: Generate interval candidates Z = {I : I C [«, 5]}

4: Main DP Loop:

5. forg=1topdo

6: for b= 01to dpax/A do

7: for each interval I € 7 do

8: cost <— OptimalCost([) using tabulation H

9: accuracy_cost <— Eost(I)/A using tabulation =
10: if b — accuracy_cost > 0 then
11: total_cost <— cost + DP;oure[g — 1][b — accuracy_cost]
12: DPoarse [9][0] < min(DPeoarse[g][b], total_cost)
13: end if
14: end for
15: end for
16: end for

17: Solution Extraction:

18: G* < arg min, {miny DPcoarse[9][D] }

19: {1, [max1 « BacktrackOptimallntervals(DPcogrse, G*)
20: return G*, {[I™n [22x]1G7 =0

A.5.2 ALGORITHMIC ANALYSIS

The dynamic programming formulation operates on a two-dimensional state space where
DP,oarse [g][0] represents the minimum achievable computational cost when utilizing exactly g groups
with discretized accuracy degradation budget b. The discretization parameter A = 0.5% transforms
the continuous constraint into a tractable discrete optimization problem while maintaining sufficient
precision for practical deployment.

The initialization establishes boundary conditions essential for correctness. The infinite initializa-
tion for DPoarse[g][0] ensures only valid transitions result in finite costs, while DPose[0][0] = 0
represents the base case with no groups and no degradation.

The interval generation constructs candidate sparsity intervals Z that partition [«, 3] into meaningful
subranges. Each interval I € 7 represents a potential sparsity operating range for a layer group,
enabling exploration of different sparsity allocation granularities.

Under review as a conference paper at ICLR 2026

The core dynamic programming loop systematically explores group counts and accuracy budgets
through three nested iterations. The outermost loop over g considers configurations from single
groups to maximum granularity where G,,x = p. The middle loop over budget b discretizes the
accuracy constraint, while the innermost loop over intervals I evaluates each potential sparsity as-
signment.

Within each iteration, the algorithm queries tabulation tables H and = for precomputed costs and
degradation values. The tabulation mechanism transforms expensive evaluations into constant-time
operations, enabling scalability to large layer counts. The cost computation combines immediate
interval contribution with optimal subproblem costs, maintaining optimal substructure.

The feasibility check b — accuracy_cost > 0 ensures configurations remain within the accuracy
threshold d,,,,. When feasible configurations are identified, the minimization operation updates the
dynamic programming table only for improved solutions.

The solution extraction identifies the optimal configuration by examining all computed states:
G* = arg ming{min, DPoarse[g][b]}. The backtracking procedure reconstructs specific interval as-
signments by tracing decisions that led to the optimal solution, producing refined sparsity intervals
that narrow the search space from [a,).

State Transition Intuition. The dynamic programming transitions embody intuitive decision-
making processes. In the coarse-grained phase, each state transition addresses the question: ”Given
that I have optimally allocated the first g — 1 groups, what sparsity interval should I assign to the g-th
group to minimize total cost while staying within the accuracy budget?” This decomposition enables
systematic exploration of interval assignments without reconsidering previous group decisions. The
state DPcoy5e[g][b] encapsulates all optimal ways to use exactly g groups with budget b, allowing
efficient evaluation of adding one more group with a specific interval choice.

A.5.3 COMPLEXITY ANALYSIS

Upon completion, the coarse-grained optimization produces two critical outputs: the optimal num-
ber of groups G* that minimizes computational overhead while satisfying accuracy constraints, and
refined sparsity intervals {[/", [/max] 5’;1 that narrow the search space from the original range
[a, B]. These outputs provide essential guidance for the subsequent fine-grained optimization phase,
significantly reducing the search space while preserving the potential for globally optimal solutions.

APPENDIX A.6: FINE-GRAINED OPTIMIZATION

The fine-grained optimization phase receives the optimal group number G* and refined sparsity
intervals from the coarse-grained phase and determines the precise layer allocation and sparsity rate
assignment that minimizes computational FLOPs while satisfying accuracy constraints. This phase
operates on a significantly reduced search space compared to the original problem, enabling detailed
optimization within the refined parameter ranges.

A.6.1 MATHEMATICAL FORMULATION

The fine-grained optimization addresses the second subproblem of our original formulation by min-
imizing the exact total computational FLOPs through optimal layer partitioning and sparsity assign-
ment:

G*

G G :

{Lihis {sititi} =arg min Z Z drx (1=si) ¢, (10)
{L:3 s |52 leL,;

where {£;}$, represents the layer allocation with each £; containing consecutive layers, and

{sz}le denotes the sparsity rates. The constraints ensure 2?:1 E(Liy8;)) < Omaxs Si €

[[min [max] /. are consecutive, Ulcil L;={1,2,...,p},and £; N L; = (fori # j.

The dynamic programming state formulation defines DPgp [¢][g][b] as the minimum total FLOP cost
for optimally partitioning layers [i..p] into exactly g consecutive groups with remaining accuracy

10

Under review as a conference paper at ICLR 2026

degradation budget b:

DPyie[i][g][b] = iR, {ZZ@x l—sk} (11)

k=11eLly

where the state covers layers from position 4 to p, requires exactly g groups, has remaining budget
b, and ensures |J_, £ = {i,i + 1,...,p} with each L}, consecutive, s, € [["", I}***], and

11 &(Lk,sk) <.

Algorithm 2 Fine-grained Optimization

Require: G* groups, intervals { {7, I™2%]}, tabulation tables H, =
Ensure: Optimal allocation {£}} and sparsity rates {s}}

1: Initialize DPgpe[1..p + 1][0..G*][0..0max/A] < 00

2: Initialize choice[l..p + 1][0..G*][0..0max/A] « 0

3: Set boundary condition: DPgye[p + 1][0][8] <— 0 for all b > 0

4: Backward DP Construction:

5: for : = p down to 1 do

6: forg=1tomin(G*,p—i—+1)do

7 for b = 0 to 0yax/A do

8 forj=itop—g+1do

9: for s € Discretize([IZ" 1, I#,,,]) do
10: group_cost, accuracy_cost < H[i|[j — i + 1][s], E[i][j — ¢ + 1][s]/A
11: if b — accuracy_cost > 0 then
12: total_cost <— group_cost + DPgye[j + 1][g — 1][b — accuracy_cost]
13: if total_cost < DPgpe[i][g][0] then
14: DPsie [2][g][b] «— total_cost
15: choice[i][g][b] < (4, s)
16: end if
17: end if
18: end for
19: end for
20: end for
21: end for
22: end for

23: Solution Reconstruction:
24: {LF,sF} <—BacktrackSolutlon(chowe 1, G*, Omax /D)

25: return {L£:}5, {5515, =0

The state transition equation jointly enumerates all possible first-group formations and sparsity as-
signments within the corresponding refined interval. The transition first identifies the optimal group
end position j and sparsity rate s:

j*, 8" =arg ~ min {H[i][j — i+ 1[s] + Z[{][j — i + 1][s]} . (12)
JEli,p—g+1]
SE[IZ L I3]

Then the state transition equation becomes:
DPeine[i] [g][b] = H[i][j* — i + 1][s"] + DPnc[j" + 1][g — 1][b — E[][j" — i + 1][s"]], ~ (13)

where j defines the end of the first group (layers ¢ to j), s is the sparsity rate from the refined
interval for this group position, H [i][j — i + 1][s] provides the exact FLOP cost from tabulation, and
E[i][j — ¢ + 1][s] gives the exact accuracy degradation cost.

A.6.2 ALGORITHMIC ANALYSIS
The fine-grained optimization employs three-dimensional dynamic programming where

DPine [#][g][b] represents the minimum cost for partitioning layers [i..p] into exactly g consec-
utive groups with remaining budget b. The backward construction enables locally optimal decisions

11

Under review as a conference paper at ICLR 2026

while maintaining global optimality through optimal substructure. The choice table records specific
decisions for efficient solution reconstruction.

The boundary condition DPgpe [p + 1][0][6] = O provides the foundation for backward construction.
The backward process begins from the final layer and works toward the initial layer, systematically
considering all possible first-group formations in each subproblem.

The nested loops systematically enumerate all feasible configurations. The constraint g <
min(G*,p — i + 1) prevents creating more groups than specified or available. The group end po-
sition j < p — g + 1 ensures sufficient layers remain for subsequent groups. The sparsity rate s is
constrained to refined intervals [IZn" PURTY +1)» significantly reducing search space compared

to o, O]

Tabulation lookups retrieve precomputed values: H[i][j — i + 1][s] for FLOP costs and Z[i][j — i +
1][s]/A for accuracy degradation. The feasibility check b — accuracy_cost > 0 maintains constraint
satisfaction. Cost updates occur only when improvements are found, maintaining optimality while
avoiding redundant computations.

The solution reconstruction traverses the choice table from initial state (1, G*, dpmax/A) and follows
recorded decisions to construct the complete solution. Each choice (7, s) specifies group boundaries
and sparsity rates, continuing until all groups are identified.

State Transition Intuition. The fine-grained optimization addresses the question: ”To optimally
partition layers [i..p] into exactly g consecutive groups with remaining budget b, which layers should
form the first group and what sparsity rate should be applied?”” The backward construction ensures
that when deciding the first group boundary j and sparsity s, all subsequent decisions from layer
7 + 1 onward are already optimal. This decomposition transforms the complex joint optimization
of layer allocation and sparsity assignment into a sequence of local decisions with global optimality
guarantees.

A.6.3 COMPLEXITY ANALYSIS

Upon completion, the fine-grained optimization generates the complete optimal solution: precise
consecutive layer allocation {Lﬁ*}G 1 and optlmal sparsity rates {s} }G , that minimize computa-

tional FLOPs. Each £} = {lsmm S[‘m +1,. end} defines consecutive layers satisfying continuity
and completeness constraints, while s [I{“‘“ IM*] C [a, 0] ensures adherence to the refined
sparsity intervals.

APPENDIX A.7: TABULATION

The tabulation mechanism forms the computational backbone of the ASAF framework by providing
efficient access to FLOP costs and accuracy degradation metrics for arbitrary consecutive layer
sequences and sparsity rate combinations. This precomputation strategy transforms the dynamic
programming algorithms from computationally prohibitive procedures into tractable optimization
methods suitable for large-scale model deployment.

A.7.1 MATHEMATICAL FORMULATION

The tabulation mechanism constructs two three-dimensional tables that provide O(1) lookup for any
layer sequence and sparsity combination:

start-+length—1
Hstart|[length][s] = > ¢ x (1—s), (14)
[=start
Z[start][length|[s] = £({start, start + 1, ..., start + length — 1}, s), (15)
where H stores FLOP costs and = stores accuracy degradation costs. Here, start € [1,p] denotes
the starting layer index, length € [1, p — start 4 1] represents the number of consecutive layers, s €

Siscrete 15 the discretized sparsity rate with resolution A = 0.5%, ¢; is the original computational
cost of layer [, and £(-) quantifies accuracy degradation.

12

Under review as a conference paper at ICLR 2026

The discrete sparsity set is defined as:
Sdiscrete:{Oé"f‘k'AZk‘EN,Oé"FkJASﬁ}. (16)

This discretization partitions the continuous sparsity range [«, 8] into uniformly spaced discrete
points, enabling efficient tabulation while maintaining sufficient precision for optimization purposes.

Algorithm 3 Tabulation Construction

Require: Model layers {1,2, ..., p}, sparsity discretization A = 0.5%
Ensure: Tabulation tables H =
: Initialize H[1..p][1..p][|Sdiscrete|] < O
Initialize Z[1..p][1..p][| Sdiscrete]] < O
Siscrete {a+ kA k€ N,a + kA < ﬂ}
Systematic Pre-computation:
for start = 1 to p do
for length = 1 to p — start + 1 do
Lqeq < {start, start + 1, ..., start 4 length — 1}
for each sparsity s € Sgiscrete dO
H|start][length][s] <= >, &1 % (1 —s)
E[start][length][s] < &(Lseqs 5)
end for
end for
: end for
: return H,==0

PRI R

— e
LMo

A.7.2 ALGORITHMIC ANALYSIS

The tabulation construction systematically precomputes FLOP costs and accuracy degradation val-
ues for all consecutive layer sequences and discretized sparsity rates. The three-dimensional tables
H and = enable constant-time lookup during optimization phases, eliminating redundant calcula-
tions and concentrating computational burden in preprocessing.

The discrete sparsity set Sgiscrete balances computational efficiency with optimization precision. The
systematic precomputation exhaustively evaluates all valid combinations of starting positions, se-
quence lengths, and sparsity rates. The constraint length < p — start + 1 maintains validity by
preventing sequences extending beyond available layers.

The FLOP cost calculation Hstart|[length][s] = > ,c, ¢ x (1 — s) represents total computa-

tional cost when applying sparsity rate s. The factor (1 — s) reflects computational reduction from
sparsification, while summation over ¢; accounts for heterogeneous layer costs.

The accuracy degradation calculation Z[start] {length|[s] = £(Lscq, s) quantifies performance impact.
The sensitivity function £(-) requires careful design balancing accuracy with computational tractabil-
ity. Gradient-based methods provide theoretical foundations but require significant resources, while
activation-based methods offer efficiency at potential accuracy cost.

The tabulation tables enable the transformation of dynamic programming state transitions from
O(group_size) computations to O(1) operations. Without tabulation, each state transition would
require recomputation of FLOP costs and accuracy degradation values, leading to prohibitive com-
putational complexity for large models. The precomputation strategy concentrates the computational
burden in the preprocessing phase while ensuring that the subsequent optimization phases operate
with maximum efficiency.

A.7.3 TABULATION STORAGE REQUIREMENTS

Storage Specifications. The tabulation tables H and = require O(L? X |Sgiscrere|) Storage each.
For Llama-2-7B with L = 32 1ayers and | Sgiscrete| = 29 sparsity levels, each table requires approx-
imately 0.76 MB in single precision. The preprocessing computation is O(L? X |Sgiscrete| X Ce)
where C¢ represents the cost of evaluating the sensitivity function £(-).

13

Under review as a conference paper at ICLR 2026

Reusability. Tables can be computed once per model and reused across multiple optimization
scenarios. The constant-time lookup capability enables efficient exploration of large solution spaces.

APPENDIX A.8: COMPLETE HYPERPARAMETER SPECIFICATIONS

A.8.1 ASAF FRAMEWORK CONFIGURATION

Dynamic Programming Parameters. Our ASAF framework explores sparsity allocations within
the constrained range where @ = 1% represents the minimum sparsity threshold and 8 = 15%
defines the maximum sparsity level, following established practices in neural network pruning (Han
et al., [2015). The maximum allowable accuracy degradation is set to dmax = 1% to ensure prac-
tical deployment viability. Tabulation sampling resolution is configured as A = 0.5%, providing
sufficient granularity for optimization while maintaining computational tractability. The dynamic
programming state space discretizes the accuracy degradation budget into 200 steps, with maximum
group exploration set to the total layer count to allow full granularity in layer allocation decisions.

Tabulation Construction. The sensitivity measurement employs 1000 calibration samples to en-
sure statistical robustness during tabulation construction (Frantar & Alistarh, [2023). Tabulation
cache allocation is limited to 2048 MB to accommodate GPU memory constraints while providing
sufficient storage for memoization. All tabulation computations utilize FP32 precision accumulation
to maintain numerical stability throughout the dynamic programming process, preventing precision
degradation that could affect optimization quality (Jacob et al., 2018).

A.8.2 LEARNING RATE AND OPTIMIZATION CONFIGURATION

Learning Rate Schedule. The base learning rate for fine-tuning is set to vy = 1x10~°, representing
0.01x of typical pre-training rates to account for the sensitivity of sparse structures (Han et al.,[2015)).
We employ cosine annealing with warm restarts over Ty = 1000 steps following established
practices in quantization fine-tuning (Frantar et al., 2022):
t
T, A7)
Ttotal > >

Optimizer Configuration. We utilize AdamW optimizer with parameters 51 = 0.9, 82 = 0.999,
following standard configurations for transformer fine-tuning (Touvron et al.,|2023). Weight decay is
set to w = 0.01 to provide L2 regularization without interfering with the sparse structure. Gradient
clipping threshold is configured at clip_value = 1.0 to prevent training instability during sparse
fine-tuning (Ashkboos et al.| [2024b).

1
Yt = Ymin + 5(’70 - 'Ymin) <1 + cos (

where Ymin = 1 x 1077 prevents complete learning rate decay.

A.8.3 QUANTIZATION CONFIGURATION

Weight Quantization Parameters. Weight quantization employs 4-bit precision for all linear lay-
ers, with per-channel symmetric quantization applied to preserve fine-grained statistics (Frantar
et al.| 2022). The quantization scale s for each channel ¢ is computed as:

max(|W,]|) - clip_ratio

e = obits—1 _ | ’ (18)

where clip_ratio = 0.9 controls the quantization range to handle outliers. For weight quantization,
we employ both round-to-nearest (RTN) method (Jacob et al.,|2018)) and GPTQ (Frantar et al.|[2022)
approaches. We use per-column symmetric quantization (Jacob et al.| 2018)) with group size 128 to
balance quantization quality and computational efficiency. During GPTQ quantization, we utilize
128 samples from the WikiText-2 dataset (Merity et al.,|2016) with sequence length of 2048 as the
calibration set, following established protocols for transformer quantization.

Activation Quantization Parameters. We apply per-token symmetric quantization to quantize the
inputs, where each row of the activation matrix shares a common quantization scale (Xiao et al.,
2023). The clipping ratio is fixed at 0.9 across all experiments to maintain consistent quantiza-
tion behavior. This approach effectively handles the dynamic range of activations while preserving
computational efficiency during sparse matrix operations.

14

Under review as a conference paper at ICLR 2026

KV Cache Quantization. The KV caches are quantized using asymmetric quantization (Dettmers
et al.,[2022)), organized into groups of 128 elements to match the head dimension structure of trans-
former architectures. A constant clipping ratio of 0.95 is applied to accommodate the typically wider
dynamic range of cached key-value pairs compared to standard activations (Ashkboos et al.,|2024b).

A.8.4 HARDWARE-SPECIFIC PARAMETERS

Batch Configuration. Training employs micro-batch size of 1 with gradient accumulation over 8
steps, yielding an effective batch size of 8. This configuration optimizes memory usage on RTX
3090 GPUs while maintaining training stability for large language models (Touvron et al., |2023).
Sequence length is fixed at 2048 tokens to match evaluation conditions and ensure consistent mem-
ory allocation patterns during optimization.

Memory Management. Mixed precision training uses FP16 for forward passes and FP32 for gradi-
ent computation, following established practices for stable quantization fine-tuning (Ashkboos et al.,
2024b)). The maximum memory allocation is set to 10.5 GB to account for CUDA overhead on 12
GB GPU memory configurations. Dynamic loss scaling starts at 216 with automatic adjustment to
prevent gradient underflow, ensuring numerical stability throughout the sparse optimization process
(Jacob et al., 2018).

A.8.5 EVALUATION CONFIGURATION

Language Generation Tasks. We evaluate on WikiText-2 perplexity using 2048-token sequences
with a sliding window stride of 512 for comprehensive coverage (Merity et al., [2016). Throughput
evaluation encompasses batch sizes of 1, 4, 16, and 32 to assess scalability across different deploy-
ment scenarios. All language generation tasks utilize greedy decoding with temperature set to 0.0 to
ensure deterministic and reproducible results.

Zero-shot Classification. We assess our framework across six established benchmarks: PIQA (Bisk:
et al., 2020), WinoGrande (Sakaguchi et al., [2021)), HellaSwag (Zellers et al., |2019), LAMBADA
(Radford et al.,[2019), ARC-Easy and ARC-Challenge (Clark et al., [2018]). All experiments utilize
the LM Evaluation Harness (Gao et al.|[2021;2024)) with default configurations. Maximum genera-
tion length is limited to 256 tokens with KV cache enabled for efficient inference during evaluation.

A.8.6 TARGET MATRIX CONFIGURATION

Rotary
W, Positional
Encoding

RMSNorm

Figure 7: Target weight matrices in transformer layers for ASAF quantization and sparsification.

Figure [/|illustrates the complete transformer layer architecture highlighting the seven target weight
matrices that undergo both 4-bit quantization and adaptive sparsity allocation in our ASAF frame-
work. The green boxes represent the linear projection matrices: query (W), key (W}), value (W),
and output (W,) projections in the multi-head attention mechanism, as well as up-projection (W),
gate projection (W), and down-projection (W4,) matrices in the feed-forward network. These
matrices constitute the primary computational bottlenecks in transformer inference and are the fo-
cus of our layer-group-based optimization strategy, while components like RMSNorm and positional
encoding remain unmodified to preserve numerical stability.

Matrix-Level Configuration. Our ASAF framework applies unified quantization and adaptive
sparsity allocation to all linear projection matrices within each transformer layer, as illustrated
in Figure The attention mechanism matrices include query projection W, € Rémoder X dnead
key projection W}, € RdmodetXdnead value projection W, € R¥modetXdnead and output projec-
tion W, € RfhreadXdmodel (Touvron et all, 2023). The feed-forward network matrices consist of

15

Under review as a conference paper at ICLR 2026

up-projection W,,, € Rimedeixdss gate projection Wyaee € RémoderXdss and down-projection

Waown € RIFf*dmodel where d tf = 4 X dmoder following standard transformer scaling (Touvron
et al.l [2023)).

Layer-Group Sparsity Application. Each target matrix within a layer group receives identical
sparsity allocation determined by our dynamic programming optimization. For layer group £; with
optimized sparsity rate s, all seven projection matrices (Wy, Wi, Wy, Wo, Wy, Woates Waown)
undergo magnitude-based pruning at rate s; (Han et al., [2015). This uniform application ensures
consistent computational benefits across all matrix operations within each layer while preserving
the structural integrity of the transformer architecture. The RMSNorm parameters and positional
encoding remain unmodified to maintain numerical stability during inference (?).

Quantization Integration. Following the rotation-based quantization pipeline (Ashkboos et al.,
2024b)), each target matrix first undergoes 4-bit GPTQ quantization (Frantar et al.,[2022)) before spar-
sity application. The quantization process preserves the relative magnitude relationships critical for
effective pruning, while the subsequent sparsification leverages the quantized weight distributions
for optimal efficiency. This sequential approach ensures compatibility between the compression
techniques while maximizing hardware acceleration potential on modern GPU architectures.

APPENDIX A.9: ACCURACY RESULTS

Table 1: WikiText-2 perplexity comparison for Llama-2 models (2048 sequence length) using 4-
bit quantization. SmoothQuant and OmniQuant results are from (Shao et al., [2023), and 128G
indicates group-wise quantization with 128 group size. Our ASAF framework applies layer-group-
based pruning, with 4-bit precision across weights, activations, and KV caches. Lower perplexity
indicates better performance.

Method Weight #Outlier Llama-2
Quantization | Features 7B 13B 30B 70B
\ Baseline \ - \ - | 5.47 488 4.09 332 |
SmoothQuant (Xiao et al.![2023) RTN 0 83.12 35.88
OmniQuant (Shao et al.[[2023) RTN 0 1426 12.30 - -
QUIK-4B (Ashkboos et al./|2023) GPTQ 256 8.87 7.78 728 691
QuaRot GPTQ 0 6.10 540 441 379
ASAF (Ours) GPTQ 0 6.14 544 444 382
Atom-128G (Zhao et al.}[2023) 128 6.03 5.26 - -
QuaRot-128G GPTQ-128G 0 5.93 526 425 3.61
ASAF-128G (Ours) 0 5.98 530 428 3.64

Language Generation Tasks. We evaluate our ASAF framework on the WikiText-2 language-
generation benchmark. Table|[T|reports the perplexity after quantizing Llama-2 weights to 4 bits with
GPTQ and applying our adaptive sparsity allocation across layer groups. Our framework demon-
strates competitive performance compared to state-of-the-art quantization methods, achieving per-
plexity degradation less than 1% compared to QuaRot while providing additional computational
benefits through optimized sparsity allocation. The layer-group-based pruning approach requires no
additional outlier storage or asymmetric quantization schemes. When using group-size-128 quanti-
zation, ASAF maintains comparable performance with perplexity increases within 1% of QuaRot-
128G while enabling more efficient inference through adaptive sparsity patterns.

Zero-Shot Tasks. We assess ASAF across six established zero-shot benchmarks: PIQA (Bisk et al.}
2020), WinoGrande (Sakaguchi et al., |2021), HellaSwag (Zellers et al.| [2019), LAMBADA (Rad-
ford et al| [2019), and ARC-Easy and ARC-Challenge (Clark et al,|2018). Experiments utilize the
LM Evaluation Harness (Gao et al., [2021} [2024)) with default configurations. Table [2] shows that
ASAF maintains strong performance across all Llama-2 model sizes, with performance degradation
consistently below 1% compared to QuaRot. The ASAF preserves model capabilities while enabling
computational efficiency gains through optimized layer-group pruning patterns.

Prefill Stage Performance Increases. Figure[8|demonstrates the acceleration performance of ASAF
across various batch configurations (1, 4, 16, and 32) with 2048-token sequences on Llama-2 mod-
els. Our adaptive sparsity allocation approach consistently outperforms the QuaRot baseline imple-

16

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot accuracy of Llama models with our ASAF framework on PIQA (PQ), Wino-
Grande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA). Our
method applies adaptive sparsity allocation across layer groups.

| Model | Method | PQ WG HS A-e A-c LA | Avg. |
FP16 79.11 69.06 7599 7458 4625 7390 | 69.82
Llama2-7B QuaRot 76.77 63.77 72.16 69.87 40.87 70.39 | 65.64
ASAF (Ours) | 76.00 63.23 7147 69.17 4052 69.69 | 65.01
FP16 80.47 7222 7939 77.48 4923 76.75 | 72.59
Llama2-13B QuaRot 7889 70.24 7637 7298 46.59 73.67 | 69.79
ASAF (Ours) | 7826 69.68 75776 7225 46.19 7297 | 69.19
FP16 81.13 7394 80.72 7852 51.65 77.59 | 73.93
Llama2-30B QuaRot 7994 72,03 7799 7520 49.46 75.18 | 71.63
ASAF (Ours) | 79.14 7142 7737 7460 4899 7458 | 71.02
FP16 8270 7798 83.84 8098 57.34 79.58 | 77.07
Llama2-70B QuaRot 82.43 7624 81.82 8043 5623 7873 | 75.98
ASAF (Ours) | 81.77 7548 81.12 79.71 5581 77.98 | 7531
B QuaRot i Ours ---- Ideal Improvement
LLama2-7B LLama2-13B
4 4

w
w

2.52x 263

247y 258X

2.53x

2.27x

2.08x 2.06x 218X 211x 223X 2.15x

1.97x

=%
>

o
&
a2
v

1 4
LLama2-30B

16 32 1 4 16

LLama2-70B

32

3.63x
3.36x

3.58x
3.32x

3.48x

3.38x 327x

3.13x 3.16x

3.08x 2.08x

2.98x

w

Speedup
N

1 4 16
Batch Size

16
Batch Size

32

Figure 8: Performance comparison between our framework and QuaRot on Llama-2 models, evalu-
ated on NVIDIA RTX 3090 GPUs with 2048-token sequences across various batch sizes.

mentation across all tested configurations. The performance gains become more pronounced with
larger batch sizes, as the computational workload increasingly overshadows memory bandwidth
limitations. For the largest 70B model, our method reaches peak acceleration of 3.63 x. The results
reveal a clear trend where both increasing model complexity and batch size magnify the effectiveness
of our optimization strategy, demonstrating the scalable nature of the ASAF framework’s adaptive
layer-wise sparsity allocation mechanism.

Table 3: GPU memory consumption comparison between QuaRot and our ASAF framework across
different Llama-2 model sizes. All measurements in MB for inference with 2048 sequence length at
batch size 1. Compression ratios reflect adaptive sparsity allocation.

Llama-2
Method 7B 13B 30B 70B
QuaRot 3255MB 5,753 MB 11,408 MB 20,536 MB
ASAF (Ours) 3,013MB 5276 MB 10,110 MB 17,943 MB
Compression Ratio 7.43% 8.29% 11.38% 12.63%

17

Under review as a conference paper at ICLR 2026

Computational and Memory Efficiency. This algorithmic efficiency translates directly to memory
benefits during inference. As shown in Table [3] ASAF achieves an average memory reduction of
9.93% across all model sizes, ranging from 7.43% for the 7B model to 12.63% for the 70B model,
demonstrating our adaptive sparsity allocation strategy that applies conservative pruning to smaller
models while aggressively leveraging redundancy in larger architectures. The layer-group-based
pruning strategy enables efficient sparse matrix operations that preserve computational patterns fa-
vorable to modern GPU architectures. Combined with 4-bit quantization, our approach allows de-
ployment of large models on resource-constrained hardware while maintaining inference quality.

RTN Quantization Strategy. To evaluate the robustness of our adaptive sparsity allocation ap-
proach, we compare ASAF’s performance under RTN quantization, where GPTQ serves as the
default weight quantization strategy. Table [demonstrates that at 8-bit precision, RTN maintains
accuracy nearly identical to full precision for both approaches. At 4-bit quantization, while both
methods experience some quality degradation, our ASAF framework consistently maintains perfor-
mance within 1% of QuaRot results across all model sizes. In both INT4 and INT8 configurations,
these findings confirm that layer-group-based adaptive sparsity allocation can be effectively com-
bined with RTN quantization without introducing significant accuracy loss, validating the general-
izability of our optimization framework.

Table 4: WikiText-2 perplexity (PPL) and zero-shot accuracy of our ASAF framework for Llama-2
models applying 4- and 8-bits with RTN weights and activation quantization. We use PIQA (PQ),
WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).
We quantize all weights, activations, and caches and introduce adaptive sparsity allocation across
layer groups.

| Model | Method | Precision | PPL| | PQT WGT HS?T A-et A-ct LAT Avg 1t |
| | Baseline | FPI6 | 547 | 79.11 6906 7599 7458 4625 7390 69.82 |
7B QuaRot-RTN INT4 8.37 72.09 60.69 6540 58.88 3524 5727 58.26

INT8 5.50 78.94 68.67 75.80 7479 4539 7433 69.65

INT4 8.44 7148 60.23 64.81 5838 3498 56.75 57.77
INTS 5.54 7831 68.09 7512 74.19 4500 73.66 69.06

| | Baseline | FP16 | 488 80.47 7222 7939 7748 4923 7675 7259 |

INT4 6.09 7737 6732 73.11 70.83 43.69 70.66 67.16
INTS 4.90 80.52 71.59 7938 7731 49.15 7679 72.46

INT4 6.14 76.67 66.71 7245 70.19 4330 70.02 66.56
INTS 4.94 79.84 7091 78.67 76.65 48.68 76.10 71.81

\ \ Baseline | FPl6 | 442 | 8113 7394 8072 7852 5165 7759 7393 |

INT4 5.51 7836 69.65 7505 72.84 46.08 7256 69.09
INT8 4.43 81.18 7335 80.65 7836 51.58 77.63 73.82

INT4 5.56 77.69 68.99 7437 7222 4564 7191 6847
INTS 4.47 80.45 72.69 7992 77.65 51.12 7693 73.13

\ \ Baseline | FPI6 | 332 | 8270 7798 83.84 8098 5734 7958 77.07 |

INT4 4.14 80.69 75.14 79.63 7757 5171 77.02 73.63
INT8 3.33 8297 7798 83.67 80.77 5811 79.53 77.17

INT4 4.18 7992 7446 7883 76.83 51.24 7625 7292
INTS 3.36 82.14 7724 8292 7996 57.56 78.81 76.44

ASAF-RTN (Ours)

13B QuaRot-RTN

ASAF-RTN (Ours)

30B QuaRot-RTN

ASAF-RTN (Ours)

70B QuaRot-RTN

ASAF-RTN (Ours)

APPENDIX A.10: COMPUTATIONAL EFFICIENCY ANALYSIS

A.10.1 UNIFIED COMPLEXITY ANALYSIS

Baseline Brute-Force Complexity. The naive approach requires exhaustive enumeration of all
possible layer grouping and sparsity allocation configurations. For a model with L layers and |5
discretized sparsity rates, the total search space includes:

2L71

* Layer grouping: possible ways to partition layers into consecutive groups

* Sparsity assignment: |S|“ assignments for G’ groups, where G ranges from 1 to L

18

Under review as a conference paper at ICLR 2026

The total brute-force complexity is:
"L
Cone = O (Z (&)~ |sG) — 0(81" x 24) (19)
G=1
For Llama-2-7B with L = 32 layers and |S| = 29 sparsity levels (1% to 15% with 0.5% steps):

» Brute force: 2932 x 232 ~ 10*7 operations

ASAF Framework Complexity. Our two-phase approach decomposes the problem into manage-
able subproblems:

Phase 1: Coarse-Grained Optimization Complexity: O(Gax X B x |Z|)

* Gmax = L: maximum number of groups
* B = dmax/A: discretized accuracy budget levels
* |Z|: number of candidate sparsity intervals

Phase 2: Fine-Grained Optimization Complexity: O(L?> x G* x B x |9'|)

+ L2: nested loops over layer positions and group boundaries
* (G*: optimal number of groups from Phase 1

* |S’| < |S|: refined sparsity space size
Tabulation Preprocessing Complexity: O(L? x |S| X Teya)
* Tevar: evaluation time for sensitivity measurement per configuration

Total ASAF Complexity.
Casar = O(L? X |S| X Teyat + Gax X B x |Z| + L? x G* x B x |§'|) (20)

Dominant term: O(L? x |S| X Teyy) (tabulation preprocessing)

Practical Complexity Comparison. For Llama-2-7B configuration:

e L=232,|5=29, Gax =32, B=40,|Z| =15,G* = 8, |5'| = 3
o ASAF total: 322 X 29 X Thya + 32 x 40 X 15 4+ 322 x 8 x 40 x 3 ~ 3 x 10* X Tiya
* Speedup ratio: Corye/Casar ~ 1042/ Toya

Memory Complexity. Dynamic Programming Tables

¢ Coarse-grained: O(Gpax X B) = O(L X dmax/A)
* Fine-grained: O(L x G* x B) = O(L x G* X dyax/A)
* Tabulation: O(L? x |S|) for both FLOP and sensitivity tables

Total Memory
Memory sgup = O(L? X |S| + L x G* X Sumax /D) Q1

Practical example (Llama-2-7B): ~211KB total overhead, negligible compared to model parame-
ters.

Scalability Analysis. The polynomial complexity ensures graceful scaling:

* 12-layer model: 105 brute-force vs 103> ASAF operations
* 48-layer model: 107" brute-force vs 10 ASAF operations
* Complexity reduction ratio grows exponentially with model size

19

Under review as a conference paper at ICLR 2026

A.10.2 MEMORY EFFICIENCY ANALYSIS

Dynamic Programming State Management. The memory requirements for our dynamic pro-
gramming approach consist of three primary components. The coarse-grained DP table maintains
states with dimensions [Gax] X [Tmax), requiring O(Gmax X Tmax) floating-point entries. For typ-
ical configurations, this translates to approximately 32 x 40 = 1,280 entries, occupying roughly
5.12 KB when using FP32 precision. The fine-grained DP table stores states with dimensions
[L + 1] X [G*] X [Tiax], necessitating O(L x G* X Ty,ax) floating-point entries. This typically
amounts to 33 X 8 x 40 = 10, 560 entries, consuming approximately 42.24 KB in FP32 format. The
tabulation mechanism maintains two lookup tables: the FLOP cost table H[i|[len|[s] and the accu-
racy degradation table Z[i][len][s], both with dimensions [L] x [L] x [|S|]. The combined memory
requirement becomes 2 X L x L X |S| entries, typically resulting in 2 x 32 x 32 x 20 = 40, 960
entries and consuming approximately 163.84 KB. The total memory overhead for all data struc-
tures amounts to 211.2 KB, which remains negligible compared to the model parameter memory
requirements.

Model Memory Reduction. The adaptive sparsity allocation strategy achieves memory efficiency
through strategic pruning of redundant parameters. For a layer group ¢ with sparsity rate s;, the
memory reduction is directly proportional: Memory,,.q = $; X Memory,,;,,;. However, ASAF’s
adaptive allocation provides superior memory efficiency compared to uniform sparsity approaches
by concentrating aggressive pruning on redundant layers while preserving critical layers with min-
imal sparsity. Our experimental results demonstrate progressive memory reduction scaling with
model size. The Llama-2-7B model achieves 7.43% memory reduction (from 3,255 MB to 3,013
MB), while the Llama-2-13B model attains 8.29% reduction (from 5,753 MB to 5,276 MB). Larger
models exhibit more substantial benefits, with the Llama-2-30B achieving 11.38% reduction (from
11,408 MB to 10,110 MB) and the Llama-2-70B reaching 12.63% reduction (from 20,536 MB to
17,943 MB). This scaling behavior reflects the increased redundancy present in larger architectures,
enabling more aggressive sparsification without accuracy degradation.

A.10.3 RUNTIME PERFORMANCE CHARACTERISTICS

Preprocessing and Optimization Time. The tabulation construction phase constitutes the pri-
mary preprocessing overhead, with time complexity O(L? x |S| X Tuyal), where Ty represents the
evaluation time for a single configuration. Empirical measurements indicate preprocessing times
of 2-4 hours for Llama-2-7B on NVIDIA RTX 3090 hardware, which remains acceptable for de-
ployment scenarios requiring one-time optimization. The optimization phases exhibit minimal com-
putational overhead, with the coarse-grained phase typically completing within 30 seconds and the
fine-grained phase requiring approximately 10 seconds. The total optimization time remains un-
der one minute, which is negligible compared to the preprocessing requirements and enables rapid
exploration of alternative configurations.

Inference Acceleration Analysis. The FLOP reduction achieved by optimal allocation
{(Li,8:)}5, can be quantified as:

o
1:‘L()Preduced = Z Z ¢l X Si, (22)
i=11eL;
where ¢; represents the original FLOP count for layer [. Experimental evaluation across differ-
ent batch sizes and model configurations reveals consistent acceleration patterns. The Llama-2-7B
model achieves speedups ranging from 1.89x at batch size 1 to 2.31 x at batch size 32. Larger mod-
els demonstrate more substantial improvements, with the Llama-2-70B reaching peak acceleration
of 3.63x at batch size 32. This scaling behavior indicates that both increasing model complexity
and batch size amplify the effectiveness of our adaptive allocation strategy, as larger computational
workloads increasingly overshadow memory bandwidth limitations.

Hardware Utilization Efficiency. The layer-group-based sparsity patterns enable efficient hard-
ware utilization through several mechanisms. Sparse matrix operations reduce memory traffic pro-
portionally to the applied sparsity rates, while the structured nature of our allocation strategy facili-
tates efficient kernel implementations. The combination of 4-bit quantization with adaptive sparsity

20

Under review as a conference paper at ICLR 2026

maximizes the throughput-to-memory ratio, enabling effective utilization of tensor cores and other
specialized compute units available on modern GPU architectures.

A.10.4 SCALABILITY PROPERTIES

Layer Count Scaling. The polynomial complexity ensures graceful scaling with increasing model
sizes. As model layer counts increase from 12 to 48 layers, the complexity reduction factor grows
from 10'2 to 1097, demonstrating the exponential advantage of our approach over brute-force enu-
meration. Specifically, a 12-layer model requires approximately 122 x 20 = 2, 880 operations com-
pared to 2'2 x 2012 ~ 10'® brute-force operations, while a 48-layer model needs 482 x 20 = 46, 080
operations versus 248 x 20*® ~ 107 brute-force operations.

Sparsity Resolution Impact. The impact of sparsity discretization resolution on computational
requirements follows a linear relationship. Increasing the sparsity resolution from 20 to 40 levels
doubles the tabulation construction time and slightly increases the optimization overhead. However,
finer resolution typically yields marginal improvements in final allocation quality, suggesting that
moderate discretization (0.5% to 1.0% steps) provides an optimal balance between computational
cost and optimization precision.

Accuracy Budget Sensitivity. The relationship between accuracy degradation budget and opti-
mization complexity exhibits sublinear scaling. Doubling the accuracy budget from 1% to 2%
increases the fine-grained optimization space by approximately 4, but the coarse-grained phase
efficiently prunes the majority of suboptimal configurations, maintaining overall polynomial com-
plexity. This property ensures that our framework remains computationally tractable even when
exploring larger accuracy-efficiency trade-off spaces.

APPENDIX A.11: NVIDIA 4090 GPU PERFORMANCE ANALYSIS

s QuaRot W Ours Ideal Improvement
LLama2-7B LLama2-13B

1 4 16 32 1 4 16 32
Batch Size Batch Size

Figure 9: Performance comparison between our ASAF framework and QuaRot on Llama-2 models,
evaluated on NVIDIA RTX 4090 GPUs with 2048-token sequences across various batch sizes.

Performance Evaluation on NVIDIA RTX 4090. We further evaluate our ASAF framework on
NVIDIA RTX 4090 GPUs to assess scalability across hardware generations. Figure 0] demonstrates
acceleration performance across various batch configurations with 2048-token sequences on Llama-
2 models. On RTX 4090, our framework achieves peak acceleration of 3.89x on the Llama-2-70B
model, representing a 7.2% improvement over the 3.63x achieved on RTX 3090. The relative

21

Under review as a conference paper at ICLR 2026

improvement of ASAF over QuaRot baseline remains consistent across both GPU generations, with
our method providing 6-8% additional acceleration across all model sizes, validating the hardware-
agnostic nature of our optimization approach.

APPENDIX A.12: LLAMA-3 EXPERIMENTAL RESULTS

Table 5: Zero-shot accuracy of Llama-3 models with our framework on PIQA (PQ), WinoGrande
(WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

| Model | Method | PQ WG HS A-e A< LA | Avg |
FP16 8128 72.14 7832 7871 5213 7684 | 73.24
Llama3-8B QuaRot | 79.16 69.82 7547 7533 4829 73.95 | 70.34
ASAF (Ours) | 7852 6926 7481 7473 4794 7340 | 69.78
FP16 8542 8177 86.15 8523 6442 8291 | 80.98
Llama3-70B | QuaRot | 84.28 80.34 84.61 8376 6283 81.24 | 79.52
ASAF (Ours) | 83.65 79.77 8394 8305 6247 80.63 | 78.92

Zero-Shot Tasks on Llama-3 Family. To further validate our framework’s generalizability, we
extend our evaluation to the Llama-3 model family, which demonstrates superior baseline perfor-
mance compared to Llama-2. We evaluate our framework on the same six zero-shot benchmarks:
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al, 2021)), HellaSwag (Zellers et al.l |2019),
LAMBADA (Radford et al.l 2019), and the ARC-Easy and ARC-Challenge datasets (Clark et al.,
2018). Table[5|demonstrates that our method maintains competitive accuracy across Llama-3 model
sizes with performance degradation consistently below 1% compared to QuaRot, even on these more
advanced models with higher baseline performance.

APPENDIX A.13: GROUP-WISE QUANTIZATION

Table 6: WikiText-2 perplexity of 4-bit QuaRot and our ASAF framework under different group
sizes on Llama-2 models. Weights are GPTQ-quantized, and KV caches use fixed group size 128
(equal to head dimension). ”G” denotes group-wise quantization with specified group size. Our
method applies adaptive sparsity allocation across layer groups.

Llama-2
Method 78 13B 30B 70B
| Baseline 547 488 409 332 |
QuaRot 610 540 441 379

QuaRot-256G 598 528 432 3.63
QuaRot-128G 593 526 425 3.61
QuaRot-64G 588 525 413 3.58

ASAF (Ours) 6.16 545 445 3.82
ASAF-256G (Ours) | 6.03 532 436 3.66
ASAF-128G (Ours) | 597 530 4.28 3.64

ASAF-64G (Ours) | 594 528 417 3.62

Group-Wise Quantization. Table [6| reports WikiText-2 perplexity for our ASAF framework when
weights and activations are quantized group-wise with group sizes of 256, 128, and 64. As expected,
smaller groups yield better accuracy because per-group scale factors more precisely capture local
statistics, though they incur additional scale storage and slightly more complex kernels. Across every
group size, our adaptive sparsity allocation framework tracks QuaRot’s dense counterparts to within
1%, demonstrating that layer-group-based sparsity optimization can be achieved without meaningful
quality loss. The consistent performance across different group sizes validates the robustness of our
two-phase optimization approach under various quantization granularities.

22

Under review as a conference paper at ICLR 2026

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency } tradeoff in {LLM}
inference with {Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117-134, 2024.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-15. IEEE,
2022.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Quik: Towards end-to-end 4-bit inference on generative large language
models. arXiv preprint arXiv:2310.09259, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024b.

Richard Ernest Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Ruisi Cai, Yeonju Ro, Geon-Woo Kim, Peihao Wang, Babak Ehteshami Bejnordi, Aditya Akella,
Zhangyang Wang, et al. Read-me: Refactorizing llms as router-decoupled mixture of experts

with system co-design. Advances in Neural Information Processing Systems, 37:116126-116148,
2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396-4429, 2023.

Ciprian Chelba, Mia Chen, Ankur Bapna, and Noam Shazeer. Faster transformer decoding: N-gram
masked self-attention. arXiv preprint arXiv:2001.04589, 2020.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Static
quantization beats dynamic through prefixed outliers in llms. arXiv preprint arXiv:2410.05265,
2024a.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade
speculative drafting for even faster llm inference. Advances in Neural Information Processing
Systems, 37:86226-86242, 2024b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL |https://api.semanticscholar.org/
CorpusID:3922816,

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009. ISBN 9780262033848.

23

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816

Under review as a conference paper at ICLR 2026

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344-16359, 2022.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhigiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill
Higher Education, Boston, MA, 2006.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318-30332, 2022.

Oshin Dutta, Ritvik Gupta, and Sumeet Agarwal. Efficient 1lm pruning with global token-
dependency awareness and hardware-adapted inference. In Workshop on Efficient Systems for
Foundation Models [1@ ICML2024, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323-10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Zichuan Fu, Wentao Song, Yejing Wang, Xian Wu, Yefeng Zheng, Yingying Zhang, Derong Xu,
Xuetao Wei, Tong Xu, and Xiangyu Zhao. Sliding window attention training for efficient large
language models. arXiv preprint arXiv:2502.18845, 2025.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Haotong Qin,
Jinyang Guo, Michele Magno, and Xianglong Liu. A survey of low-bit large language models:
Basics, systems, and algorithms. arXiv preprint arXiv:2409.16694, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. arXiv preprint arXiv:2306.08543, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Yuhan Dong, Yu Wang,
et al. Flashdecoding++: Faster large language model inference with asynchronization, flat gemm
optimization, and heuristics. Proceedings of Machine Learning and Systems, 6:148-161, 2024.

Wenxuan Huang, Zijie Zhai, Yunhang Shen, Shaosheng Cao, Fei Zhao, Xiangfeng Xu, Zheyu Ye,
and Shaohui Lin. Dynamic-llava: Efficient multimodal large language models via dynamic vision-
language context sparsification. arXiv preprint arXiv:2412.00876, 2024.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704-2713, 2018.

Shibo Jie, Yehui Tang, Kai Han, Zhi-Hong Deng, and Jing Han. Specache: Speculative key-value
caching for efficient generation of llms. arXiv preprint arXiv:2503.16163, 2025.

24

https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611-626, 2023.

Jaeseong Lee, Aurick Qiao, Daniel F Campos, Zhewei Yao, Yuxiong He, et al. Stun: Structured-
then-unstructured pruning for scalable moe pruning. arXiv preprint arXiv:2409.06211, 2024.

Guanchen Li, Yixing Xu, Zeping Li, Ji Liu, Xuanwu Yin, Dong Li, and Emad Barsoum. T\ yr-
the-pruner: Unlocking accurate 50% structural pruning for llms via global sparsity distribution
optimization. arXiv preprint arXiv:2503.09657, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024b.

Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimization
for highly sparse one-shot pruning for large language models. arXiv preprint arXiv:2406.07831,
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076—41102, 2024.

Zhenyu Ning, Jieru Zhao, Qihao Jin, Wenchao Ding, and Minyi Guo. Inf-mllm: Efficient streaming
inference of multimodal large language models on a single gpu. arXiv preprint arXiv:2409.09086,
2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe
Diao, et al. Llm pruning and distillation in practice: The minitron approach. arXiv preprint
arXiv:2408.11796, 2024.

Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. Llum-
nix: Dynamic scheduling for large language model serving. In /8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24), pp. 173-191, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

25

Under review as a conference paper at ICLR 2026

Jinguang Wang, Jingyu Wang, Haifeng Sun, Tingting Yang, Zirui Zhuang, Wanyi Ning, Yuexi Yin,
Qi Qi, and Jianxin Liao. Mergequant: Accurate 4-bit static quantization of large language models
by channel-wise calibration. arXiv preprint arXiv:2503.07654, 2025.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse 1lms.
arXiv preprint arXiv:2310.08915, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

26

