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ABSTRACT

Diffusion models have emerged as highly effective techniques for inpainting, how-
ever, they remain constrained by slow sampling rates. While recent advances have
enhanced generation quality, they have also increased sampling time, thereby lim-
iting scalability in real-world applications. We investigate the generative sampling
process of diffusion-based inpainting models and observe that these models make
minimal use of the input condition during the initial sampling steps. As a re-
sult, the sampling trajectory deviates from the data manifold, requiring complex
synchronization mechanisms to realign the generation process. To address this,
we propose Time-aware Diffusion Paint (TD-Paint), a novel approach that adapts
the diffusion process by modeling variable noise levels at the pixel level. This
technique allows the model to efficiently use known pixel values from the start,
guiding the generation process toward the target manifold. By embedding this
information early in the diffusion process, TD-Paint significantly accelerates sam-
pling without compromising image quality. Unlike conventional diffusion-based
inpainting models, which require a dedicated architecture or an expensive genera-
tion loop, TD-Paint achieves faster sampling times without architectural modifica-
tions. Experimental results1 across three datasets show that TD-Paint outperforms
state-of-the-art diffusion models while maintaining lower complexity.

1 INTRODUCTION

Given an image and a binary mask, image inpainting aims to generate the missing region while
preserving the semantics of the visible region. This task is challenging because the generated content
must not only be coherent with the existing parts of the image but also appear realistic. Additionally,
the generation process should be stochastic to produce diverse outputs. An effective inpainting
model must also address variations in mask shape and size. Generalizing to unseen masks during
training and accurately filling large missing regions further complicates the task.

Diffusion models have shown significant success as generative models (Dhariwal & Nichol, 2021;
Rombach et al., 2022), by approximating the distribution of real images through a fixed Markov
chain that transforms Gaussian noise into the real image distribution. During training, a forward
diffusion process gradually adds noise to an image, and the model is trained to reverse this process,
learning to denoise and recover the original image distribution. During generation, the backward
diffusion iteratively removes noise from an initial Gaussian noise image. The trained model predicts
and removes noise at each step, gradually refining the image until a photorealistic result is achieved.

Methods proposed in the literature have investigated using the standard diffusion model (Lugmayr
et al., 2022; Chung et al., 2022) for inpainting by combining the noisy condition with the current
generation at each step. This technique has its limitations. While the textures match, it creates
disharmony between the conditioning and generation parts. This disharmony comes from the fact
that, during the early steps of the generation process, the condition contains a lot of noise that the
model cannot leverage. Therefore, the generation moves away from the intended semantics and
produces unsatisfactory results. An illustration of such inpainting can be found in Figure 1(left).

To address this limitation, RePaint (Lugmayr et al., 2022) introduced a resampling mechanism that
repeats the diffusion steps multiple times, enabling the model to synchronize condition and gener-

1Our code is provided in supplementary materials.
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Figure 1: Comparison of noisy-condition models (e.g., RePaint) and TD-Paint generation pro-
cesses. Reverse denoising steps (pθ(xt−1|xt)) are depicted in purple lines Ð, forward noising steps
(q(xt|xt−1)) are shown in green lines Ð. Here, xt represents the input to the diffusion process at
step t, mask denotes the conditional area (shown in white) and the region to be generated (shown in
black), and x̂t represents the model’s prediction at diffusion step t. (left) RePaint (Lugmayr et al.,
2022) generation process. RePaint applies a cycle of reverse and forward diffusion steps. It can
be observed that the intermediate steps of the generation process lack consistency, changing from a
man with dark hair at x̂T−1 to a man with blond hair at x̂t to a woman at x̂t+k. These changes occur
due to the synchronization process, where the initially predicted images x̂t are not well aligned with
the given condition.(right) TD-Paint generation process. In comparison, TD-Paint can use a clean
condition from the beginning of the inpainting process, resulting in a faster and more stable process.
Note how the intermediate TD-Paint steps are consistent from one to another.

ation better. Although RePaint produces highly faithful images, this resampling significantly slows
the generation process. Indeed, RePaint requires approximately 5k steps to generate a single image,
increasing time complexity. An illustration of RePaint’s generative process is shown in Figure 1
(left). Other approaches introduce additional constraints at each diffusion step(Chung et al., 2022;
Li et al., 2023). For example, (Chung et al., 2022) integrates a correction mechanism that encour-
ages the diffusion path to remain close to the data manifold. This is achieved by minimizing the
reconstruction error of the known image region relative to the unknown region.

In contrast to models that use a noisy condition(Lugmayr et al., 2022; Chung et al., 2022), our
Time-aware Diffusion Paint (TD-Paint) approach integrates the currently generated sample with
a clean condition. Our method uses semantic information from the beginning of the generation
process, resulting in a more efficient and cost-effective approach. To achieve this, TD-Paint uses time
conditioning derived from the standard formulation of diffusion models. Instead of using a single
scalar t for the entire image, TD-Paint assigns a unique t value to each pixel. The known image
region is assigned a smaller t, indicating lower noise levels. In contrast, the region to be generated
is assigned a t value proportional to the current step in the generation process. An illustration of
TD-Paint’s generative process is provided in Figure 1(right).

Our main contributions are summarized as follows:
• We propose a novel noise modeling paradigm for diffusion models that allows for integrating vary-
ing noise levels into the input of diffusion models. TD-Paint exploits time conditioning in diffusion
models to achieve faster and higher-quality generation.
• An extensive set of experiments on the challenging CelebA-HQ, ImageNet1K and Places2 datasets
demonstrates that our TD-Paint, not only outperforms state-of-the-art diffusion-based models but
also surpasses other inpainting methods, including those based on CNNs and transformers. Addi-
tionally, the results indicate TD-Paint is a more cost-effective solution for diffusion models.
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2 RELATED WORKS

Inpainting aims to fill in a missing part of the image realistically. Traditional inpainting methods
try to combine techniques to propagate texture and structural information onto the missing parts
(Criminisi et al., 2004). Some algorithms (Grossauer, 2004) use large image datasets and assume
that the possible semantic space for missing regions is limited. In recent years, deep learning models
for inpainting have made impressive progress using two types of generative models, VAEs (Kingma
& Welling, 2013) and GANs (Goodfellow et al., 2020; Mirza & Osindero, 2014).

(a) Single-Stage Inpainting: Most single-stage methods use the context encoding setting intro-
duced by Pathak et al. (Pathak et al., 2016), with an encoder-decoder setup. A reconstruction loss
(L2) ensures global structure consistency, while an adversarial loss ensures the reconstruction is
realistic. Global consistency is an important consideration. CNNs are limited by a receptive field
that grows slowly with network layers. Many layers are needed for information to travel from one
side of the image to the other. Dilated convolution (Yu & Koltun, 2015) has been used by (Iizuka
et al., 2017) to increase the receptive field. Partial convolution (Liu et al., 2018) uses mask infor-
mation to attend only the visible regions. The pyramid context encoder (Zeng et al., 2019) learns
an affinity map between regions in a pyramidal fashion. Fourier convolution (Suvorov et al., 2022)
aims to provide a global receptive field to both the inpainting network and the loss function. Fast
Fourier Convolutions have an image-wide receptive field, which helps with large missing areas.
Mask-Aware Transformer (MAT) (Li et al., 2022) is a transformer-based architecture that allows the
processing of high-resolution images. A customized transformer block considers only valid tokens,
and a style manipulation module updates convolution weights with noise to produce diverse outputs.

(b) Progressive Image Inpainting: These methods seek to address global consistency by using
coarse-to-fine multi-stage approaches. Multiple generations are possible for a large missing region
in single-stage training. Some may have a large pixel-to-pixel distance from the original ground
truth, which can be misleading when training models with pixel-wise distance losses. To address
this issue, Yun et al. (Yu et al., 2018) proposed a two-stage generative approach. The first stage
produces a coarse output optimized with L1 loss incorporating spatial discounting, while the second
stage refines the output further using both global and local critics. Gated convolution (Dauphin et al.,
2017) has been used in a coarse-to-fine network to learn valid pixels (Yu et al., 2019).

(c) Prior Knowledge Inpainting: These methods leverage and mine information from generative
models. Prior Guided GAN (PGG) (Suvorov et al., 2022) uses the latent space of a pre-trained
GAN and learns to map masked images to this space using an encoder. A masked image can be
mapped to a latent code during inference, and the generator can produce a corresponding inpainted
image. Deep Generative Prior (Pan et al., 2021) relaxes the frozen generator assumption of GAN
inversion methods and proposes progressively refining each layer. PSP (Richardson et al., 2021)
uses StyleGAN (Karras et al., 2019) latent space to encode an image into its latent space. Inpainting
is formulated as a domain translation task performed in the latent space of StyleGAN, removing
adversarial components from the training process.

(d) Diffusion Model Inpainting: While GANs have recently shown impressive results, most ap-
plications are limited to generating a specific domain. In contrast, Diffusion models have gained
traction for image generation; Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020)
and Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a) can generate very diverse
and high-quality images. Some unconditional diffusion models have shown the ability to perform
zero-shot inpainting (Sohl-Dickstein et al., 2015; Song et al., 2020b) but provide only qualitative
results. The Pixel Spread Model (PSM) (Li et al., 2023) uses a decoupled probabilistic model that
combines the efficiency of GAN optimization with the prediction traceability of diffusion models.
Latent Diffusion Models (LDM) (Rombach et al., 2022) decouple two tasks: image processing and
compression, and the denoising process is learned in latent space instead of pixel space. Inpainting
is performed by encoding the masked input image, downsampling the inpainting mask, and con-
catenating them as additional conditions to the denoising model. Designing an image and mask
conditional diffusion model requires a special architecture to accept additional input for inpainting,
as done in (Rombach et al., 2022; Li et al., 2023), and often treats inpainting as a domain translation
task. In contrast, TD-Paint does not require any architecture modification by directly combining
the masked input and current generation with different noise levels. Differential Diffusion (Levin &
Fried, 2023) introduces a new approach to soft-inpainting, where both the generated region and the
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conditional input are modified to ensure coherence across the entire image. This method uses LDM
along with a strength map to focus on different image regions during each diffusion step. However,
Differential Diffusion operates on noisy conditional inputs. The Manifold Constrained Gradient
(MCG) (Chung et al., 2022) adds a correction term to ensure each sample step remains close to the
data manifold, allowing for more stable inpainting. RePaint (Lugmayr et al., 2022) which aligns
with our approach, combining the noisy conditional region with the current generation, where the
diffusion model iteratively updates missing pixels using the surrounding context. We observe that
during the early inpainting step of RePaint, the condition is dominated by noise and does not contain
any semantic information. This causes the model prediction to deviate from the target manifold (see
Figure 1(left)). A resampling mechanism is needed to synchronize the condition and generation re-
gions, allowing semantically corrected images to be produced at the cost of significantly increasing
computation time.

Instead of degrading the condition to the same level as the generation, we propose keeping it clean
and conditioning the missing part on the known pixels from the beginning of the generation process
(see Figure 1(right)). Although it requires fine-tuning the model, our approach provides much faster
sampling by avoiding resampling (Lugmayr et al., 2022) or additional constraints(Chung et al.,
2022). We use temporal information to model the detail in the image. The condition, containing
clean data, is assigned a low noise level while the generation region starts with maximum noise that
gradually decreases during the process. This approach allows for a direct combination of the clean
and generated regions in the same space without changing the model architecture.

3 BACKGROUND ON INPAINTING DIFFUSION MODELS

Diffusion Models: Diffusion models learn a data distribution from a training dataset by inverting
a noise process. During training, the forward diffusion process transforms a data point x0 into
Gaussian noise xT ∼ N (0, I) in T steps by creating a series of latent variables x1, ..., xT using:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where βt represents the predefined variance schedule. Given αt = 1 − βt, ᾱt =
∏t

i=1 αi, and
ϵ ∼ N (0, I), xt at step t can be marginalized from x0 using the reparametrization trick as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (2)

The reverse denoising process pθ(xt−1|xt, t) allows to generate from the data distribution by first
sampling from xT ∼ N (0, I) and iteratively reducing the noise in the sequence xT , ..., x0. The
model ϵθ(xt, t) is trained to predict the added noise ϵ to produce the sample xt at time step t. The
model is trained using mean square error (MSE):

L = Eϵ∼N (0,I),x0,t∥ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥22. (3)

RePaint Methodology: Given an image x and a binary mask m, the goal of inpainting is to generate
the missing region x⊖ specified by x ⊙ (1 −m) conditioned on the known region x⊕ specified by
x⊙m. For this, RePaint combines a noisy version of the condition x0⊙m with the previous output
of the generation process:

x⊕
t−1 ∼ N

(√
ᾱtx0, (1− ᾱt)I

)

(4)

x⊖
t−1 ∼ N (µθ(xt, t),Σθ(xt, t)) (5)

xt−1 = x⊕
t−1 ⊙m+ x⊖

t−1 ⊙ (1−m) (6)

RePaint uses the known pixels as a noisy condition to guide the generation of the unknown pixels. In
the first inpainting step, inputs contain a high noise level and limited information about the condition.
This leads to samples that deviate from the intended semantics of the condition, often resulting in
artifacts. To address this, RePaint introduces a resampling mechanism that harmonizes the two
semantics by applying forward diffusion on the output xt−1 back to xt+j . The denoising and re-
noising process involves executing the same diffusion step multiple times during the generation
phase, sacrificing computational efficiency to achieve higher image quality.
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4 THE PROPOSED TD-PAINT METHOD

In TD-Paint, the model is conditioned on known and unknown regions using the time step t, already
present in diffusion models. Instead of using x⊕

t−1, x0 is combined directly with xt without forward
diffusion. This results in a faster diffusion process without changing the model architecture.

4.1 NOISE MODELING FOR FAST INPAINTING

Training Process: The objective of TD-Paint is to enable the diffusion model to discern the infor-
mation content of each input region. This allows the model to differentiate between conditioned
regions and those needing to be painted. By maintaining the known regions free of additional noise,
TD-Paint preserves the maximum amount of information in these areas. Using the time step t allows
for smooth and continuous modeling of information content. Regions from the known part of the im-
age are given a t value close to zero, indicating minimal noise. On the other hand, regions that need
to be inpainted start with a t value close to T , which progressively decreases during the generation
process. To do so, t ∈ {0, ..., T} is transformed from a scalar to a tensor τ ∈ {0, ..., T}h×w. Sim-
ilarly, other variables are accommodated to perform a pixel-wise diffusion process. With one t per
pixel, αt (resp. ᾱt, βt) becomes ατ (resp. ᾱτ , βτ ). This innovative modification can be integrated
into most diffusion model training pipelines. Figure 2 illustrates the intermediate images used for
training. During training, each input image pixel xi,j receives an amount of noise controlled by τi,j .
The forward diffusion process is then applied to x on a pixel-wise basis, as illustrated in Figure 2
and can be formulated as:

xτ =
√
ᾱτx0 +

√
1− ᾱτ ϵ, (7)

in which ϵ ∼ N (0, I), τ ∼ ϕtrain and ϕtrain is a training strategy to sample different noise per pixel.
The diffusion network then predicts ϵ, using less noisy regions to reconstruct more noisy regions by
optimizing the loss:

L = ∥ϵ− ϵθ(xτ , τ)∥22 . (8)

The final component of TD-Paint training is the strategy used for ϕtrain. A random patch size and a
proportion of patches are sampled to define a condition. The input image is then divided into known
and unknown regions based on this sampled proportion. The possible patch sizes are defined as
powers of two, i.e., 2i|i ∈ N, 2i ≤ w, up to the maximum size of the image. The fraction of pixels
designated as the known region is represented by a real value within the interval [0, 1], ensuring that
at least one patch remains in the unknown region. For example, as illustrated in Figure 2 for a patch
size of 128, 25% of the pixels are assigned to the known region.

Generation Process: Inpainting an image with TD-Paint involves sampling a time t for the condi-
tioning region x⊕ and a time t for the inpainted region x⊖ using ϕ. Unless otherwise specified, we
set ϕ⊕

t = 0 for the condition and ϕ⊖
t = t for the region to inpaint for training and generation. For

generation, the known region x⊕ is merged with the current unknown region x⊖
t , and one reverse

step can be expressed as:

xτ = x⊖
t ⊙ (1−m) + x⊕

0 ⊙m (9)

x⊖
t−1 ∼ N (µθ(xτ , τ),Σθ(xτ , τ)) . (10)

This approach allows the use of input-known regions from the beginning of the diffusion process.
Consequently, we can eliminate RePaint’s resampling mechanism, resulting in faster inpainting. The
general algorithm for inpainting an image with an arbitrary ϕ function is given by Algorithm 1.

4.2 TIME-AWARE DIFFUSION ARCHITECTURE

Diffusion models using U-Net architectures (Ronneberger et al., 2015) can incorporate a time map
τ without requiring architectural modifications. This adaptation is achieved by applying pixel-wise
time conditioning to each pixel in the feature maps.

Classical time conditioning first uses a position embedding layer to obtain a time embedding γ ∈ R
d

from the time step t:

γ = L [E(t)× σ(L(E(t)))] , (11)

5



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2025

τ x0 xτ x̂0 τ x0 xτ x̂0

Figure 2: Illustration of the TD-Paint patch-
wise training procedure. Each region of the
input x0 receives a different level of noise con-
trolled by τ . The network uses less noisy re-
gions to reconstruct more noisy regions.

x0
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d
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o
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x
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0

x
⊖

t−1

Next Iteration

+

xτ

Figure 3: The conditional generation proce-
dure. TD-Paint modifies the standard denoising
process to condition the diffusion model on the
known region without noise while gradually de-
noising the generated region.

where L denotes linear layers, σ is the sigmoid function, and E is a sinusoidal timestep embedding.
Additionally, at each layer of the U-Net, the vector γ is used to perform time conditioning with
scale-shift normalization and can be written as:

hl+1
i,j = GN(hl)i,j × (1 + Lscale(γ)) + Lshift(γ), (12)

where hl ∈ R
cl×hl×wl are the current features for layer l, GN is a group normalization layer, while

Lscale and Lshift are linear layers that change the dimension of γ from d to cl. We apply the pixel-wise
time conditioning across each spatial dimension of hl by using τi,j instead of t as follows:

Γi,j = L(E(D(τ)i,j)× σ(L(E(D(τ)i,j)))) (13)

hl+1
i,j = GN(hl)i,j × (1 + Lscale(Γi,j)) + Lshift(Γi,j), (14)

where Γ ∈ R
d×h×w is the embedding of time τ , and D is a downscaling operation function which

rescales τ to hl × wl
2.

5 RESULTS AND DISCUSSION

Algorithm 1 TD-Paint Generation Process.

Require: x⊕ ∼ q(x0) a condition
Require: m a condition mask
Require: ϕt giving the condition noise level for

the known and unknown regions
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ϵ ∼ N (0, I)
4: z ∼ N (0, I) if t > 1, else z = 0
5: x⊕

ϕt
=

√
ᾱϕt

x⊕ +
√

1− ᾱϕt
ϵ

6: x⊖
ϕt

=
√
ᾱϕt

xt−1 +
√

1− ᾱϕt
ϵ

7: τ = ϕt ⊙ (1−m) + ϕt ⊙m

8: xτ = x⊖
ϕt

⊙ (1−m) + x⊕
ϕt

⊙m

9: xt−1 = 1√
ᾱτ

(

xτ − βτ√
1−ᾱτ

ϵθ(xτ , τ)
)

+
στz

10: end for
11: return x0

This section empirically shows that TD-Paint:
(a) produces high-quality inpainting with a
clean condition on various mask sizes and
shapes, on par or better than other inpainting
models; (b) provides more efficient sampling,
making it faster than other diffusion-based
models without requiring a dedicated architec-
ture; (c) generates diverse, high-quality images.
Details on the training masks and their corre-
sponding ablation study are presented in Ap-
pendix A, and additional qualitative results are
provided in Appendix D. In Appendix C, TD-
Paint is compared with state-of-the-art mask
and image-conditioned inpainting models: the
CNN-based LaMa (Suvorov et al., 2022) and
transformer-based MAT (Li et al., 2022).

5.1 EXPERIMENTAL METHODOLOGY

Baselines: We evaluate TD-Paint against state-
of-the-art diffusion-based inpainting methods
in the pixel space: RePaint (Lugmayr et al.,

2We use bilinear interpolation, but min-pool or other techniques could be used with similar effect.
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Figure 4: Qualitative results: TD-Paint against state-of-the-art inpainting methods on CelebA-HQ.
Zoom in for better details. Additional examples can be found in Appendix D.
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Figure 5: Qualitative results: TD-Paint against state-of-the-art inpainting methods on ImageNet1K.
Additional examples can be found in Appendix D.

2022), which conditions the generative process using noisy inputs and synchronizes them with the
output through resampling. MCG (Chung et al., 2022), which adds a correction term to keep the
generation closer to the data manifold, and CoPaint (Zhang et al., 2023a) that utilizes Tweedie’s for-
mula for better generation. Recent studies (Chung et al., 2022; Zhang et al., 2023a) have shown that
CoPaint and MCG are among the best-performing inpainting methods. We denote the RePaint-20
model as using 20 resampling steps, while RePaint-1 refers to the model with 1 resampling step,
matching the number of steps used by TD-Paint. Furthermore, we conduct comparisons with la-
tent diffusion models that have access to the complete context: LDM (Rombach et al., 2022) and
ControlNet (Zhang et al., 2023b). Additionally, we compare against foundation model-based latent
diffusion approaches, including Blended Latent Diffusion (BLD) (Avrahami et al., 2023), Uni-paint
(Yang et al., 2023), and PowerPaint (Zhuang et al., 2025).

Implementation Details: Our approach is validated using the CelebA-HQ (Karras et al., 2018)
dataset, the ImageNet1K (Russakovsky et al., 2015) dataset, and the Places2 dataset (Zhou et al.,
2018) at 256x256 resolution. We modify the implementation of (Dhariwal & Nichol, 2021), main-
taining all their hyperparameters. Training on CelebA-HQ is conducted for approximately 150K
steps with batch size 64 on 4 A100, for ImageNet1K and Places2 for about 200K steps with batch
size 128 on 8 A100. For baselines, we utilize existing code and pre-trained models when available.
For ImageNet1K, we train LaMa for 1M steps on batch size 5 using their implementation, and MAT
for 300K steps on batch size 32 using their implementation. Both LDM and ControlNet are trained
using computational resources equivalent to TD-Paint. For LDM, the encoded masked image and
the downsampled mask provide additional context during the sampling process. For ControlNet, the
encoded masked image alone provides additional context.

Evaluation Metrics: Image quality is evaluated using established metrics from the inpainting lit-
erature: the Learned Perceptual Image Patch Similarity (Zhang et al., 2018) (LPIPS), the Structural
Similarity Index Measure (Wang et al., 2004) (SSIM), and the Kernel Inception Distance (BiÂnkowski
et al., 2018) (KID) (using the TorchMetrics (Nicki Skafte Detlefsen et al., 2022) implementation).
The number of diffusion steps (NBS) and the mean time to inpaint an image (Runtime) are used to
evaluate the computational efficiency of TD-Paint. For evaluation, we use 2,824 images from the
CelebA-HQ test set, 5,000 images from ImageNet1K, and 2,000 images from Places2.
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Figure 6: Qualitative results: TD-Paint against state-of-the-art inpainting methods on Places2.
Additional examples can be found in Appendix D.

5.2 COMPARISON WITH DIFFUSION-BASED MODELS

Wide and Narrow masks In the standard image inpainting scenario, TD-Paint is compared using
Wide and Narrow masks following LaMa (Suvorov et al., 2022) protocol. Tables 1 and 2 shows that
TD-Paint consistently outperforms other diffusion-based models, improving by 20% RePaint-20
LPIPS’s on the Wide mask on CelebA-HQ, ImageNet1K and Places2, and by 30% on the Nar-
row masks. MCG lacks global consistency, resulting in significant artifacts on Wide masks, as
seen in Figures 4 and 5 where it produces eyes of different colors, strange textures, and inpaint-
ing artifacts. RePaint produces high-quality images at the cost of significant inference time. Our
approach can produce high-quality images while requiring much less processing time. When pro-
cessing small masks, LDM occasionally produces minor artifacts, as evident in the top rows of
Figures 4 and 5. These artifacts are more pronounced in ControlNet, which lacks mask information,
resulting in inconsistencies between known and unknown regions. Among foundation-based mod-
els, BLD demonstrates superior performance across all datasets, while Uni-paint and PowerPaint
show inferior results on CelebA-HQ but achieve better performance on ImageNet1K and Places2.
This performance variation may be attributed to BLD’s use of the provided LDM baselines (our
early experiments with Stable Diffusion yielded less favorable results), whereas both Uni-paint and
PowerPaint utilize Stable Diffusion as their foundation.

Super-Resolve 2x and Altern. Lines masks In the Super-Resolve 2x setting, every other pixel
is removed from the image, while the Altern. Lines setting removes every other line. All pixel-
based baselines achieve low LPIPS scores and produce high-quality images for both types of masks
(see Figures 4 to 6). In contrast, latent-based models prove inadequate for this task due to their
downsampling of inpainting masks, which results in critical information loss. TD-Paint outperforms
all considered baselines on CelebA-HQ and comes a close second to CoPaint on ImageNet1K and
Places2, as shown in Tables 1 and 2. The third-best performing model is RePaint. Compared to
RePaint, TD-Paint improves LPIPS by 115% in the Super-Resolve 2x setting and by 69% in the
Altern. Lines setting.

Half and Expand masks The Half setting removes the right part of the images, and the Expand
setting keeps only the central 64×64 part of a 256×256 pixel image. Both LPIPS and SSIM metrics
are less suitable when a significant portion of the image is missing, as they rely on a single ground
truth. This penalizes methods that generate realistic images with semantics different from the ground
truth (Lugmayr et al., 2022). In this case, the KID, which measures the distance between distribu-
tions, is more reliable for assessing image quality. Applying Half and Expand masks is particularly
challenging, as they remove substantial portions of the images. task where an important part of the
images is removed. This complexity is shown both visually in Figures 4 to 6 and by the quantitative
results in Tables 1 and 2. Our model performs best on both the Half and Expand masks across all
datasets (except for CelebA-HQ where it comes close to LDM), as measured by the KID, while
significantly reducing the inference time. Figure 4 shows that TD-Paint can produce high-quality
images in this challenging setting where RePaint lacks global consistency. On ImageNet1K and
Places2 (see Figures 5 and 6), we observe that MCG and CoPaint often mirror the images from the
Half mask, resulting in symmetrical outputs. Similar behavior is observed on Expand masks, with
significant texture blending. ControlNet exhibits limited generalization capability when handling
very large masks, likely due to the absence of mask information, whereas LDM demonstrates robust
performance in these scenarios. Our analysis reveals that foundation-based models yield inferior
qualitative results on CelebA-HQ and Places2 datasets. However, they show improved performance
on ImageNet1K, where class names provide supplementary textual information, which is particu-
larly beneficial in scenarios with limited contextual information.
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Table 1: Quantitative results: LPIPS and SSIM evaluation of diffusion models for inpainting on
the CelebA-HQ, ImageNet1K and Places2 datasets.

CelebA-HQ Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑

RePaint-1 0.098 0.823 0.076 0.857 0.273 0.680 0.046 0.925 0.230 0.581 0.568 0.133
RePaint-20 0.067 0.864 0.036 0.906 0.037 0.904 0.016 0.951 0.189 0.645 0.489 0.191
MCG 0.070 0.823 0.045 0.856 0.081 0.829 0.030 0.903 0.173 0.639 0.437 0.250
CoPaint 0.073 0.835 0.044 0.877 0.033 0.899 0.020 0.929 0.185 0.638 0.454 0.210
LDM 0.060 0.863 0.049 0.879 1.233 0.040 0.740 0.126 0.168 0.662 0.432 0.228
ControlNet 0.091 0.834 0.199 0.763 0.593 0.187 0.318 0.362 0.205 0.620 0.552 0.173
BLD 0.014 0.942 0.017 0.933 0.639 0.206 0.558 0.254 0.232 0.621 0.490 0.263

Uni-paint 0.119 0.805 0.169 0.776 0.825 0.072 0.711 0.127 0.282 0.555 0.687 0.102
PowerPaint 0.111 0.821 0.110 0.837 0.788 0.111 0.567 0.207 0.300 0.548 0.604 0.155
TD-Paint 0.055 0.873 0.028 0.918 0.017 0.939 0.010 0.971 0.170 0.667 0.457 0.212

ImageNet1K Wide Narrow Super-Resolve 2x Altern. Lines Half Expand

RePaint-1 0.169 0.781 0.137 0.794 0.622 0.268 0.245 0.619 0.336 0.542 0.680 0.097
RePaint-20 0.124 0.820 0.067 0.854 0.169 0.693 0.089 0.816 0.301 0.590 0.676 0.134
MCG 0.120 0.780 0.075 0.806 0.182 0.649 0.104 0.768 0.273 0.561 0.634 0.152
CoPaint 0.137 0.798 0.080 0.835 0.071 0.818 0.040 0.884 0.298 0.578 0.645 0.145
LDM 0.138 0.744 0.117 0.748 1.101 0.032 0.687 0.102 0.292 0.538 0.620 0.135
ControlNet 0.171 0.728 0.234 0.672 0.605 0.163 0.340 0.340 0.326 0.523 0.686 0.115
BLD 0.050 0.831 0.054 0.819 0.737 0.134 0.599 0.190 0.356 0.521 0.666 0.172

Uni-paint 0.210 0.694 0.263 0.645 0.795 0.076 0.633 0.153 0.365 0.480 0.705 0.082
PowerPaint 0.196 0.712 0.182 0.725 0.797 0.097 0.520 0.217 0.356 0.490 0.657 0.100
TD-Paint 0.099 0.830 0.057 0.864 0.136 0.648 0.059 0.847 0.257 0.603 0.597 0.159

Places2 Wide Narrow Super-Resolve 2x Altern. Lines Half Expand

RePaint-1 0.179 0.776 0.152 0.788 0.544 0.332 0.232 0.656 0.347 0.541 0.696 0.090
RePaint-20 0.138 0.816 0.078 0.853 0.155 0.729 0.085 0.841 0.320 0.584 0.688 0.121
MCG 0.131 0.788 0.092 0.809 0.250 0.626 0.115 0.786 0.269 0.577 0.618 0.156
CoPaint 0.133 0.804 0.082 0.842 0.071 0.828 0.037 0.902 0.282 0.584 0.630 0.150
LDM 0.128 0.807 0.112 0.803 1.176 0.026 0.706 0.091 0.283 0.582 0.612 0.142
ControlNet 0.173 0.781 0.234 0.730 0.614 0.170 0.312 0.392 0.327 0.548 0.670 0.102
BLD 0.035 0.901 0.039 0.886 0.744 0.134 0.600 0.206 0.335 0.567 0.663 0.173

Uni-paint 0.184 0.753 0.219 0.717 0.835 0.071 0.651 0.159 0.344 0.522 0.727 0.082
PowerPaint 0.187 0.774 0.152 0.793 0.797 0.097 0.483 0.258 0.348 0.536 0.653 0.101
TD-Paint 0.112 0.826 0.064 0.865 0.130 0.696 0.060 0.879 0.273 0.594 0.607 0.146

5.3 QUALITY VS. EFFICIENCY

We compare the time efficiency of different diffusion approaches working in the pixel space by
computing the average time to sample 100 images consecutively on a single V100, and the results
are reported in Table 3. State-of-the-art approaches require over 6× longer to sample compared to
TD-Paint. The increased time in RePaint is due to the resampling mechanism needed to synchronize
condition and generation, while MCG requires an additional backward pass and more steps to opti-
mize the image. In contrast, our model reduces inference time by trading fine-tuning costs, enabling
faster generation of high-quality images than other diffusion-based inpainting models.

Input Sample 1 Sample 2 Sample 3 Sample 4 Input Sample 1 Sample 2 Sample 3 Sample 4

Figure 7: Examples of diverse generations using TD-Paint on the CelebA and ImageNet, with the
same input image and different initial noise. Additional examples are available in Appendix D.

5.4 DIVERSITY OF GENERATED IMAGES

While TD-Paint performs fast and high-quality inpainting, we must ask whether this comes at the
cost of diversity. To evaluate this, we compute the Diversity Score (Lugmayr et al., 2021) by gen-
erating 10 different images for 100 inputs. The quantitative results reported in Table 4. The most
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Table 2: Quantitative results: KID evaluation of diffusion models for inpainting on the CelebA-
HQ, ImageNet1K and Places2 datasets.

CelebA-HQ KID↓
Wide Narrow Super-Res. 2x Altern. Lines Half Expand

RePaint-1 0.001 62 0.004 23 0.072 77 0.012 71 0.004 34 0.023 99
RePaint-20 0.001 15 0.001 38 0.016 07 0.006 15 0.004 18 0.024 15
MCG 0.001 10 0.001 49 0.022 92 0.004 93 0.001 18 0.010 96
CoPaint 0.001 97 0.002 23 0.007 48 0.003 08 0.003 42 0.011 03
LDM 0.000 10 0.001 85 0.304 01 0.236 88 0.001 01 0.004 96

ControlNet 0.003 14 0.099 10 0.180 62 0.072 80 0.003 57 0.047 67
BLD −0.000 05 0.000 42 0.134 01 0.103 56 0.005 20 0.025 67
Uni-paint 0.007 68 0.054 62 0.450 69 0.252 60 0.010 02 0.144 14
PowerPaint 0.008 30 0.018 16 0.321 38 0.146 03 0.051 07 0.217 72
TD-Paint −0.000 08 −0.000 09 0.000 59 0.000 24 0.000 44 0.007 10

ImageNet1K Wide Narrow Super-Res. 2x Altern. Lines Half Expand

RePaint-1 0.001 28 0.001 51 0.111 27 0.010 39 0.002 24 0.004 05
RePaint-20 0.000 16 −0.000 07 0.003 64 0.000 68 0.001 06 0.005 94
MCG 0.000 78 0.000 07 0.004 23 0.001 28 0.007 41 0.053 79
CoPaint 0.004 57 0.000 34 0.000 39 0.000 05 0.015 32 0.085 38
LDM 0.009 31 0.007 89 0.215 63 0.150 21 0.018 03 0.076 00
ControlNet 0.005 34 0.014 42 0.063 52 0.017 14 0.003 97 0.005 42
BLD 0.005 44 0.005 89 0.043 20 0.064 94 0.010 03 0.013 78
Uni-paint 0.007 08 0.022 50 0.064 00 0.092 72 0.006 11 0.010 79
PowerPaint 0.006 54 0.008 57 0.157 53 0.055 63 0.006 33 0.009 80
TD-Paint −0.000 01 −0.000 10 0.004 72 0.000 41 0.000 28 0.003 86

Places2 Wide Narrow Super-Res. 2x Altern. Lines Half Expand

RePaint-1 0.003 11 0.002 21 0.110 56 0.011 34 0.014 52 0.025 65
RePaint-20 0.000 44 −0.000 26 0.004 58 0.001 47 0.006 15 0.032 35
MCG 0.000 35 0.000 47 0.009 92 0.002 96 0.004 98 0.016 09
CoPaint 0.000 31 −0.000 05 0.000 76 0.000 16 0.001 84 0.020 94
LDM 0.000 78 0.001 37 0.237 59 0.139 34 0.003 92 0.018 58
ControlNet 0.002 77 0.009 95 0.126 10 0.023 21 0.008 52 0.018 70
BLD −0.000 25 −0.000 09 0.123 99 0.121 02 0.018 62 0.033 62
Uni-paint 0.001 57 0.009 01 0.241 63 0.165 31 0.004 65 0.026 02
PowerPaint 0.018 14 0.005 83 0.217 82 0.057 73 0.074 71 0.251 31
TD-Paint −0.000 16 −0.000 30 0.005 25 0.000 27 0.000 64 0.008 36

diverse model is RePaint-1, which also has a high LPIPS score. In contrast, TD-Paint achieves a high
Diversity Score across most masks while consistently producing high-quality images (see Figure 7)
with lower LPIPS scores.

Table 4: Diversity Score on CelebA-HQ with 10 random generations across 100 images.

CelebA-HQ Diversity Score↑
Wide Narrow Super-Resolve 2x Altern. Lines Half Expand

RePaint-1 23.716 33.355 32.564 30.917 22.682 19.669
RePaint-20 23.003 28.276 23.296 23.277 23.059 22.618
MCG 17.694 18.084 17.427 17.547 17.690 17.369
CoPaint 23.979 27.586 24.840 24.279 23.802 23.211
TD-Paint 22.629 29.402 27.358 29.331 23.459 21.753

6 CONCLUSIONS

Table 3: Inpainting speed for different diffusion
model in the pixel space.

CelebA-HQ LPIPS↓ Runtime↓ NBS↓
RePaint-1 0.076 19.68 250
RePaint-20 0.036 189.62 4750
MCG 0.045 184.59 1000
CoPaint 0.044 128.14 1000

TD-Paint 0.028 30.67 250

In this paper, we introduce Time-aware Diffu-
sion Paint (TD-Paint), a method that acceler-
ates inpainting by modeling multiple noise lev-
els through time conditioning in the diffusion
process. Unlike other diffusion-based mod-
els, TD-Paint does not require any special ar-
chitecture for inpainting, and generates high-
quality, diverse images more quickly. This ef-
ficiency makes TD-Paint highly practical for
real-world applications and usable for resource-
constrained devices.
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A ABLATIONS: TRAINING MASK

We examine the contribution of masks during training on the CelebA-HQ dataset using our mask
strategy (Ours) described in Section 4.1, LaMa masks (LAMA), and a random mix of the two
(Ours+LAMA). Unless stated otherwise, all results are reported with Ours+LAMA. Table 5 shows
that using LAMA over Ours reduces the error for every test mask except Super-Resolve 2x and
Altern. Lines, which is explained by the more complicated design of LAMA, which produces
train masks closer to the Wide and Narrow test masks and of more diverse shapes. Notably, using
Ours+LAMA masks still allows for very low Super-Resolve 2x and Altern. Lines errors compared to
LaMa errors on the same masks in Table 6. Using Ours+LAMA allows the benefits of Ours masks
to be retrained while having low Super-Resolve 2x and Altern. Lines errors.
Table 5: Ablation study for the types of training time map. The metrics show how the use of Ours
focuses more on very fine inpainting masks. The distribution of LAMA masks is closer to larger
inpainting masks, such as Wide. Combining the two allows for strong performance across the range
of test masks considered.

CelebA-HQ Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
TD-Paint LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑
Ours 0.067 0.862 0.032 0.913 0.018 0.942 0.009 0.972 0.174 0.666 0.463 0.244
LAMA 0.053 0.876 0.027 0.920 0.055 0.870 0.044 0.920 0.168 0.665 0.445 0.229
Ours+LAMA 0.055 0.873 0.028 0.918 0.017 0.939 0.010 0.971 0.170 0.667 0.457 0.212

B IMAGE QUALITY AND DIFFUSION STEPS

We compare the LPIPS metrics over the diffusion step for TD-Paint, RePaint and MCG in Figures 8
and 9 averaged over 100 images from the CelebA-HQ dataset. TD-Paint can produce high-quality
images in a fraction of the steps required by RePaint because it takes advantage of the state since the
early step of the diffusion process.
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Figure 8: Image quality at different time step for 100 images on CelebA-HQ dataset for Wide and
Half masks.
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Figure 9: Image quality at different time step for 100 images on CelebA-HQ dataset for Super-
Resolve 2x mask.

C COMPARISON WITH CNN- AND TRANSFORMER-BASED MODELS

We compare TD-Paint with LaMa (CNN-based) and MAT (transformer-based) models in Tables 6
and 7.

Wide and Narrow masks Our approach closely matches the performance of LaMa and MAT in the
Wide setting on CelebA-HQ and even surpasses them in the Narrow setting on CelebA-HQ, as well
as in both the Wide and Narrow settings on ImageNet1K. As shown in Figure 10, LaMa tends to
generate pupils of different sizes when one eye is hidden in the Wide and different eye colors in the
Narrow settings.

Super-Resolve 2x and Altern. Lines masks Table 6 shows that TD-Paint outperforms the baselines
by a wide margin. Particularly MAT struggles with this task and often produces images with signif-
icant artifacts and blurring (see Figures 10 to 12). In contrast, TD-Paint consistently achieves lower
LPIPS scores and higher SSIM values, reflecting superior image quality and performance.

Half and Expand masks On CelebA-HQ, TD-Paint achieves the best results across all datasets,
as indicated by the KID metrics (see Table 7). As shown in Figures 10 to 12, LaMa generates
blurry artifacts in both the Half and Expand settings, whereas our proposed model consistently
produces high-quality images. This behavior of LaMa may be due to overfitting to the training mask
distribution, as suggested by previous studies (Lugmayr et al., 2022).
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D ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative inpainting results compared to the state-of-the-art models de-
scribed in Section 5 and Appendix C.

For CelebA-HQ on Wide and Narrow masks in Figure 13, Super-Resolve 2x and Altern. Lines masks
in Figure 14, Half and Expand in Figure 15.

For ImageNet1K on Wide and Narrow masks in Figure 16, Super-Resolve 2x and Altern. Lines
masks in Figure 17, Half and Expand in Figure 18.

For Places2 on Wide and Narrow masks in Figure 19, Super-Resolve 2x and Altern. Lines masks in
Figure 20, Half and Expand in Figure 21.

Additional diversity results in CelebA-HQ and ImageNet1K can be found in Figure 22, and for
ImageNet1K with different conditional classes in Figure 23. Through class conditioning, TD-Paint
can generate diverse images based on different target classes. This mechanism allows TD-Paint to
guide the inpainting process toward specific semantic categories, resulting in more controlled and
contextually relevant image completions. This feature is especially useful when the inpainted region
must match a particular class, increasing TD-Paint’s flexibility and effectiveness across a range of
inpainting tasks.

Table 6: Quantitative results: evaluation of CNN- and transformer-based models for inpainting on
the CelebA-HQ, ImageNet1K and Places2 datasets.

CelebA-HQ Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑

LaMa 0.052 0.882 0.033 0.911 0.219 0.662 0.110 0.728 0.161 0.693 0.410 0.257

MAT 0.055 0.872 0.030 0.911 0.509 0.201 0.251 0.668 0.171 0.668 0.475 0.192
TD-Paint 0.055 0.873 0.028 0.918 0.017 0.939 0.010 0.971 0.170 0.667 0.457 0.212

ImageNet1K Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑

LaMa 0.107 0.832 0.068 0.853 0.375 0.422 0.271 0.483 0.281 0.618 0.626 0.196

MAT 0.143 0.751 0.095 0.781 0.512 0.257 0.410 0.422 0.308 0.542 0.633 0.144
TD-Paint 0.099 0.830 0.057 0.864 0.136 0.648 0.059 0.847 0.257 0.603 0.597 0.159

Places2 Wide Narrow Super-Resolve 2x Altern. Lines Half Expand
LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑

LaMa 0.106 0.836 0.064 0.864 0.477 0.348 0.187 0.605 0.281 0.625 0.611 0.212

MAT 0.131 0.792 0.079 0.832 0.186 0.658 0.087 0.795 0.284 0.580 0.651 0.144
TD-Paint 0.112 0.826 0.064 0.865 0.130 0.696 0.060 0.879 0.273 0.594 0.607 0.146

Table 7: Quantitative results: KID evaluation of CNN- and transformer-based models for inpaint-
ing on the CelebA-HQ, ImageNet1K and Places2 datasets.

CelebA-HQ KID↓
Wide Narrow Super-Res. 2x Altern. Lines Half Expand

LaMa 0.000 96 0.001 64 0.059 09 0.037 79 0.006 27 0.090 38
MAT 0.000 07 0.000 16 0.149 92 0.054 72 0.000 80 0.050 62
TD-Paint −0.000 08 −0.000 09 0.000 59 0.000 24 0.000 44 0.007 10

ImageNet1K KID↓
Wide Narrow Super-Res. 2x Altern. Lines Half Expand

LaMa 0.002 53 0.000 84 0.066 59 0.023 76 0.006 45 0.072 49
MAT 0.010 75 0.007 04 0.086 54 0.045 74 0.022 62 0.095 40
TD-Paint −0.000 01 −0.000 10 0.004 72 0.000 41 0.000 28 0.003 86

Places2 KID↓
Wide Narrow Super-Res. 2x Altern. Lines Half Expand

LaMa 0.000 38 0.000 21 0.096 99 0.013 40 0.003 78 0.029 88
MAT 0.000 89 0.000 15 0.015 16 0.002 95 0.003 20 0.136 94
TD-Paint −0.000 16 −0.000 30 0.005 25 0.000 27 0.000 64 0.008 36
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Figure 10: Qualitative results: TD-Paint against state-of-the-art inpainting CNN- and transformer-
based models on CelebA-HQ. Zoom in for better details. Additional examples can be found in
Appendix D.

Input LaMa MAT TD-Paint Input LaMa MAT TD-Paint

W
id

e
N

a
rr

o
w

S
u

p
er

-R
es

o
lv

e
2

x

A
lt

er
n

.
L

in
es

H
a

lf
E

xp
a

n
d

Figure 11: Qualitative results: TD-Paint against state-of-the-art inpainting CNN- and transformer-
based models on ImageNet1K. Additional examples can be found in Appendix D.

Additional examples of inpainting using object-focused and region-specific masks are presented in
Figures 24 and 25. These examples feature user-drawn masks that naturally follow object bound-
aries and regional structures, demonstrating TD-Paint’s effectiveness in practical image manipula-
tion scenarios. Such realistic mask shapes better reflect how users interact with inpainting tools
in real-world applications, where selections typically correspond to meaningful objects or regions
rather than arbitrary geometric patterns.
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Figure 12: Qualitative results: TD-Paint against state-of-the-art inpainting CNN- and transformer-
based models on Places2. Additional examples can be found in Appendix D.
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Figure 13: CelebA-HQ qualitative results
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Figure 14: CelebA-HQ qualitative results
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Figure 15: CelebA-HQ qualitative results
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Figure 16: ImageNet1K qualitative results
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Figure 17: ImageNet1K qualitative results
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Figure 18: ImageNet1K qualitative results
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Figure 19: Places2 qualitative results
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Figure 20: Places2 qualitative results
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Figure 21: Places2 qualitative results
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Input Sample 1 Sample 2 Sample 3 Sample 4

Figure 22: Example of divers generation using TD-Paint on CelebA-HQ and ImageNet1K using the
same input image and different initial noise.
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Figure 23: ImageNet1K TD-Paint diversity qualitative results using different class conditioning. For
a line, TD-Paint is prompted with the same input image and mask but, with different classes.
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Figure 24: Demonstration of TD-paint application on the ImageNet1K dataset. The figure shows
user-drawn masks highlighting specific regions or objects, followed by four generated image varia-
tions for each mask.
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Figure 25: Demonstration of TD-paint application on the Places2 dataset. The figure shows user-
drawn masks highlighting specific regions or objects, followed by four generated image variations
for each mask.
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